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Abstract 

This paper studies the implications of model uncertainty for wealth distribution in a 
tractable general equilibrium model with a borrowing constraint and robustness à la 
Hansen and Sargent (2008). Households confront model uncertainty about the process 
driving the return of the risky asset, and they choose robust policies. We find that in the 
presence of a borrowing constraint, model distortion varies non-monotonically with 
wealth. Robustness generates two forces that amplify wealth inequality. On the one hand, 
it increases the speed at which the wealth of unlucky households hits the borrowing 
constraint. On the other hand, it leads richer households to invest a disproportionately 
larger share of wealth in the higher yielding asset. Our study also shows that model 
uncertainty results in an aggregate welfare loss unevenly distributed across households. 

 

Bank topics: Economic Model, Business fluctuations and cycles, Asset pricing 
JEL codes: D3; D8; E2 

Résumé 

Les auteurs étudient les implications de l’incertitude de modèle pour la distribution de la 
richesse dans un modèle d’équilibre général maniable intégrant une contrainte d’emprunt 
et une robustesse à la Hansen et Sargent (2008). Les ménages sont confrontés à l’incertitude 
de modèle liée au processus qui détermine le rendement de l’actif risqué, et prennent des 
décisions robustes. Les auteurs constatent qu’en présence d’une contrainte d’emprunt, la 
distorsion dans le modèle varie de façon non monotone en fonction de la richesse. La 
robustesse génère deux forces qui amplifient les inégalités de richesse : la première accroît 
la vitesse à laquelle les ménages moins bien nantis se heurtent à la contrainte d’emprunt, 
et la seconde fait que les ménages mieux nantis investissent une part 
disproportionnellement plus grande de leur richesse dans l’actif au rendement supérieur. 
L’étude montre également que l’incertitude de modèle donne lieu à une perte de bien-être 
généralisée et répartie inégalement entre les ménages. 

 

Sujets : Modèle économique, Cycles et fluctuations économiques, Évaluation des actifs 
Codes JEL : D3, D8, E2 
 

 



NON-TECHNICAL SUMMARY

For several years now, wealth inequality has been attracting extensive discussions among 
policy-makers and researchers. There has been a broad consensus on the idea that house-
holds’ resource allocation across assets is a key determinant of the wealth distribution. 
Earlier studies, for instance, have suggested that Knightian uncertainty (or, equivalently, 
model uncertainty or robustness) plays an important role in understanding household 
portfolio choice.

In this paper, we develop a tractable continuous-time general equilibrium model to an-
alyze the implications of model uncertainty for the distribution of wealth. The economy 
consists of infinitely lived households differing in income and wealth. They face idiosyn-
cratic income risk and can trade two assets, including a riskless bond and a risky real 
asset, to smooth consumption. Borrowing is permitted but subject to a constraint. In 
addition, households are confronted with model uncertainty related to the process driving 
the return of the risky asset, and they choose optimal policies that are robust to the model 
uncertainty.

We characterize the policy functions of both poor and rich households. The main 
findings are three-fold. First, the model distortion from uncertainty for both the poor 
and rich household is small, though for different reasons. Poor households face little 
distortion from uncertainty since they hold little of the risky asset due to the borrowing 
constraint. Rich households are, in contrast, little affected by uncertainty because their 
wealth is sufficient to insure against most, if not all, possible outcomes. The effect of 
model uncertainty reaches its maximum at some intermediate wealth level. Second, under 
certain conditions, robust policies accelerate the speed of convergence to the borrowing 
constraint. Lower wealth translates into a tighter borrowing constraint, which further 
constrains investment in the risky asset. These two forces together lead to a slower wealth 
accumulation. Third, the wealthier the households are, the smaller the reduction in the 
proportion of their wealth invested in the risky asset because of model uncertainty.

We further examine numerically the impacts of model uncertainty on wealth distribution 
and welfare. We find that robustness decreases the wealth share of the bottom 50 percent 
but increases that of the top 1 percent. Relaxing the borrowing constraint amplifies the 
distributional effects of model uncertainty. Finally, our welfare analysis shows that model 
uncertainty results in an aggregate welfare loss, unevenly distributed across households.
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1. Introduction

Wealth inequality has attracted extensive discussions among policy-makers and re-

searchers in recent years. There is a broad consensus that how households allocate re-

sources across assets is a key determinant of wealth distribution. Earlier studies have

suggested that Knightian uncertainty plays an important role in understanding house-

hold portfolio choice.1 The objective of this paper is to analyze the implications of model

uncertainty associated with risky investment for wealth distribution.

To do this, we develop a tractable continuous-time general equilibrium model. The

model economy consists of infinitely lived households differing in their income and wealth.

These households receive a periodic income that follows a two-state Poisson process, and

they can trade two assets, including a riskless bond and a risky real asset, to smooth con-

sumption. Borrowing is permitted but subject to a constraint. Households confront model

uncertainty about the process driving the return of the risky asset, and they choose ro-

bust policies à la Hansen and Sargent (2008). Robustness results from a dynamic zero-sum

game between a household and nature. The household makes a standard consumption-

portfolio choice to maximize its lifetime utility. At the same time, nature chooses how

severely to distort the risky return perceived by the household so as to minimize a distor-

tion cost.

We characterize the policy functions of both poor and rich households. The main

findings are three-fold. First, the size of model distortion chosen by nature varies non-

monotonically with household wealth, reaching its maximum at some intermediate wealth

level. Nature finds it optimal not to distort heavily the perceived risky return of poor

households, as they hold few risky assets due to the borrowing constraint. For households

in possession of large wealth, the benefit that comes from nature twisting their perception

of the risky return is insignificant, so the distortion is also small. Second, we formulate the

effects of model uncertainty on the speed at which the wealth of unlucky households hits

the borrowing constraint. It is shown that under certain conditions, robustness accelerates

the speed of convergence. Model uncertainty discourages these households from investing

1This paper uses “model uncertainty” and “robustness” interchangeably, both meaning “Knightian uncer-
tainty”.

1
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in the risky asset due to their mistrust of the probability distribution underlying the

risky return process. Lower wealth translates into a tighter borrowing constraint, which

further constrains their investment in the risky asset. These two forces together lead to a

slower wealth accumulation. Third, we derive the policy functions of the rich. For these

households, the wealthier they are, the less nature distorts their perception, and thus the

smaller is the reduction in the proportion of their wealth invested in the risky asset. In

other words, robustness makes richer households even richer.

We prove the existence of a stationary equilibrium and examine numerically the impacts

of model uncertainty on wealth distribution and welfare. There are three main findings.

First, robustness decreases the wealth share of the bottom 50 percent but increases that

of the top 1 percent. Our parameterized model generates a wealth distribution broadly in

line with U.S. data. Second, a relaxation of the borrowing constraint amplifies the distri-

butional effects of model uncertainty. The intuition is that in this case, since households

can more easily borrow and invest in the risky asset, it is in the best interest of nature to

pay the distortion cost and reduce the perceived excess return. Third, our welfare analysis

shows that model uncertainty leads to a welfare loss for the rich but a gain for the poor.

Overall, robustness induces a welfare loss equivalent to a 0.494 percent drop in aggregate

wealth.2

Our paper is related to two strands of the literature. First, it is connected to the

literature that examines the effects of model uncertainty on households’ consumption-

portfolio choice and the macroeconomy. Examples include Anderson, Hansen, and Sargent

(2003), Maenhout (2004), Luo, Nie, and Young (2018), and Kasa and Lei (2018).3 Recent

work by Kasa and Lei (2018) is the study closest to ours. The current paper differs from

theirs in the following two aspects. First, we bring attention to the interactions between

model uncertainty and the borrowing constraint. To our best knowledge, this is the first

paper that characterizes this interplay explicitly, which bears important macroeconomic

implications. For example, a borrowing constraint changes the outcome of the dynamic

2This estimate is comparable to that in Ellison and Sargent (2015). Our study differs from theirs by
quantifying the welfare effects of robustness from both aggregate and disaggregate perspectives.
3Empirical studies, e.g., Dimmock et al. (2016) and Brenner and Izhakian (2018), provide supporting
evidence for the importance of Knightian uncertainty for understanding household portfolio choice.
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zero-sum game, resulting in a non-monotonic relationship between model distortion and

wealth. By contrast, the relationship is monotonic in Kasa and Lei (2018). Second, their

paper answers the question of whether model uncertainty can explain the rise in top wealth

shares in the U.S., while our main goal is to analyze the effects of robustness on the whole

wealth distribution and evaluate its welfare implications for different households.

The current paper also contributes to the growing literature that analyzes the macroeco-

nomic effects of household heterogeneity in continuous time.4 Examples include Benhabib,

Bisin, and Zhu (2016), Gabaix et al. (2016), Achdou et al. (2017), Cao and Luo (2017),

Kaplan, Moll, and Violante (2018), Nuño and Moll (2018), and Toda and Walsh (2018).

Our paper is most closely related to Achdou et al. (2017), upon which we build our model.

The paper brings two contributions to this literature. First, we show that robustness pro-

vides a useful perspective for understanding both tails of wealth distribution. Second, we

extend relevant results in Achdou et al. (2017) for the context of model uncertainty, and

derive a novel formulation for its impact on the speed of convergence.

The rest of the paper is structured as follows. Section 2 describes the model. Section 3

characterizes the policy functions of both poor and rich households. Section 4 investigates

the distributional and welfare impacts of model uncertainty. Section 5 concludes.

2. The Model

This section constructs a continuous-time general equilibrium economy populated by a

continuum of heterogeneous households differing in their income and wealth. There are

two assets in the economy: a riskless bond and a risky real asset.

2.1. Preferences. Households have standard preferences over consumption as

U0 = E0

[∫ +∞

0
e−ρtu(ct)dt

]
, (2.1)

where ρ denotes the subjective discount factor and ct consumption at date t. For analytical

tractability, we specify the utility function u(c) to be a constant relative risk aversion

4There is also a large literature that studies equilibrium models with heterogenous households in discrete
time. Examples include Bewley (1986), Huggett (1993), Aiyagari (1994), Benhabib, Bisin, and Zhu (2015),
Quadrini and Ŕıos-Rull (2015) and references therein.
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(CRRA) utility

u (c) =
c1−γ

1− γ
, γ > 0. (2.2)

2.2. Endowment. Households receive an income zt, which evolves stochastically over

time. We assume that income follows a two-state Poisson process and takes values in

{z1, z2} with z2 > z1. The process switches from state 1 to state 2 with intensity λ1 and

from state 2 to state 1 with intensity λ2.

2.3. Market structure. Households can trade two types of assets to smooth consump-

tion. First, they have access to an instantaneously maturing riskless bond that pays an

interest rate rt. They can also trade a real risky asset with return Rt. This asset is real

in the sense that each unit produces Rt units of physical output and only non-negative

positions are allowed. The return of the risky asset varies over time according to

dRt = Rdt+ σdWt, (2.3)

where R and σ are parameters. Denote bt and kt as a household’s positions in the bond

and the risky asset, respectively, and at = bt + kt as its net worth.

Households can also borrow subject to a constraint

bt ≥ −φ, (2.4)

where φ ≥ 0. The borrowing constraint and the requirement of non-negative holdings of

the risky asset can be summarized by the following condition:

0 ≤ kt ≤ at + φ, (2.5)

where at ≥ a = −φ is the constraint imposed on net worth.

2.4. Robust portfolio choice. In this economy, households do not perfectly know the

probability measure underlying the risky return process in (2.3). We capture this model

uncertainty using the notion à la Hansen et al. (2006) and Hansen and Sargent (2008).5

5For the axiomatic foundations of model uncertainty, please refer to Gilboa and Schmeidler (1989), Mac-
cheroni, Marinacci, and Rustichini (2006), and Strzalecki (2011).
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When making their consumption-portfolio decisions, households consider multiple alterna-

tive probability measures and choose policies to obtain the highest expected utility under

the worst case scenario. Robustness is achieved by assuming that each household plays

a zero-sum game with nature. Nature distorts the drift term of the risky return process,

while the household makes its portfolio choice taking the distorted return as given.

More precisely, let q0 be a probability measure defined by the Brownian motion in the

reference law of motion describing return process (2.3) and let q be an alternative law.

The distance between the two laws is measured by the expected discounted log likelihood

ratio, also called relative entropy

R(q) = ρ

∫ ∞
0

e−ρt
[∫

log

(
dqt
dq0
t

)
dqt

]
dt =

1

2
E0

[∫ ∞
0

e−ρth2
tdt

]
, (2.6)

where the second equality is due to the Girsanov Theorem and ht is a square integrable

and measurable process. The value of ht represents the distortion chosen by nature. One

can then view the alternative model q as induced by the following Brownian motion

dW̃t = dWt − htdt. (2.7)

Consequently, the alternative risky return process is

dRt = (R+ σht) dt+ σdW̃t. (2.8)

As a result, the dynamic budget constraints perceived by a household can be written as

dat = (zt + rat + kt(R+ σht − r)− ct) dt+ σktdW̃t. (2.9)

The objective of a household is to choose a consumption plan {ct} and an investment

plan in the risky asset {kt} to maximize its lifetime utility, subject to budget constraint

(2.9) and borrowing constraint (2.5). By contrast, nature chooses a distortion plan {ht} to

minimize a distortion cost represented by the relative entropy R(q).6 As such, the robust

6This form of cost functions has been used widely in the literature, e.g., Hansen and Sargent (2008).
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consumption-portfolio choice problem can be formulated as

V0 = max
{ct},{kt}

min
{ht}

E0

[∫ +∞

0
e−ρt

(
u(ct) +

1

2ε
ht

2

)
dt

]
s.t. (2.10)

dat = (zt + rat + kt(R+ σht − r)− ct) dt+ σktdW̃t,

0 ≤ kt ≤ at + φ.

The parameter ε represents the robustness parameter, where 1/ε can be interpreted as a

marginal cost of distorting the drift term of the risky return process. When ε = 0, the

marginal cost is infinite and nature chooses h = 0 so that there is no doubt in the law of

motion of the risky return. In this case, the model reduces to a standard Merton portfolio

choice problem without robustness.

2.5. Stationary equilibrium. Denote j as one state of income and −j as the other. A

stationary equilibrium consists of value function vj(a), optimal consumption cj(a), optimal

investment in the risky asset kj(a), optimal distortion hj (a), and density function gj(a)

such that

(1) The value function vj(a) and policy functions cj(a), kj(a) and hj (a) together solve

the following Hamilton-Jacobi-Bellman (HJB) equation:

ρvj(a) = max
c,0≤k≤a+φ

min
h

 u(c) + 1
2εh

2 + v′j(a)(zj + ra+ k(R+ σh− r)− c)

+1
2v
′′
j (a)σ2k2 + λj(v−j(a)− vj(a))

 . (2.11)

(2) The density function gj(a) satisfies the following Kolmogorov Forward (KF) equa-

tion:

0 = − ∂

∂a
[ŝj(a)gj(a)] +

1

2

∂2

∂a2

[
σ2kj(a)2gj(a)

]
− λjgj(a) + λ−jg−j(a), (2.12)

where

ŝj(a) = zj + ra+ kj(a)(R− r)− cj(a). (2.13)

(3) The bond market clears:

2∑
j=1

∫ ∞
a

(a− kj(a)) gj(a)da = 0. (2.14)
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3. Policy Functions

This section characterizes the impact of model uncertainty on the consumption-investment

behavior of both wealth poor and rich households. The analysis provides the key insights

on the implications of robustness for wealth distribution. The characterization takes ad-

vantage of a perturbation method related to the distortion parameter ε, which allows us

to disentangle the effects of robustness in an analytical fashion.

3.1. Portfolio choice of the poor. We first consider the behavior of poor households,

with the results summarized in the following proposition.

Proposition 3.1. Suppose that r < ρ at the steady state with a > − z1
r . Then the solution

to the HJB equation (2.11) has the following properties:

(1) For j = 1, 2, hj (a) = 0, and there exists an a∗j > a such that hj

(
a∗j

)
≤ hj (a) for

a ∈ [a,∞).

(2) Denote

sj(a) = zj + ra+ kj(a)(R+ σhj (a)− r)− cj(a) (3.15)

as the robust saving function. As a→ a , sj(a) satisfies:

s1 (a) ∼ −
√

2ν1 (a− a), (3.16)

where ν1 is a constant defined by

ν1 =
(ρ− r) c1 (a)

γ
+ λ1 (c2 (a)− c1 (a))

−c1 (a)

2γ

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ

c1 (a) c′′1 (a)

c′1 (a)2

)(
1− 2

ε

γ

c1 (a)1−γ

c′1 (a)

)
. (3.17)

Part 1 of Proposition 3.1 shows the effects of wealth on the way nature distorts the

return of the risky asset. The distortion is maximal at some intermediate wealth level.

Nature does not distort the risky return perceived by constrained households because they

do not hold any risky asset due to the borrowing constraint in (2.5) and thus have nothing

to lose. Meanwhile, the impact of model distortion on rich households is inconsequential,

so the distortion is also small.
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Part 2 of Proposition 3.1 extends the results in Achdou et al. (2017) to the case

with risky investment and model uncertainty. It characterizes the shape of the robust

saving function of low-income households in the proximity of the borrowing constraint,

where the saving policy behaves like −√ν1a. As shown in equation (3.17), the value

of ν1 is determined by three different factors. The first and second terms on the right-

hand side of the equation capture, respectively, the effects of intertemporal substitution

and income uncertainty, whereas the third represents the impact from risky investment,

taking robustness concerns into consideration.

In the model, households make their portfolio choice based on the perceived risky re-

turn process given in (2.8). However, their actual wealth accumulation is driven by the

realized return and thus the realized saving function in (2.13), which we characterize in

the following proposition.

Proposition 3.2. Suppose that r < ρ at the steady state with a > − z1
r . As a → a, the

realized saving function ŝj(a) satisfies:

ŝ1 (a) ∼ −
√

2ν̂1 (a− a), (3.18)

where ν̂1 is a constant given in the Appendix with

ν̂1 < ν1. (3.19)

Using Proposition 3.2, we can show that the wealth of a household with initial wealth a0

and successive low income draws z1 hits the borrowing constraint in finite time T , where

T =

√
2(a0 − a)

ν̂1
. (3.20)

Therefore, ν̂1 measures the speed of convergence to the borrowing constraint. The result

is that ν̂1 < ν1 is intuitive because the realized return from the risky asset is higher than

what would be perceived by a household with robustness concerns. Thus, the speed of

convergence is smaller than what it would be using the robust saving function.

We illustrate the individual policy functions in Figure 1. Panel (a) shows that the size

of model distortion changes non-monotonically with wealth, which is consistent with the
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prediction in Proposition 3.1. By (2.8), the distortion alters the drift of the perceived

risky return process from R to R + σhj (a). The figure thus suggests that households

in the two ends of the wealth distribution are less pessimistic than their middle coun-

terparts. Panels (b) to (d) exhibit the behavior of risky investment, consumption and

saving, respectively. As expected, the accumulation of wealth raises both investment and

consumption but decreases saving. In addition, the investment and consumption functions

of low-income households are concave near the borrowing constraint. This stems from the

fact that as wealth approaches the constraint, it declines more rapidly than investment

and consumption.

Figure 1: Policy functions

Model uncertainty affects the speed of convergence to the borrowing constraint. To

characterize the impact explicitly, we compare our benchmark economy with an otherwise

identical economy without robustness by calculating the difference between their respective

convergence speeds. The results are presented in the following proposition.
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Proposition 3.3. Suppose that r < ρ at the steady state with a > − z1
r . Denote

cj(a) = cj,0(a) + εcj,1(a) +O(ε2), j = 1, 2, (3.21)

as the first-order approximation of the consumption function, where cj,0(a) represents the

consumption function in the economy without robustness. It holds that

ν̂1 ≈ ν1,0 + εν1,1, (3.22)

where ν̂1 is the speed of convergence in the benchmark economy,

ν1,0 =
(ρ− r)c1,0 (a)

γ
+λ1 (c2,0 (a)− c1,0 (a))−c1,0 (a)

2γ

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ

c1,0 (a) c′′1,0 (a)

c′1,0 (a)2

)
(3.23)

represents the speed of convergence in the economy without robustness, and ν1,1 is some

constant defined in the Appendix.

The proof of Proposition 3.3 is based on a first-order Taylor expansion of the speed ν̂1

around ε = 0, which corresponds to the case without model uncertainty.

Corollary 3.4. Suppose that r < ρ at the steady state with a > − z1
r . If the following

three conditions are satisfied:

(1) c2,1 (a) > c1,1 (a) > 0;

(2) c′1,0(a) > 0 and c′′1,0(a) < 0;

(3) θ(a) < 0, where θ(a) is a function defined in the Appendix,

then it holds that

ν̂1 > ν1,0. (3.24)

The corollary says that the wealth of unlucky households in the benchmark economy hits

the borrowing constraint at a faster rate than in the economy without model uncertainty.

This result is driven by two forces. First, robustness induces households to believe that

the excess return on the risky asset is lower than what it is in reality. Consequently, they

invest less in the higher yielding asset, which decelerates wealth accumulation. Second,

lower wealth translates into a tighter borrowing constraint. This further discourages the

investment in the risky asset. The corollary immediately implies that, all else being



11

equal, the presence of robustness concerns in portfolio choice increases the mass of poor

households at any given point in time.

3.2. Portfolio choice of the rich. Next, we analyze the consumption and investment

behavior of rich households. In this case, they will behave as in a problem without income

and without a borrowing constraint. Before proceeding to the analysis of the policy

functions, we first derive one auxiliary lemma concerning a homogeneity property of the

value function defined in (2.11).

Lemma 3.5. As a → ∞, the value function solving the HJB equation (2.11) can be

approximately written as

vj (a) ≈ vj,0 (a) + εvj,1 (a) , (3.25)

where the two functions vj,0 (a) and vj,1 (a) are such that for any ξ > 0,

vj,0 (ξa) = ξ1−γvξ,j,0 (a) , vj,1 (ξa) = ξ2(1−γ)vξ,j,1 (a) , (3.26)

with vξ,j,0 (a) and vξ,j,1 (a) satisfying two functional equations defined in the Appendix.

Using the lemma, the following proposition provides an analytical approximation for

the policy functions when wealth is very large. The proof rests on the fact that borrowing

constraint and income become irrelevant for the portfolio choice of rich households.

Proposition 3.6. As a → ∞, the individual policy functions solving the HJB equation

(2.11) can be approximately written as

cj(a) ≈ α
− 1
γ

0 a− ε1

γ
α
− 1
γ
−1

0 α1a
2−γ (3.27)

kj(a) ≈ R− r
γσ2

a− εR− r
σ2

α2
0 + α1(γ − 1)

α0γ2
a2−γ (3.28)

hj(a) ≈ −εR− r
γσ2

α0a
1−γ , (3.29)
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where

α0 =

(
ρ− (1− γ) r

γ
− 1− γ

2γ

(R− r)2

γσ2

)−γ
(3.30)

α1 =

1
2α

2
0

(
R−r
γσ

)2

r − α
− 1
γ

0 + 1
2

(
R−r
γσ

)2
− ρ

2(1−γ)

. (3.31)

Equation (3.29) shows that when the CRRA exceeds one, a widely accepted assump-

tion in the literature, the size of model distortion declines with wealth and it diminishes 

gradually to zero as wealth approaches infinity. This is reminiscent of the observation in 

Panel (a) of Figure 1. Wealth discourages nature from distorting the risky return because 

the more wealth a household holds, the less pessimistic the household is about the return 

obtained from the risky investment.7

Dividing both sides of (3.28) by a yields

kj (a)

a
≈ R− r

γσ2
− εR− r

γσ2

α2
0 + α1(γ − 1)

α0γ
a1−γ . (3.32)

It shows that for the rich, the share of their wealth invested in the risky asset can be

decomposed into two components. The first term corresponds to the standard Merton

portfolio share, while the second captures the effects of model uncertainty. In the case

with
α2
0+α1(γ−1)
α0γ2

> 0, robustness concerns cause rich investors to cut their investment in

the risky asset, but the reduction is less pronounced for wealthier investors. In other

words, richer households invest a larger share of their wealth in the higher yielding asset.

We conclude this section by comparing in Figure 2 the policy function xj (a) in the

benchmark economy with its counterpart xj,0 (a) in an otherwise identical economy except

for model uncertainty. Panel (b) shows that robustness concerns reduce the risky invest-

ment across the board. The reduction, however, varies non-monotonically with wealth,

and it follows closely the pattern of the distortion in Panel (a). Panel (c) displays the

implications of model uncertainty for consumption. As discussed previously, robustness

reduces the risky investment of households near the borrowing constraint, resulting in an

7Kasa and Lei (2018) derive similar robust policy functions in a Blanchard–Yaari framework over the entire
state space. In our paper, these functions are only valid for the rich, and they take a different shape in the
left tail due to the borrowing constraint.
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Figure 2: The effects of robustness on policy functions

increase in their consumption. Contrarily, the consumption of the rich falls as a result of a

reduction in net worth stemming from the decrease in their holdings of the higher yielding

asset. Panel (d) depicts the reaction of saving to robustness. The ratio is above one for

the low-income state and below one for the high-income state. As seen in Figure 1, saving

is negative in the low-income state and positive in the high-income state, suggesting that

the presence of model uncertainty slows wealth accumulation.

4. Wealth Distribution

This section studies the effects of model uncertainty for wealth distribution and welfare.

4.1. Stationary distribution. We first prove the existence of a stationary equilibrium

by finding an interest rate that satisfies the bond market clearing condition (2.14).

Proposition 4.1. There exists a stationary equilibrium in our benchmark economy.

To illustrate the distributional implications of model uncertainty, we first parameterize

the benchmark model according to U.S. data. We set the subjective discount rate ρ at
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0.058 to match an average annual real interest rate of 4 percent. The risk aversion γ is fixed

at 2, a value well within the consensus range of the parameter. Following Kasa and Lei

(2018), we choose the expected return R of the risky asset equal to 0.059 and the standard

deviation σ to 0.09. The parameters governing the income process are taken from Achdou

et al. (2017), where the two income states z1 and z2 are set at 0.4 and 0.6, respectively,

and the transition intensity between the states λ1 = λ2 = 0.5. The borrowing constraint

parameter φ equals 1.2, a value broadly in line with Huggett (1993) and Achdou et al.

(2017). The robustness parameter ε is calibrated based on Anderson et al. (2003) and

Kasa and Lei (2018), and it is set at 0.067. The corresponding state dependent detection

error probabilities are all above 45 percent, suggesting the empirical plausibility of model

uncertainty. We compute the stationary equilibrium numerically using a finite difference

method developed in Achdou et al. (2017).

Table 1 compares the stationary wealth distribution in the benchmark economy with

that in an otherwise identical economy without robustness. Pertaining to the left tail,

robustness increases the fraction of households with negative wealth and decreases the

wealth share of the bottom 50 percent. The results are in line with the findings in Corollary

3.4, which shows that robustness increases the speed of convergence to the borrowing

constraint. Meanwhile, robustness generates a larger wealth share of the top 1 percent

because richer households invest an unevenly larger portion of their wealth in the risky

asset. Putting this together, model uncertainty leads to a higher wealth concentration,

which is also reflected in the rise of the wealth Gini coefficient. Empirically, introducing

robustness helps improve the model’s fit of the U.S. wealth distribution, particularly the

two tails.

The distributional effects of robustness are further illustrated in Figure 3. Panel (a)

shows that the cumulative distribution function of wealth in the robust economy is first-

order stochastically dominated by its counterpart in the nonrobust economy. This is

because robustness reduces net worth of all households. Panel (b) demonstrates that

model uncertainty shifts the Lorenz curve outward, indicating a rise in wealth inequality.

4.2. Comparative statics. In what follows, we conduct a sensitivity analysis of how

the computed distributional effects of model uncertainty depend on parameters. In the
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Table 1: Stationary distribution

Object Data Nonrobust Robust Change (%)

P(a < 0) 0.100 0.093 0.109 16.7
[0, 50) 0.018 0.027 0.019 -31.5

[50, 90) 0.251 0.156 0.128 -18.1

[90, 99) 0.382 0.563 0.544 -3.5
[99, 100] 0.350 0.253 0.309 22.2

Gini 0.860 0.852 0.880 3.3

Notes : The source of the data is the Survey of Consumer
Finances. Robust and Nonrobust correspond to the economy
with and without robustness, respectively. The last column
reports the percent change of each statistics between the two
economies.

Figure 3: Distributional statistics

analysis, except for parameters explicitly under investigation, the rest are all set at their

baseline values.

The results are presented in Table 2. First, a rise in φ, which means a relaxed borrowing

constraint, makes the distributional impact of model uncertainty more pronounced. The

intuition is that in this case, since households can more easily borrow and invest in the

risky asset, it is in the best interest of nature to pay the distortion cost and reduce the

perceived excess return. Second, a higher expected return of the risky asset strengthens

the distributional effects of robustness relative to the baseline scenario. All else equal,

households are more willing to invest in the risky asset, in which case it is optimal for

nature to create a bigger downward bias in the perceived return. Third, we consider a

change in the volatility of the risky return. As expected, a decrease in σ generates similar
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outcomes as an increase in R. Summing up, our comparative statics exercise shows that

robustness increases wealth inequality under plausible model parameterizations.

Table 2: Comparative statics

Object
φ = 2 R = 0.06 σ = 0.08

Nonrobust Robust Change Nonrobust Robust Change Nonrobust Robust Change

P(a < 0) 0.196 0.266 35.5 0.083 0.100 20.4 0.079 0.085 7.8

[0, 50) 0.013 0.001 -92.8 0.032 0.018 -43.3 0.032 0.020 -38.9

[50, 90) 0.153 0.124 -19.1 0.175 0.128 -26.8 0.187 0.138 -26.1
[90, 99) 0.587 0.581 -1.0 0.568 0.581 2.4 0.579 0.607 4.9

[99, 100] 0.248 0.293 18.5 0.227 0.272 20.1 0.203 0.235 15.5

Gini 0.874 0.907 3.8 0.834 0.877 5.1 0.828 0.868 4.8

Notes : Robust and Nonrobust correspond to the economy with and without robustness, respectively. The last
column of each panel reports the percent change of each statistics between the two economies.

4.3. Welfare cost of model uncertainty. The previous analysis suggests that portfolio

responses to model uncertainty vary considerably across households, suggesting a possible

heterogeneity in the way they evaluate robustness. In what follows, we examine its welfare

implications. To do this, we compute the fraction of wealth, δj(a), a household with wealth

a is willing to give up in the nonrobust economy to be as well off as in an otherwise identical

economy with robustness. As such, δj(a) satisfies

v0,j((1− δj(a))a) = vj(a), j = 1, 2, (4.33)

where v0,j(a) and vj(a) represent the value functions in the nonrobust and robust economies,

respectively. A positive value of δj(a) implies that the household is worse off with the ex-

istence of model uncertainty, and vice versa.

Table 3: Welfare cost of
model uncertainty

Object gg Cost (%)

[0, 50) -2.150
[50, 90) 1.140

[90, 99) 0.562

[99, 100] 0.228
Overall 0.494

Table 3 summarizes the disaggregate and aggregate welfare effects of model uncertainty.

We find that robustness implies a welfare loss for the rich but a gain for the poor. This

result can be understood in light of Figure 2, which shows that robustness lowers the
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consumption of the former but raises that of the latter. Overall, model uncertainty induces

a welfare loss equivalent to a 0.494 percent drop in aggregate wealth.

5. Conclusion

This paper examines the implications of model uncertainty for wealth distribution in a

tractable continuous-time general equilibrium model. We find that the size of the model

distortion chosen by nature varies non-monotonically with household wealth. Robustness

generates a larger concentration of wealth due to two factors. It increases the speed at

which the wealth of unlucky households hits the borrowing constraint. It also leads richer

households to invest a disproportionally larger share of wealth in the higher yielding asset.

Robustness implies a gain for the poor but a loss for the rich.

Our study shows that model uncertainty is an important source of changes in the cross-

sectional distribution of key macroeconomic variables, due to the differential responses

from households located at different parts of the wealth distribution. For policy-makers,

it might thus be important to take into account households’ robustness concerns when

designing and conducting their policies. This is especially the case for those policies

bearing uneven effects on household wealth since model uncertainty could greatly amplify

their consequences, as suggested in the paper.

To illustrate the distributional effects of robustness, the model is deliberately kept

simple. The mechanism proposed in the paper, however, opens the door to a proper

quantitative analysis. For example, an emerging body of evidence highlights that in order

to understand the aggregate economic activities during the Great Recession, it is crucial

for a model to capture the large fraction of poor households.8 Model uncertainty provides

a useful channel through which a substantial share of the population become wealth poor.

8Existing proposals include heterogeneous preferences and rich earning processes, e.g., Krueger, Mitman,
and Perri (2016) and De Nardi and Fella (2017).
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Appendix A. Proof of Proposition 3.1

Proof. To prove the proposition, we first show that s1(a) = 0, and there exists an δ >

0 such that s1(a) < 0 for all a ∈ (a, a+ δ). The proof of s1 (a) = 0 is straightforward and

is skipped here. We next prove s1 (a) < 0 in a neighborhood of the borrowing constraint.

The FOCs of the HJB equation (2.11) associated with c, k, h are, respectively,

u′ (cj (a)) = v′j (a) (A.34)

v′j (a) (R+ σhj (a)− r) + v′′j (a)σ2kj (a) = 0 (A.35)

hj (a) + εσv′j (a) kj (a) = 0. (A.36)

Note since 0 ≤ k1 (a) ≤ a−a, it follows that lima→a k1 (a) = 0, and by (A.36) lima→a h1 (a) =

0, where the last equality uses the fact that v′1 (a) = lima→a u
′ (c1 (a)) <∞. Indeed,

lim
a→a

c1 (a) = lim
a→a

z1 + ra+ k1(a)(R+ σh1(a)− r)− s1 (a) = z1 + ra,

which is positive by assumption. Combining (2.5), (A.35) and (A.36) yields

kj(a) = min

{
R− r
σ2

v′j(a)

εv′2j − v′′j (a)
, a+ φ

}
. (A.37)

As a consequence, we have

0 = lim
a→a

k1 (a) = lim
a→a
− v
′
1 (a)

v
′′
1 (a)

R+ σh1 (a)− r
σ2

= − u′ (c1 (a))

u′′ (c1 (a)) c′1 (a)

R− r
σ2

,

meaning that c′1 (a) =∞. Because 0 ≤ k1 (a) ≤ a− a and k1 (a) = 0, it holds that

k′1 (a) = lim
a→a

k1 (a)− k1 (a)

a− a
= lim

a→a

k1 (a)

a− a
≤ lim

a→a

a− a
a− a

= 1,

i.e., k′1 (a) is bounded. Differentiating (A.36) with respect to a yields

h′j (a) = −εσ
(
v′′j (a) kj (a) + v′j (a) k′j (a)

)
. (A.38)
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It then follows that

lim
a→a

s′1 (a) = lim
a→a

r + k′1 (a) (R+ σh1 (a)− r) + k1 (a)σh′1 (a)− c′1 (a) (A.39)

= lim
a→a

r + k′1 (a) (R+ σh1 (a)− r)− εσ2k1 (a)

 v′′1 (a) k1 (a) +

v′1 (a) k′1 (a)

− c′1 (a)

= −∞,

where the last equality stems from the fact that lima→a k1 (a) = lima→a h1 (a) = 0, and the

two limits lima→a k
′
1 (a) and lima→a v

′′
1 (a) k1 (a) = − lima→a v

′
1 (a) R+σh1(a)−r

σ2 are bounded.

Since s1 (a) = 0, it holds that there exists δ > 0 such that s1 (a) < 0 for a ∈ (a, a+ δ).

With the aid of the above proof, the existence of a global minimizer of hj (a) follows

directly from the solution to the equation h′j (a) = 0, where h′j (a) is given in (A.38).

We now proceed to derive the approximate analytical solution of s1 (a) near the bor-

rowing constraint. By (A.39), we have

lim
a→a

(
s′1 (a) + c′1 (a)

)
s1 (a) = lim

a→a

(
r + k′1 (a) (R+ σh1 (a)− r) + k1 (a)σh′1 (a)

)
s1 (a)

= lim
a→a

 r + k′1 (a) (R+ σh1 (a)− r)

−εσ2k1 (a) (v′′1 (a) k1 (a) + v′1 (a) k′1 (a))

 s1 (a) = 0,

which implies that

lim
a→a

s′1 (a) s1 (a) = − lim
a→a

c′1 (a) s1 (a) . (A.40)

We next derive the limit on the right-hand side. The Euler equation of problem (2.11) is

ρ− r =
v′′1 (a)

v′1 (a)
s1 (a) +

1

2

v′′′1 (a)

v′1 (a)
σ2k2

1 (a) + λ1

(
v′2 (a)

v′1 (a)
− 1

)

=
v′′1 (a)

v′1 (a)
s1 (a) +

1

2

v′′′1 (a)

v′1 (a)
σ2

(
R− r
σ2

v′1(a)

εv′1 (a)2 − v′′1(a)

)2

+ λ1

(
v′2 (a)

v′1 (a)
− 1

)

≈ v′′1 (a)

v′1 (a)
s1 (a) +

1

2

v′′′1 (a)

v′1 (a)

(
R− r
σ

)2(
−v
′
1(a)

v′′1(a)
− ε v

′
1(a)3

v′′1(a)2

)2

+ λ1

(
v′2 (a)

v′1 (a)
− 1

)
≈ v′′1 (a) s1 (a)

v′1 (a)
+

(R− r)2

2σ2

v′′′1 (a) v′1(a)

v′′1 (a)2

(
1 + 2ε

v′1(a)2

v′′1(a)

)
+ λ1

(
v′2 (a)

v′1 (a)
− 1

)
.(A.41)
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By (A.34) and the functional form of u, we have

v′1 (a) = u′ (c1 (a)) = c1 (a)−γ

v′′1 (a) = u′′ (c1 (a)) c′1 (a) = −γc1 (a)−γ−1 c′1 (a) (A.42)

v′′′1 (a) = u′′′ (c1 (a)) c′1 (a)2 + u′′ (c1 (a)) c′′1 (a) = γ (γ + 1) c1 (a)−γ−2 c′1 (a)2 − γc1 (a)−γ−1 c′′1 (a) .

Substituting them into (A.41) and rearranging lead to

ρ− r = −γc1 (a)−1 c′1 (a) s1 (a)− λ1γc1 (a)−1 (c2 (a)− c1 (a)) (A.43)

+
1

2

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)(
1− 2ε

1

γ

c1 (a)1−γ

c′1 (a)

)
.

This together with (A.39) imply that

lim
a→a

s′1 (a) s1 (a) = ν1,

where ν1 is defined in (3.17). As a consequence,

s1 (a)2 ≈ s1 (a)2 + 2s1 (a) s′1 (a) (a− a) = 2ν1 (a− a) ,

implying (3.16). �

Appendix B. Proof of Proposition 3.2

Proof. The derivation of ν̂1 is similar to that of ν1. First, it is straightforward to show

that

lim
a→a

ŝ′1 (a) ŝ1 (a) = − lim
a→a

c′1 (a) ŝ1 (a) . (B.44)

Next, we find the limit on the right-hand side of the above equation. Equations (2.13)

and (3.15) imply that

s1 (a) = ŝ1 (a) + σkj (a)hj (a) .



23

Plugging it into the Euler equation of problem (2.11) and rearranging yields

ρ− r =
v′′1 (a)

v′1 (a)
(ŝ1 (a) + σkj (a)hj (a)) +

1

2

v′′′1 (a)

v′1 (a)
σ2k2

1 (a) + λ1

(
v′2 (a)

v′1 (a)
− 1

)

≈ v′′1 (a) ŝ1 (a)

v′1 (a)
+

(R− r)2

2σ2

v′′′1 (a) v′1(a)

v′′1 (a)2

1 + 2ε

 v′1(a)2

v′′1 (a)

−v′1(a)v′′1 (a)
v′′′1 (a)

 (B.45)

+λ1

(
v′2 (a)

v′1 (a)
− 1

)
.

Using expressions in (A.42) in (B.45) results in

ρ− r = −γc1 (a)−1 c′1 (a) ŝ1 (a)− λ1γc1 (a)−1 (c2 (a)− c1 (a)) (B.46)

+
1

2

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ
c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)

 .

Equation (B.46) together with (B.44) imply that

lim
a→a

ŝ′1 (a) ŝ1 (a) = ν̂1,

where

ν̂1 = ν1 − ς

with ν1 given in (3.17) and

ς =
c1 (a)

2γ

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ

c1 (a) c′′1 (a)

c′1 (a)2

)(
2ε

c1 (a)1−γ c′1 (a)

(γ + 1) c′1 (a)2 − c′′1 (a) c1 (a)

)
> 0.

Thus, we have ν̂1 < ν1, and ŝ1 (a)2 ≈ ŝ1 (a)2 + 2ŝ1 (a) ŝ′1 (a) (a− a) = 2ν̂1 (a− a). �

Appendix C. Proof of Proposition 3.3

Proof. First, we rewrite (B.46) as

−c′1 (a) ŝ1 (a) =
c1(a)(ρ− r)

γ
+ λ1 (c2 (a)− c1 (a)) (C.47)

−c1(a)

2γ

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ
c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)

 .
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Denote the above equation as

η(a) = −c′1 (a) s1 (a) = η1(a) + η2(a) + η3(a), (C.48)

where

η1(a) =
c1(a)(ρ− r)

γ
(C.49)

η2(a) = λ1 (c2 (a)− c1 (a)) (C.50)

η3(a) = −c1(a)

2γ

(
R− r
σ

)2
 γ+1

γ −
1
γ c1 (a)

c′′1 (a)

c′1(a)2

1 + 2ε

 − 1
γ
c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)

 .(C.51)

Note (3.17) implies η(a) = ν̂1. Next, we find in order the first-order approximation of

functions ηi(a), i = 1, 2, 3, around ε = 0. By (C.49) and (3.21), we have

η1(a) =
c1(a)(ρ− r)

γ
≈ (c1,0(a) + εc1,1(a))(ρ− r)

γ
= η1,0 (a) + εη1,1 (a) , (C.52)

where

η1,0 (a) =
c1,0(a)(ρ− r)

γ
, η1,1 (a) =

c1,1(a)(ρ− r)
γ

. (C.53)

By the same token, combining (C.50) and (3.21) yields

η2(a) = λ1 (c2 (a)− c1 (a)) ≈ λ1(c2,0(a) + εc2,1(a)− c1,0(a)− εc1,1(a))

= λ1(c2,0(a)− c1,0(a)) + ελ1(c2,1(a)− c1,1(a)) = η2,0(a) + εη2,1(a), (C.54)

where

η2,0(a) = λ1(c2,0(a)− c1,0(a)), η2,1(a) = λ1(c2,1(a)− c1,1(a)). (C.55)
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Finally, we can approximate η3(a) in (C.51) as

η3(a) = −c1(a)

2γ

(
R− r
σ

)2
(
γ + 1

γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ
c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)


= − 1

2γ

(
R− r
σ

)2
(
γ + 1

γ
c1(a)− 1

γ
c1 (a)2 c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ
c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)


≈ − 1

2γ

(
R− r
σ

)2
 (γ+1)(c1,0(a)+εc1,1(a))

γ

− 1
γ (c1,0(a) + εc1,1(a))2 c′′1,0(a)+εc′′1,1(a)

(c′1,0(a)+εc′1,1(a))2


×

1 + 2ε

 − 1
γ

(c1,0(a)+εc1,1(a))1−γ

c′1,0(a)+εc′1,1(a)

+
(c1,0(a)+εc1,1(a))1−γ(c′1,0(a)+εc′1,1(a))

(γ+1)(c′1,0(a)+εc′1,1(a))2−(c′′1,0(a)+εc′′1,1(a))(c′1,0(a)+εc′1,1(a))


≈ η3,0(a) + εη3,1(a), (C.56)

where

η3,0(a) = − 1

2γ

(
R− r
σ

)2
(
γ + 1

γ
c1,0(a)− 1

γ
c1,0(a)2

c′′1,0(a)

c′1,0 (a)2

)
, η3,1(a) = η3,0(a)τ (a) .

(C.57)

Here the function τ (a) is given by

τ(a) =
θ(a)

(γ + 1)c1,0(a)c′1,0 (a)3 − c1,0(a)2c′1,0(a)c′′1,0(a)

−2

γ

c1,0(a)1−γ

c′1,0(a)
+

2c1,0 (a)1−γ c′1,0 (a)

(γ + 1) c′1,0 (a)2 − c1,0 (a) c′′1,0 (a)
,

θ(a) = (γ + 1)c1,1(a)c′1,0(a)3 −

 2c1,0(a)c1,1(a)c′′1,0(a)

+c1,0(a)2c′′1,1(a)

 c′1,0(a) + 2c1,0(a)2c′′1,0(a)c′1,1(a).

Substituting (C.52), (C.54) and (C.56) into (C.48) and taking the limit of a to a lead to

ν̂1 = lim
a→a

η (a) = lim
a→a

3∑
i=1

ηi (a) ≈ lim
a→a

3∑
i=1

(ηi,0 (a) + εηi,1 (a))

=

3∑
i=1

ηi,0 (a) + ε

3∑
i=1

ηi,1 (a) . (C.58)
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Note that

3∑
i=1

ηi,0 (a) =

 c1,0(a)(ρ−r)
γ + λ1(c2,0(a)− c1,0(a))

− 1
2γ

(
R−r
σ

)2( (γ+1)c1,0(a)
γ − 1

γ c1,0(a)2 c′′1,0(a)

c′1,0(a)2

)  = v1,0. (C.59)

Thus, combining (C.58) and (C.59) yields (3.22) as desired, where

v1,1 =
3∑
i=1

ηi,1 (a) . (C.60)

�

Appendix D. Proof of Corollary 3.4

Proof. By (3.22), it suffices to prove v1,1 > 0. Because c1,1(a) > 0, we have

η1,1 (a) =
c1,1(a)(ρ− r)

γ
> 0.

Meanwhile, the condition c2,1 (a) > c1,1 (a) implies that

η2,1(a) = λ1(c2,1(a)− c1,1(a)) > 0.

Since c′′1,0(a) < 0, η3,0 (a) < 0 by (C.57). Furthermore, provided θ(a) < 0 and c′1,0(a) > 0,

it follows that τ (a) < 0 and thus

η3,1(a) = η3,0(a)τ (a) > 0.

As a result, it holds that v1,1 =
∑3

i=1 ηi,1 (a) > 0. �

Appendix E. Proof of Lemma 3.5

Proof. Supposing equation (3.25) holds, it follows that

v′j (a) ≈ v′j,0 (a) + εv′j,1 (a) , v′′j (a) ≈ v′′j,0 (a) + εv′′j,1 (a) . (E.61)
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Therefore, by (A.34), we have

cj (a) = v′j (a)
− 1
γ ≈

(
v′j,0 (a) + εv′j,1 (a)

)− 1
γ

= v′j,0 (a)
− 1
γ

(
1 + ε

v′j,1 (a)

v′j,0 (a)

)− 1
γ

≈ v′j,0 (a)
− 1
γ

(
1− ε1

γ

v′j,1 (a)

v′j,0 (a)

)
= cj,0 (a) + εcj,1 (a) , (E.62)

where

cj,0 (a) = v′j,0 (a)
− 1
γ , cj,1 (a) = −1

γ
v′j,0 (a)

− 1
γ
−1
v′j,1 (a) . (E.63)

Equations (A.35) and (A.36) imply that

kj (a) =
R− r
σ2

v′j(a)

εv′j (a)2 − v′′j (a)

≈ R− r
σ2

(
−
v′j(a)

v′′j (a)
− ε

v′j(a)3

v′′j (a)2

)

≈ R− r
σ2

−v′j,0 (a) + εv′j,1 (a)

v′′j,0 (a) + εv′′j,1 (a)
− ε

(
v′j,0 (a) + εv′j,1 (a)

)3

(
v′′j,0 (a) + εv′′j,1 (a)

)2


≈ kj,0 (a) + εkj,1 (a) , (E.64)

where

kj,0 (a) = −R− r
σ2

v′j,0 (a)

v′′j,0 (a)
, kj,1 (a) = −R− r

σ2

v′j,1 (a) v′′j,0 (a) + v′j,0 (a)
(
v′j,0 (a)2 − v′′j,1 (a)

)
v′′j,0 (a)2 .

(E.65)

Similarly, we have

hj (a) = −R− r
σ

εv′j(a)2

εv′j (a)2 − v′′j (a)

≈ −R− r
σ

ε
(
v′j,0 (a) + εv′j,1 (a)

)2

ε
(
v′j,0 (a) + εv′j,1 (a)

)2
−
(
v′′j,0 (a) + εv′′j,1 (a)

)
≈ εhj,1 (a) , (E.66)
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where

hj,1 (a) =
R− r
σ

v′j,0 (a)2

v′′j,0 (a)
. (E.67)

Substituting (3.25), (E.61), (E.62), (E.64) and (E.66) into both sides of equation (2.11),

and collecting terms with the same ε power yield that vj,0 (a) and vj,1 (a) satisfy the

following two coupled functional equations:

ρvj,0 (a) =
cj,0 (a)1−γ

1− γ
+ v′j,0 (a) (zj + ra+ kj,0 (a) (R− r)− cj,0 (a)) (E.68)

+
1

2
σ2v′′j,0 (a) k2

j,0 (a) + λj (v−j,0 (a)− vj,0 (a)) ,

ρvj,1 (a) = cj,0 (a)−γ cj,1 (a) + v′j,0 (a) (kj,1 (a) (R− r)− cj,1 (a)) (E.69)

+v′j,1 (a) (zj + ra+ kj,0 (a) (R− r)− cj,0 (a))

+σ2

(
v′′j,0 (a) kj,0 (a) kj,1 (a) +

1

2
v′′j,1 (a) k2

j,0 (a)

)
−1

2
σ2v′j,0 (a)2 kj,0 (a)2 + λj (v−j,1 (a)− vj,1 (a)) .

Next, we prove the homogeneity results. By (3.26), we have

vj,0 (a) = ξ1−γvξ,j,0

(
a

ξ

)
, vj,1 (a) = ξ2(1−γ)vξ,j,1

(
a

ξ

)
,

and thus

v′j,0 (a) = ξ−γv′ξ,j,0

(
a

ξ

)
, v′j,1 (a) = ξ1−2γv′ξ,j,1

(
a

ξ

)
,

v′j,0 (a) = ξ−γ−1v′ξ,j,0

(
a

ξ

)
, v′′j,1 (a) = ξ−2γvξ,j,1

(
a

ξ

)
.
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It then follows from (E.63), (E.65) and (E.67) that

cj,0 (a) = v′j,0 (a)
− 1
γ =

(
ξ−γv′ξ,j,0

(
a

ξ

))− 1
γ

= ξ

(
v′ξ,j,0

(
a

ξ

))− 1
γ

= ξcξ,j,0

(
a

ξ

)
(E.70)

cj,1 (a) = −1

γ
v′j,0 (a)

− 1
γ
−1
v′j,1 (a) = −1

γ

(
ξ−γv′ξ,j,0

(
a

ξ

))− 1
γ
−1

ξ1−2γv′ξ,j,1

(
a

ξ

)

= −ξ2−γ 1

γ
v′ξ,j,0

(
a

ξ

)− 1
γ
−1

v′ξ,j,1

(
a

ξ

)
= ξ2−γcξ,j,1

(
a

ξ

)
(E.71)

kj,0 (a) = −R− r
σ2

v′j,0 (a)

v′′j,0 (a)
= −R− r

σ2

ξ−γv′ξ,j,0

(
a
ξ

)
ξ−γ−1v′ξ,j,0

(
a
ξ

) = ξkξ,j,0

(
a

ξ

)
(E.72)

kj,1 (a) = −R− r
σ2

v′j,1 (a) v′′j,0 (a) + v′j,0 (a)
(
v′j,0 (a)2 − v′′j,1 (a)

)
(
v′′j,0 (a)

)2 = ξ2−γkξ,j,1

(
a

ξ

)
(E.73)

hj,1 (a) =
R− r
σ

v′j,0 (a)2

v′′j,0 (a)
=
R− r
σ

(
ξ−γv′ξ,j,0

(
a
ξ

))2

ξ−2γvξ,j,1

(
a
ξ

) = ξ1−γhξ,j,1

(
a

ξ

)
. (E.74)

By plugging equations (E.70) to (E.74) into (E.68) and (E.69) and rearranging terms, we

obtain that vξ,j,0 (a) and vξ,j,1 (a) satisfy the following two coupled functional equations:

ρvξ,j,0 (a) =
cξ,j,0 (a)1−γ

1− γ
+ v′ξ,j,0 (a)

(
zj
ξ

+ ra+ kξ,j,0 (a) (R− r)− cξ,j,0 (a)

)
(E.75)

+
1

2
σ2v′′ξ,j,0 (a) k2

ξ,j,0 (a) + λj (vξ,−j,0 (a)− vξ,j,0 (a)) ,

ρvξ,j,1 (a) = cξ,j,0 (a)−γ cξ,j,1 (a) + v′ξ,j,0 (a) (kξ,j,1 (a) (R− r)− cξ,j,1 (a)) (E.76)

+v′ξ,j,1 (a)

(
zj
ξ

+ ra+ kξ,j,0 (a) (R− r)− cξ,j,0 (a)

)
+σ2

(
v′′ξ,j,0 (a) kξ,j,0 (a) kξ,j,1 (a) +

1

2
v′′ξ,j,1 (a) k2

ξ,j,0 (a)

)
−1

2
σ2v′ξ,j,0 (a)2 kξ,j,0 (a)2 + λj (vξ,−j,1 (a)− vξ,j,1 (a)) ,
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where in (E.75) and (E.76) we define

cξ,j,0 (a) = v′ξ,j,0 (a)
− 1
γ , cξ,j,1 (a) = −1

γ
v′ξ,j,0 (a)

− 1
γ
−1
v′ξ,j,1 (a) , (E.77)

kξ,j,0 (a) = −R− r
σ2

v′ξ,j,0 (a)

v′′ξ,j,0 (a)
, kξ,j,0 (a) = −R− r

σ2

v′ξ,j,1 (a) v′′ξ,j,0 (a)

+v′ξ,j,0 (a)
(
v′ξ,j,0 (a)2 − v′′ξ,j,1 (a)

)
v′′ξ,j,0 (a)2 .

(E.78)

�

Appendix F. Proof of Proposition 3.6

Proof. By Lemma 3.5, we have for any a ∈ (a,∞),

lim
ξ→∞

vξ,j,0 (a) = ṽ0 (a) , lim
ξ→∞

vξ,j,1 (a) = ṽ1 (a) , (F.79)

where ṽ0 (a) and ṽ1 (a) solve the following two functional equations

ρṽ0 (a) =
c̃0 (a)1−γ

1− γ
+ ṽ′0 (a)

(
ra+ k̃0 (a) (R− r)− c̃0 (a)

)
+

1

2
σ2ṽ′′0 (a) k̃2

0 (a)(F.80)

ρṽ1 (a) = c̃0 (a)−γ c̃1 (a) + ṽ′0 (a)
(
k̃1 (a) (R− r)− c̃1 (a)

)
(F.81)

+ṽ′1 (a)
(
ra+ k̃0 (a) (R− r)− c̃0 (a)

)
+σ2

(
ṽ′′0 (a) k̃0 (a) k̃1 (a) +

1

2
ṽ′′1 (a) k̃2

0 (a)

)
− 1

2
σ2ṽ′0 (a)2 k̃0 (a)2 ,

with

c̃0 (a) = ṽ′0 (a)
− 1
γ , c̃1 (a) = −1

γ
ṽ′0 (a)

− 1
γ
−1
ṽ′1 (a) (F.82)

k̃0 (a) = −R− r
σ2

ṽ′0 (a)

ṽ′′0 (a)
, k̃1 (a) = −R− r

σ2

ṽ′1 (a) ṽ′′0 (a) + ṽ′0 (a)
(
ṽ′0 (a)2 − ṽ′′1 (a)

)
ṽ′′0 (a)2 (F.83)

h̃1 (a) =
R− r
σ

ṽ′0 (a)2

ṽ′′0 (a)
. (F.84)

It is straightforward to verify that ṽ (a) = ṽ1 (a)+εṽ0 (a) is an approximate solution to the

HJB equation (2.11) without income uncertainty and borrowing constraint. Combining
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equation (E.70) with (F.79) leads to for a very large a,

cj,0 (a) = ξcξ,j,0

(
a

ξ

)
= aca,j,0 (1) ≈ ac̃0 (1) . (F.85)

Similarly, we have

cj,1 (a) = ξ2−γcξ,j,1

(
a

ξ

)
= a2−γca,j,1 (1) ≈ a2−γ c̃1 (1) (F.86)

kj,0 (a) = ξkξ,j,0

(
a

ξ

)
= ξka,j,0 (1) ≈ ak̃0 (1) (F.87)

kj,1 (a) = ξ2−γkξ,j,1

(
a

ξ

)
= a2−γka,j,1 (1) ≈ a2−γ k̃1 (1) (F.88)

hj,1 (a) = ξ1−γhξ,j,1

(
a

ξ

)
= a1−γha,j,1 (1) ≈ a1−γ h̃1 (1) . (F.89)

Therefore, it remains to solve equations (F.80) and (F.81). First, conjecture

ṽ0 (a) = α0
a1−γ

1− γ
(F.90)

for some number α0. Then we have ṽ′0 (a) = α0a
−γ , ṽ′′0 (a) = −γα0a

−γ−1, and subsequently

from (F.82) to (F.84) that

c̃0 (a) = α
− 1
γ

0 a, k̃0 (a) =
R− r
σ2

a, h̃1 (a) = −R− r
σ2

α0a
1−γ . (F.91)

Substituting (F.90) and (F.91) into (F.80) yields the value of α0 given by (3.30). Second,

conjecture

ṽ1 (a) = α1
a2(1−γ)

2 (1− γ)
(F.92)

for some number α1. Then we have ṽ′1 (a) = α1a
1−2γ , ṽ′′1 (a) = (1− 2γ)α1a

1−2γ , and

subsequently from (F.82) to (F.84) that

c̃1 (a) = −1

γ
α
− 1
γ
−1

0 α1a
2−γ , k̃1 (a) = −R− r

σ2

α2
0 + (γ − 1)α1

γ2α0
a2−γ . (F.93)

Plugging (F.92) and (F.93) into (F.81) results in

α1

(
r − α

− 1
γ

0 +
1

2

(R− r)2

γ2σ2
− ρ

2 (1− γ)

)
= −1

2
α2

0

(R− r)2

γ2σ2
,



32

and thus the value of α1 as in (3.31). By (E.62), (F.85) and (F.86), when a is sufficiently

large, we have

cj (a) ≈ cj,0 (a) + εcj,1 (a) ≈ ac̃0 (1) + εa2−γ c̃1 (1) = α
− 1
γ

0 a− ε1

γ
α
− 1
γ
−1

0 α1a
2−γ .

By the same token,

kj (a) ≈ kj,0 (a) + εkj,1 (a) ≈ ak̃0 (1) + εa2−γ k̃1 (1) =
R− r
σ2

a− εR− r
σ2

α2
0 + (γ − 1)α1

γ2α0
a2−γ

hj (a) ≈ εhj,1 (a) ≈ εa1−γ h̃1 (1) = −εR− r
σ2

α0a
1−γ .

�

Appendix G. Proof of Proposition 4.1

Proof. First of all, note the aggregate saving function S(r) =
∑2

j=1

∫∞
a (a− kj(a)) gj(a)da

is continuous in r. This is because both individual investment functions kj (a) and the

stationary density functions gj (a) are continuous in r.

Next, we show limr→−∞ S(r) = a. Indeed, by the optimality condition for k in (A.37),

when r → −∞,

kj(a) = min

{
R− r
σ2

v′j(a)

εv′2j − v′′j (a)
; a+ φ

}
= a+ φ.

By construction,

bj (a) = a− kj (a) = −φ = a,

which implies that all households will borrow up to the limit and use the acquired resources

to purchase the risky asset. Consequently,

lim
r→−∞

S(r) = lim
r→−∞

2∑
j=1

∫ ∞
ā

bj(a)gj(a)da = a < 0. (G.94)

As the third step, we show limr→r̄ S(r) =∞, where r̄ = max {R, ρ}. First, consider the

case with R ≤ ρ. By (A.37), we have for r ≥ R,

kj(a) =
R− r
σ2

v′j(a)

εv′2j − v′′j (a)
≤ 0.
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Since kj(a) is non-negative, kj(a) = 0 for all a. In other words, when the risk-free rate

exceeds the gross return on the risky asset, households would not invest in the asset at

all. In this case, they will behave as if they were in a problem without a risky asset. The

corresponding Euler equation governing the consumption-saving behavior of households

in the high-income state is

u′′ (c2 (a))

u′ (c2 (a))
c′2 (a) s2 (a) = ρ− r − λ2

(
u′ (c1 (a))

u′ (c2 (a))
− 1

)
.

Since c2 (a) > c1 (a), the right-hand side of the above equation becomes strictly negative

when r approaches ρ from below. This implies that limr↑ρ s2 (a) > 0, suggesting that

households in the high-income state accumulate the risk-free asset, leading to

lim
r↑ρ

S (r) =∞. (G.95)

Now, consider the case with R > ρ. We know when r approaches R from below, risk-

averse households will allocate their wealth towards the risk-free bond, and in the limit,

they hold zero risky assets. Since R > ρ, as r ↑ R, households will save as much as they

can in the risk-free bond, and thus

lim
r↑R

S (r) =∞. (G.96)

Given equations (G.94), (G.95) and (G.96), the Intermediate Value Theorem implies

that there exists an interest rate r∗ ∈ (−∞, r̄) such that S (r∗) = 0. �
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