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Abstract

Does extreme downside risk require a risk premium in the pricing of individual assets?
Extreme downside risk is a conditional measure for the co-movement of individual stocks
with the market, given that the state of the world is extremely bad. This measure, derived
from statistical extreme value theory, is non-parametric. Extreme down-side risk is used in
double-sorted portfolios, where I control for the five Fama-French and various non-linear
asset pricing factors. I find that the average annual excess return between high- and low-
exposure stocks is around 3.5%.

Bank topics: Asset pricing, Econometric and statistical methods
JEL codes: Cl4, G12, G11



1 Introduction

Returns in financial markets are characterized by extreme movements (Man-
delbrot, 1963; Fama, 1963; Jansen and De Vries, 1991). It is in these extreme
cases that investors are highly concerned about the performance of their port-
folio. The extreme movements of the market are not always reflected equally
in all individual stocks. Securities which are more sensitive to these extreme
negative shocks are undesirable and therefore should sell at a discount, i.e.
fetch a risk premium. In this paper, I propose an extreme downside depen-
dency measure, 0, which captures this risk. This non-parametric measure of
tail dependency based on extreme value theory (EVT) offers a new approach
for capturing extreme risk in asset prices. I find that investors demand a
3.5% risk premium for investing in a high relative to a low ¢ portfolio.

Prior literature on extreme downside or disaster risk in asset pricing mainly
focuses on theoretical models. Part of this literature includes higher mo-
ments to account for tail thickness. Samuelson (1970) as well as Harvey and
Siddique (2000) and Dittmar (2002) consider skewness and kurtosis as the
higher moments. Others, such as Rietz (1988), partially explain the Mehra
and Prescott (1985) equity premium puzzle by introducing an ‘extreme’ bad
state to the Arrow-Debreu paradigm. Barro (2006) extends this idea to in-
vestigate the impact of extreme risk on asset pricing facts and welfare costs.
He finds, as Rietz does, that the equity risk premium and the risk-free rate
puzzle can largely be explained by including an extreme bad state. Gabaix
(2012) extends these models by adding time variability of disaster risk. His
model is able to rationalize ten asset pricing puzzles, including the equity
premium puzzle.

Testing theoretical models of extreme downside risk has proven to be a chal-
lenge, as extreme events are only rarely observed. Several papers attempt to
overcome this challenge by studying different sources of extreme movements
in asset prices. Berkman et al. (2011), Bittlingmayer (1998) and Frey and
Kucher (2000) use major political crises as a measure of extreme risk. Ami-
hud and Wohl (2004) and Rigobon and Sack (2005) find a link between the
stock market and the second Iraq war.

In this paper I consider a novel approach. This approach employs Huang
(1991)’s non-parametric count measure to determine the dependence in the
tail between individual stocks and the market portfolio. In essence, the mea-
sure counts the number of joint excesses of the market return, R,,;, and
individual stock return, R;;, conditional on R,,; being stressed at time ¢.



This captures, in a direct way, the dependence given that the world is in an
extremely bad state. This measure is directly related to the “recovery rate”
or “resilience” of a stock in Gabaix (2012). In his framework, stocks with
high resilience command a low-risk premium relative to low-resilience stocks,
leading to a cross-sectional risk premium.

The count measure necessitates the choice of a threshold, v and w, to de-
termine the tail region for the joint excesses of R;; and R,,;, respectively.
These thresholds should distinguish the extreme behavior, characterized by
a power law, from the commonly observed events. Inspired by Bickel and
Sakov (2008), Danielsson et al. (2016) propose a methodology for locating
the ‘start’ of the tail by estimating the optimal number of order statistics
for the Hill (1975) estimator. To determine the optimal number of extreme
order statistics, they use a horizontal distance measure that minimizes the
maximum distance between the empirical and the semi-parametric distribu-
tion. These optimal thresholds for R;; and R,,; are univariately determined,
and thus in a direct way the multi-variate extreme area for the dependence
measure is constructed.

There are currently other empirical approaches that attempt to measure
downside risk. To estimate a change in the probability of a tail event, Kelly
and Jiang (2014) estimate the conditional thickness of the tail from the cross-
section of returns on traded stocks. This provides them with a time series
of tail indexes. The month-by-month tail exponent estimates proxy the tail
risk in the economy. Although this measures the cross-sectional dispersion
in the lower tail, it is an indirect measure of extreme risk in the economy.
Secondly, the use of the estimator of the tail exponent by Hill (1975) in the
cross-section violates a necessary independence assumption. The bias caused
by violating the independence assumption possibly proxies other latent fac-
tors.

A second approach in the literature uses the information of deep out of the
money (OTM) put options to capture tail risk. This approach utilizes the
difference between quadratic variation and integrated variance to isolate the
risk of jumps. Santa-Clara and Yan (2010) and Bollerslev and Todorov (2011)
infer tail risk from the OTM put options on the S&P 500 Index. Bollerslev
and Todorov (2011) use EVT to scale up the risk of medium jumps to large
jumps. They find that jump risk and fear of jumps accounts for two-thirds of
the equity risk premium. Siriwardane (2015) utilizes the difference between
OTM put and call options to isolate jump risk for individual stocks. He
then sorts these into portfolios according to their jump risk to create a ‘high-



minus-low’ factor. These papers find that investors demand compensation
for tail risk.

A third approach focuses on measuring the non-linear risk-return relation-
ship. Harvey and Siddique (2000) develop a measure of conditional skewness
in stock returns. As expected, they find that this measure of higher moment
covariation demands a negative risk premium. Ang et al. (2006) propose a
non-linear market model. They separate the market beta into a downside
and upside beta. They find that the conditional downside beta is differently
priced from the upside beta, and therefore argue that their conditional be-
tas provide a better risk profile of a stock. Although these measures focus
on the asymmetric nature of returns, they focus on the non-extreme part of
the return distribution. These measures employ commonly observed returns,
which contaminates the information in the tail region of the return distri-
bution. Therefore, extreme downside risk forms a natural extension to their
downside risk framework.

An advantage of the approach offered in this paper is that extreme downside
risk is a direct and simple measure of the relationship of the state of the
world and the pay-off of the financial asset. It is also not diluted by the ob-
servations in the center of the return distribution. As EVT shows, the count
measure has predictive value at very high but finite levels. Furthermore, I
refrain from using deep OTM options, e.g. as Siriwardane (2015) and Boller-
slev and Todorov (2011) do. OTM options can suffer from liquidity issues,
especially for individual companies.

To investigate whether investors care about extreme downside risk, I sort
stocks by their realized measure of extreme dependence. The difference in
annualized realized return between the low and high § quintile portfolios is
about 3.5%. This shows that investors want to be compensated for bear-
ing high extreme downside risk. It is possible that extreme downside risk is
a proxy for other existing risk factors. In the empirical asset pricing litera-
ture, double-sorted portfolios are employed to control for existing risk factors.
When controlling for the five factors by Fama and French (2015), momentum
(Carhart, 1997), liquidity (Stambaugh and Lubos, 2003), downside beta (Ang
et al., 2006), cross-sectional tail risk (Kelly and Jiang, 2014), coskewness and
cokurtosis (Harvey and Siddique, 2000), the premium on extreme downside
risk remains on average 3% and significant. This result is furthermore robust
for excluding financial firms, long-lived firms and variation in § over time.

The positive premium is in line with the results of Kelly and Jiang (2014),
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Siriwardane (2015) and Santa-Clara and Yan (2010), who also find higher
compensation for downside sensitivity. The risk premium of extreme down-
side risk is in excess of Ang et al. (2006) downside risk beta. This advocates
a further non-linearization of their downside beta framework.

Section 2 introduces the extreme dependence measure and the other non-
linear asset pricing factors. This is followed by section 3, which describes
the data that are used for the empirical analyses. Section 4 presents and
discusses the empirical results from the analyses, followed by the conclusion.

2 Methodology

This section consists of three parts. The first two elaborate on how extreme
dependence is measured and how I define the start of the tail. The third part
provides an overview of other systematic risk measures brought forth by the
literature.

2.1 Extreme dependence measures

Investors are interested in the performance of individual stocks relative to
their wealth in a particular state of the world. I examine the asset pricing in
the extremely bad states of the world. It is in these economic circumstances
that investors are most sensitive to stock performance.

I am interested in observing extreme negative excess stock return at time ¢,
R; ;, conditional on the market excess return, R,,:, being extremely negative
at time t. To measure this relationship, I employ the following count measure:

T

Z [{Ri,t<U,Rm,t<w}
61 = t_lT , (1)

thlj{Rm,t<w}

where [ is the indicator function that takes value 1 when R;; < v and
R+ < w, and 0 otherwise. The summation in the numerator counts the
number of paired observations that fall in the extreme quadrant, the area
where both R;; and R,,; are extreme. Figure 1 gives an illustration of the
extreme quadrant. This measure can be viewed as the conditional probability,

P (Rm,t <wn Riﬂg < U)

P(Ri7t<'U|Rm7t<UJ): P(Rt<w)




Figure 1: Graphic example ¢;
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This graph gives the scatter plot of Allegheny Power Systems Inc. returns and the corre-
sponding market returns. Here w (red) is the illustrative optimal threshold level for the
market returns and v (blue) is the illustrative optimal threshold level of stock i for the
left tail. The region under v and to the left of w is the extreme quadrant (shaded area)
for extreme downside risk.

This measure is a proxy for the level of dependence a stock has on extreme
market risk. For v and w going to infinity, the conditional probability tends
to the tail dependence measure presented in Hartmann et al. (2004). A
thorough derivation is provided in De Haan and Ferreira (2007). Under the
self-similarity property, the tail dependence model can be captured by the
count measure described above. The event that the count measure seeks to
quantify is the following: Given that the market has an extreme downside
event, how likely is it that stock 7 also exhibits an extreme movement in the
same direction?



2.2 Where does the tail start?

To measure extreme dependence accurately, it is essential to determine the
part of the tail where heavy-tailed behavior holds, i.e. the scaling behavior
described by power laws. This paper employs the EVT methodology to lo-
cate these points.

In EVT, the 1/y in the Pareto distribution, P(X < z) = 1 — Az="", de-
termines the shape of the tail. The power function in the Pareto distribution
is often used as an approximation of the tail probability for generic heavy-
tailed distributions.! In the literature, 1/y is often referred to as the tail
index. The level of 1/y determines how many moments exist and thus how
heavy the tail of the distribution is.

The most popular estimator for + is the Hill (1975) estimator,

3= 23 (g (Xote1) — 108 (X)) @)

=1

where X,,_;11, is the i largest observation (order statistic) out of a sam-
ple of size n and k is the number of observations in the tail that are used
for estimating v. As can be seen from Equation (2), one has to choose the
nuisance parameter k, which determines how many extreme order statistics
are used in the estimation. Figure 2 shows the change in 1/5 as the number
of order statistics included in the estimation increase. To locate k*, the opti-
mal number of order statistics for the Hill estimator, Danielsson et al. (2016)
introduce a simple method inspired by Bickel and Sakov (2008). Daniels-
son et al. (2016) use the Kolmogorov-Smirnov metric, but measured in the
quantile rather than the probability dimension. The choice of the quantile
dimension is motivated by the fact that a probabilistic mistake in the tail of
the distribution translates into a disproportionally large quantile mismatch,
which is the dimension that economists care about. They furthermore show
that this improves the quantile estimates deep in the tail region of the dis-
tribution.

!Consider the Hall and Welsh (1985) expansion, 1 — F(x) =
Ax— [1 + Bz=# —|—o(;zfﬁ)}, of a heavy-tailed distribution function. For the Pareto
distribution, observe that the Hall expansion perfectly fits the first-order term. All of
the standard heavy-tailed distributions, like the Student-t, Pareto, symmetric stable
distribution or the unconditional distribution of the stationary solution to a GARCH(1,1)
process, satisfy the Hall expansion. Therefore, the Pareto function serves as a good
approximation for the tail of most heavy-tailed distributions.



Figure 2: Hill plot Student-t(4)
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This graph depicts the estimate for 1/4 = & for different levels of k. The sample of 10,000
is simulated from a Student-t distribution with 4 degrees of freedom. This graph is often
referred to as the Hill plot.

In EVT, the Pareto distribution is often utilized to semi-parametrically esti-
mate the extreme quantiles. To fit the tail one only needs estimates for the
scale and tail index of the Pareto distribution. Via various simple transfor-
mations, Danielsson et al. (2016) arrive at their KS-distance metric,

k* = arginf L sup | Xn—jm —q (4, F)|] - (3)

k=2,..K |j=1,..K

The function ¢ (7, k) is the semi-parametric quantile estimate at probability
(n=3)/n.2 T limit the area over which the above metric, i.e. KS-distance metric,
is measured to X,,_k, > x. Here K > k is large but is still in the tail. The
k that produces the smallest maximum horizontal difference along all the
tail observations up to K is chosen as the optimal number of observations to
estimate the thickness of the tail. Through the optimal k, I also define the
start of the tail.

Here I define £} and £}, as the optimal number of order statistics for stock ¢
and the market index, respectively. Once £k} and k7, are determined, I turn
to the multivariate problem of measuring the dependence. From the univari-
ate measures, k; and k,, an extreme dependence region is created, which

appears as the shaded area in Figure 1.

2See Appendix A.1 for the derivation of the semi-parametric quantile estimator.

3For example, 10% of the sample fraction. Danielsson et al. (2016) show that k* is
insensitive to the choice of K, once K is large enough. Alternatively, one can use all the
positive observations in the sample.



The region (R;; < v, Ry < w), where v and w correspond to the quantile
of the k™" and k* order statistics respectively, is appointed as the extreme
quadrant. The number of extreme pairs of R;; and R,,,, which fall in this
region, relative to the number of extreme market movements, £ , forms the
dependence measure in Equation (1).

The measurement of §; relies on rarely observed events. To limit the mea-
surement error of extreme downside risk, I use the whole sample of each
individual stock to estimate ¢; for the base results. The standard in the em-
pirical asset pricing literature is the use of subsamples (rolling windows) to
account for the time variation in systematic risk characteristics of stocks. To
account for the possible time variation in §; and the introduced look-ahead
bias, the analysis is repeated with d;;. To estimate §;; we only use data till
time t. This alleviates the look-ahead bias and allows for subsample variation
in 0;. These results are presented in the robustness analysis of the empirical
results section.

2.3 Non-linear systematic risk

The asset pricing literature suggests several systematic risk factors that cap-
ture the asymmetry of the return distribution. In this paper these risk factors
are used as control variables.

Scott and Horvath (1980) advocate the inclusion of the sensitivity of higher-
order moments of the return distribution into the pricing kernel. Harvey and
Siddique (2000) use coskewness as a measure of heavy tails, where coskewness
is defined as
E [g:e2]

VE[SIE 2]

where ¢; is the residual from regressing the excess return of stock ¢ on the
three Fama and French (1996) factors. The variable g, is the demeaned
excess return on the market portfolio. I also include a measure of cokurtosis:

E g3 ]

VE[E[E)]
Although coskewness and cokurtosis are not a direct measure of tail depen-

dence, they give an indication of a stronger relationship in the tail. The
estimation of both measures requires the full return distribution.

coskewness =

cokurtosis =

Dekkers and De Haan (1989) show that with EVT, only the tail observa-
tions are necessary to provide information about tail risk. Moreover, using



the vast number of center observations in the estimation might create a bi-
ased measure of tail dependence. An additional problem with the cokurtosis
and coskewness measures is that they need the second and third moment to
exist. This is not always the case for financial returns.

Ang et al. (2006) propose a non-linear market beta framework. They sepa-
rate the co-movement of an individual asset conditional on a down movement
and up movement of the market. Given that the market is below its aver-
age excess return, a beta is estimated. Accordingly, this is also done for
the above-average market excess returns. Given the focus of this paper on
downside risk and the mixed results for upside beta in Ang et al. (2006), only
downside beta is considered. Define downside beta as

_ cov (R, Ry | Ry < fin)
 var (Rp| Ry < i)

5

I

where i, is the average excess market return.

Ang et al. (2006) use all observations in their upside and downside beta
framework. However, the disaster literature to date points towards a sepa-
ration for the extremely bad states. That information is lost when using the
center observations in the downside beta measure. I utilized the informa-
tion in the tail observations as a further non-linearization of their risk-return
framework. By excluding the tail observations from the upside and downside
beta, the tail dependence measure can be estimated using these excluded
observations. Therefore, the factor proposed in this paper provides a natural
extension of their framework.

Kelly and Jiang (2014) develop another approach to estimate the sensitivity
of stocks to changes in probability of extreme negative market drops. They
first estimate the change in the tail index exponent over time, i.e. &;°. To
estimate this conditional tail index, they use the cross-section of individual
stock returns. In order to increase the cross-sectional sample size, they pool
daily observations in month ¢. From the pooled returns they estimate the tail
index with the Hill estimator, creating a monthly time series of tail indexes.
In a second step, the sensitivity of the individual stocks to of® is measured
in time-series regressions. They find that the sensitivity to af® carries a pos-
itive risk premium. Furthermore, they show that a;® can predict the excess
market return. However, using the Hill estimator for the cross-section of
returns can be problematic. Dependencies in the cross-section cause biased
estimates. The variation in &;° could therefore be driven by this bias and
consequently proxy other dependencies in the cross-section.



3 Data

The analysis uses US equity market data from 1963 to 2015. Stock market
data are obtained from the Center for Research in Security Prices (CRSP).
The CRSP database contains individual stock data from the NYSE, AMEX,
NASDAQ and NYSE Arca. The five Fama-French factor (Fama and French,
2015) data are provided by the website of Kenneth R. French, as is the
momentum factor by Carhart (1997). The data library contains daily and
monthly constructed Fama-French and momentum factors from 1963 to 2015.
The liquidity factor by Stambaugh and Lubos (2003) is obtained from the
website of Lubos Pastor. The book-to-market ratio, which is used as one of
the control variables, is obtained from the Compustat database. The Com-
pustat database contains data from 1950 to 2015 on balance sheet items of
the respective companies.

In the main analysis, 19,904 stocks are included. For the data analysis,
the monthly stock returns need to be matched to the monthly regression fac-
tors. Therefore, the analysis is confined to the period 1963 to 2015.% Only
stocks with more than 60 months of data are used, as accuracy of EVT es-
timators typically requires a large total sample size.® Only a small fraction
is informative for tail estimation. Table 1 gives the descriptive statistics for
extreme downside risk.

In the Appendix, Figure 3 provides additional details on the distribution
of the sample fractions used for the estimation of the count measure. One
can see that the shape of the distribution of the £, and £ are different. The
distribution of &k} shows that in most of the cases, a sample fraction lower
than 5% is chosen. This is also the case for &k, but less frequently. The
lower left graph shows the difference between £, and k. The distribution
is centered around zero, but in some cases &, is much larger than k. I per-
form additional robustness checks by taking a fixed threshold. Using a fixed
threshold of 1% of the sample fraction does not change the size of the aver-
age excess return for extreme downside risk, but makes the standard errors
larger.

4The CRSP database and Fama-French factors dataset provide information going back
to 1926. For a detailed description of the construction of the Fama-French factors and the
momentum factor, please visit the data library on the website of Kenneth R. French.

5Stocks with exchange code -2, -1 or 0 are not included in the analysis. In addition,
only stocks with share code 10 and 11 are included in the analysis.
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Table 1: Descriptive statistics of extreme downside risk

# Firms Mean St Dev Min Max

All 19904 0.17 0.20 0.00 0.95

Agriculture, Forestry and Mining 2971 0.12 0.16 0.00 0.90

Contractors and Construction 296 0.14 0.17 0.00 0.90

Manufacturing 7597 0.15 0.18 0.00 0.95

Transport, Communications and Utilities 1656 0.19 0.20 0.00 0.95

Wholesale Trade 975 0.14 0.18 0.00 0.90

Retail Trade 1318 0.15 0.17 0.00 0.90

Finance, Insurance and Real Estate 5980 0.21 0.23 0.00 0.95

Business and Personal Services 2422 0.15 0.18 0.00 0.90

Health Services 437 0.15 0.19 0.00 0.88

Legal, Education and Social Services 134 0.14 0.19 0.00 0.80

Engineering and Accounting Services 496 0.18 0.22 0.00 0.90

Government (Public Administration) 57 0.17 0.20  0.00 0.81
This table displays the summary statistics of the extreme downside risk measures per
industry. The industries are arranged according to SIC codes. The first column reports
the number of companies that are included in an industry. Columns 2-5 report the mean,
standard deviation, maximum and minimum of the extreme downside risk realizations.

The data includes all the securities in the CRSP universe from 1963 to 2015.

4 Empirical results

Common practice in the asset pricing literature is to sort stocks in quintile
portfolios based on their factor realizations. Subsequently, the direction of
the average realized returns of the quintile portfolios are examined for the
predicted relationship.

When investigating the relationship between realized factor loadings and av-
erage returns, the results should normally hold for equal- and value-weighted
portfolios. As pointed out by Ang et al. (2006), previous work finds that the
risk due to asymmetries is bigger among smaller stocks. I therefore follow
Ang et al. (2006) and Harvey and Siddique (2000) by focusing on equal-
weighted portfolios. In the Appendix, tables 6 and 7 report the results for
value-weighted portfolios. The results are mostly in the same direction; how-
ever, there is large variation in the size of the premium.

Table 2 presents the results for sorting stocks on their realized §;. The port-
folios sorted on 9; show an overall increase in the average realized returns.
This direction is in line with the risk-return relationship that one expects.
Investors want to be compensated, with a higher average return, for hold-
ing stocks that perform extremely badly in the extremely bad states of the
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Table 2: Single-sorted portfolios
Return Mean (§) Mean (5™)

Low 6  8.07 0.01 0.90

2 844 0.05 0.91

3 924 0.11 0.94

4 10.26 0.22 1.00

High 6 11.51 0.43 1.07

High ~ Low  3.43 0.43 0.17
t-stat  [6.59] [18.48]

This table lists the equal-weighted average excess returns and risk characteristics of stocks
sorted on extreme downside risk, §, realizations. Here ¢ is calculated using daily observa-
tions for every individual asset that is listed on NYSE, AMEX, NASDAQ or NYSE Arca
between the years 1963 and 2015. Subsequently, the stocks are sorted into quintile portfo-
lios based on their realized extreme downside risk factor. The columns Return, Mean(d)
and Mean(8™) report the average annualized monthly excess return, the average extreme
downside risk measure and the average market § measure of the stocks in the quintile
portfolios, respectively. They are measured with a 5-year rolling window. The row ‘High
- Low’ states the average annualized difference in the average realized return in the High
and Low portfolio. The last row presents the t-statistic of the difference with Newey and
West (1987) autocorrelation and heteroskedastic robust standard errors. Included in the
analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca
for 60 months, that have share code 10 or 11, and that have a stock price above 5 dollars
at the formation of the portfolio.

world.® The difference in the annualized average return between the high-
and low-risk portfolio is about 3.5%. Furthermore, Table 2 shows that the
average ™ in the sorted quantile portfolios is also increasing. It is possible
that § is a proxy for existing risk factors, like the market factor.

To explicitly control for other factors, the asset pricing literature often uses
double-sorted portfolios. Furthermore, the double-sorting procedure can re-
veal non-linearities in the risk-return relationship. In the procedure, stocks
are independently sorted on their exposure to an existing risk factor and 9;.
They are subsequently allocated to their appropriate sorting portfolio.” This

6This rationale applies the Arrow-Debreu state-pricing framework.

"The double-sorting results in this paper are acquired by an independent double-sorting
procedure. A concern with the independent double-sort procedure is the sparse number of
stocks in some of the sorting portfolios. In contrast to the dependent-sorting procedure,
with the independent sort one circumvents the issue of correlated factor loadings. For
a detailed description of the double-sorting procedure used in this paper, see Appendix
A.2. The results with a dependent-sorting procedure are quantitatively similar. In the
Appendix, Table 13 presents the cross-sectional correlation between the factor loadings
for each systemic risk factor. The market factor shares the highest correlation with §, but
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way one can explicitly control for another risk factor. Table 3 presents the
average realized portfolio returns of the double-sorted portfolios where the
market, small-minus-big, high-minus-low, momentum and liquidity factors
function as controls.

In panel (a), each portfolio in a row has approximately equal exposure to the
market factor. In a row, each portfolio along the columns has an increasing
level of 9;. The realized average return among these portfolios is increasing
as well. This is true for all five different rows. This shows that given the
exposure to market risk, stocks also get additionally compensated for their
exposure to extreme downside risk. The column ‘H-L’ shows the difference
in the average excess return between the fifth and first quintile portfolio for
given levels of market risk. These excess returns show that compensation
for bearing extreme downside risk, controlling for market risk, is between
2.12% and 4.06% annually. These premia have a robust t-statistic of 3.73 or
higher. It is for these stocks that §; provides powerful differentiating infor-
mation. The fifth row of panel (a) shows that stocks that are described as
carrying high systematic market risk carry a sizable risk premium for having
a high level of §;. This shows that 5" does not fully characterize the systemic
risk profile of stocks and that ¢; provides valuable differentiating information.

Panels (b) and (c) show the average ‘H-L’ realized return for 0 controlling
for the small-minus-big and high-minus-low factors. The average ‘H-L’ excess
returns are between 2.30% and 4.12% and significant. One can also wonder
if stocks that have a high extreme dependence are sensitive to liquidity is-
sues. Stambaugh and Lubos (2003) find that stocks with high sensitivity to
liquidity have a higher expected return. This is especially a concern when
the market experiences an extreme downward movement. Panel (d) shows
that controlling for the liquidity factor does not explain the risk premium
for extreme downside dependence. The momentum factor is an additional
factor often used in the asset pricing literature. Carhart (1997) is able to
explain the persistent performance of mutual funds with the momentum fac-
tor. Controlling for the momentum factor does not significantly influence the
previously found results. This implies that ¢ is not likely functioning as a
proxy for other tested risk factors.®

this correlation is relatively low. Therefore, it is unlikely that ¢ proxies for one of the
other factors.

8In Table 10 in the Appendix, I also control for the conservative-minus-aggressive and
robust-minus-weak factors by Fama and French (2015). Kelly and Jiang (2014) cross-
sectional tail risk measure is included in the analysis as well. Additionally, I control for
the book-to-market ratio and the variance of the asset. The average realized ‘H-L’ excess
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Table 3: Double-sorted portfolios

Low § 2 3 4 High 6 H-L t-stat

Low g™ 5.34 5.92 6.99 8.28 9.40 4.06 | ]
2 724 779 791 849 955 231 [4.52]

3 824 8.59 8.56 9.50 10.55  2.31 [4.32]

[3.73]

[4.29]

4 943 942 1010 1075 1155 2.12 [3.73

High g™ 11.43 11.70 13.28 13.44 1440 2.98 [4.29
panel (a)

Low p°MB 722 776 883 9.36 10.79 3.57 [5.33

2 7.65 838 867 9.61 10.70 3.04 [6.03

[5.33]
[6.03]
3 817 899 901 985 1092 2.74 [5.63]
[6.16]
[7.21]

4 854 8.71 9.29 10.04 11.69 3.16 [6.16

High BSMEB 913 862 10.24 1207 1325 4.12 [7.21
panel (b)

Low BPMI 1149 11.83 1287 13.62 1557 4.08 [5.43

2 818 857 949 1035 1136 3.18 [6.21

[5.43]
[6.21]
3 718 805 825 937 1004 2.86 [6.18]
[4.90]
[5.37]

4 7.35 7.67  8.01 8.67 9.65 2.30 [4.90

High B7ML 652  6.67 7.80 886 995 3.43 [5.37
panel (c)

Low X 897 9.14 10.18 11.75 13.00 4.04 [6.16

2 816 851 899 983 11.03 2.88 [5.16

[6.16]
[5.16]
3 781 835 891 925 1022 241 [5.85]
[5.68]
[6.61]

4 775 818 882 940 1052 2.77 [5.68

High g% 7.86 819 9.33 10.89 1242 4.56 [6.61
panel (d)

Low gMom 510 571 6.64 7.34 8.76 3.66 [5.10

2 638 686 7.73 864 889 2.50 [4.68

4 9.1 9.62 10.10 10.95 1222 2.71
High gMe™  11.83 11.93 12.92 1450 16.49 4.66
panel (e)

[5-10]
[4.68]
3 776 807 865 980 10.65 2.89 [5.67]
[5.59]
[8.05]

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 6. 8™ is the market beta. S7ML and ME are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. %% is the liquidity beta by Stam-
baugh and Lubos (2003). ™ is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, ¢;, is estimated over the whole sample period
of an asset. I use the lowest 1% of the market excess return to estimate d; and the remain-
ing observations to estimate the control risk-factor exposures. The average realized return
of each formed portfolio is measured over the 5-year horizon used to estimate the factor
loadings. The seventh column provides the average difference between the realized return
on the high and low §; portfolios. Included in the analysis are stocks that have traded
listed on NYSE, AMEX, NASDAQ or NYSE Arca for 60 months, that have share code 10
or 11, and that have a stock price above 5 dollars at the formation of the portfolio. The
sample period is from 1963 to 2015. The t-statistics in the last column are computed using
the Newey and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 4 displays the average realized returns for the double-sorted portfolios
with the downside beta and other alternative downside risk measures. In the
analysis, the months corresponding to the lowest 1% market excess return
observations are used to measure 9;. The remaining observations are used to
estimate the alternative downside risk measures. In this manner, 9; forms a
natural extension of downside beta.

Panel (a) shows the results for the unconditional market factor again. The
results are slightly different from Table 3. Here ¢; is more crudely measured
by taking a fixed threshold at 1% of the sample.” The ‘H-L’ column shows
that the average excess returns controlled for the market risk factor is very
similar. The t-statistics show that the confidence intervals have widened,
alluding to the less accurate measurement of extreme downside risk due to
the fixed threshold for the extreme quadrant.

Panel (b) controls for downside beta. The average excess returns for ‘H-
L’ portfolios are positive and significant at a 1% confidence level. As in Ang
et al. (2006), I also control for the exposure to downside beta relative to the
market beta. The average excess returns, in panel (c), are positive and signif-
icant at a 1% confidence level. This shows that the incremental information
that is contained in 8~ over the unconditional market 3 is different from the
information contained in 9;.

By taking a higher-order Taylor approximation of an investor’s utility func-
tion, Scott and Horvath (1980) show that the higher-order moments in the
return distribution play a role in describing a stock’s systematic risk char-
acteristics. Therefore, in panel (d) and (e) we control for coskewness and
cokurtosis. The average excess return on the ‘H-L’ portfolios for extreme
downside risk is still positive and significant when controlling for higher-
order moments of co-movement. In Table 10 I control for Kelly and Jiang
(2014) cross-sectional tail index, . The positive risk premium for ¢ indi-
cates that it captures something different than a“. This can also be deduced
from the low correlation in the factor loading between a“® and ¢; in Table 13.

returns for § are approximately the same size and significant.
9The results where the extreme quadrant is determined with the KS-distance are quan-
titatively similar for the other control factors in this table.
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Table 4: Double-sorted portfolios — non-linear factors
Low § 2 3 4 High 6 H-L  t-stat

Low 8™ 4.80 6.19 7.57 8.52 9.33 4.53 | ]

2 6.40 7.69 8.53 8.52 9.76 3.35 | ]

3 730 827 937  9.56 10.32  3.02  [2.68]

3-39]

(3.83]

4 6.39 9.73 10.70 11.09 10.86 4.47 [3.39

High g™ 9.66 12.69 14.28 14.92 14.67 5.01 3.83
panel (a)

Low g~  4.64 594 739  8.06 8.55 3.91 6.15

2 6.42 7.27 8.20 8.49 9.13 2.71 3.27

[6.15]
[3.27]
3 685 864 908 950 1001 3.16 [3.11]
[4.95]
[5.48]

4 6.04 9.44 1098 11.30 11.92 5.88 4.95

High 5~ 9.46 12.27 1424 1593 16.30 6.84 5.48
panel (b)

Low g~ —p™ 502 7.77 9.78 9.96 9.37 4.35 [3.33

2  b5.76 8.12 9.84 10.18 10.17 4.42 4.32

[ 3.33]
[4.32]

3 630 889 997 1048 1100 4.70 [5.47]
[9.35]
[

4 6.92 9.60 10.60 11.88 12.73 5.81 9.35
High g~ — ™  6.40 8.76 11.67 13.86 15.04 8.64 [11.64]
panel (c)
Low Coskewness  6.61 8.27 1044 11.42 12.09 5.49 9.23
2 594 8.67 10.77 11.10 11.94 5.99 7.93

[9.23]
[7.93]
3602 849 10.62 11.07 1149 5.47 [7.16]
[5.49]
[3.64]

4  5.53 8.37 10.15 10.97 10.60 5.07 [5.49

High Coskewness  6.17 9.49 10.31 11.08 10.10 3.93 3.64
panel (d)

Low Cokurtosis  6.77 9.82 11.09 11.65 10.72 3.95 3.65

2 598 9.08 10.68 11.22 10.92 4.94 5.42

4 549 8.00 10.24 10.83 11.63 6.14
High Cokurtosis  6.11 7.92 9.65 10.87 1145 5.34
panel (e)

[3.65]
[5.42]
3 601 851 1062 11.06 1148 5.48 [7.21]
[7.98]
[8.96]

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 4. ™ is the market beta. 3~ is the downside beta by Ang et al. (2006).
coskewness and cokurtosis are risk factors, by Harvey and Siddique (2000), which measure
higher moment co-movement. The factor exposures are estimated with monthly return
data each month with a 5-year rolling window. The extreme dependence measure, ¢;, is
estimated over the whole sample period of an asset. I use the lowest 1% of the market
excess return to estimate §; and the remaining observations to estimate the control risk-
factor exposures. The average realized return of each formed portfolio is measured over
the 5-year horizon used to estimate the factor loadings. The seventh column provides the
average difference between the realized return on the high and low § portfolios. Included in
the analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca
for 60 months, that have share code 10 or 11, and that have a stock price above 5 dollars
at the formation of the portfolio. The sample period is from 1963 to 2015. The t-statistics
in the last column are computed using the Newey and West (1987) autocorrelation and
heteroskedastic robust standard errors.
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Fama-MacBeth regressions

The difference in the average return in the high ¢; and low §; portfolios does
not directly convey the risk premia for extreme downside risk for the average
stock. Furthermore, double-sorting stocks into portfolios does not allow one
to control for multiple factors simultaneously. To address these issues, I use
Fama and MacBeth (1973) regressions at the firm level.

For the Fama and MacBeth (1973) regressions I construct a factor based
on the §; measures. At the start of each year I sort all stocks with a dollar
value higher than 5 dollars, based on their measured ¢;. I construct a high
0; quintile portfolio and a low ¢; quintile portfolio. For each month in that
year the average return of the high quintile portfolio is subtracted from the
average return of the low quintile portfolio. This time series of ‘H-L’ monthly
returns forms the F° factor. Subsequently, the factor is used to estimate the
factor loadings to extreme downside risk for each stock.

Table 5 presents the results of the Fama and MacBeth (1973) regressions.
The first two columns display the price of risk for the existing factors pushed
forward in the asset pricing literature. These two models serve as a bench-
mark for the price of risk of F?. From column 3, we can read that the
premium for a unit exposure to F° is about 2% annually. Given the 1.65
cross-sectional standard deviation in B 6, a one standard deviation shift in
exposure leads to a 3.5% increase in risk premium. The price for F? is robust
to the inclusion of other existing factors, as shown in columns 4 to 7.1

The last row in Table 5 reports the average R? for each model. The exposure
to 9 explains about 6% of the cross-sectional variation in the average re-
turn. This is 1% below the R? for the market model. Including both factors
increases the R? of the market model by 3.3%. There is also an increase in
the R? when comparing models 2 and 7. This implies that ' is a valuable
addition in explaining the cross-section of the average return on stocks.

5 Robustness analyses

The results in Table 3 indicate that on average a positive premium for ex-
treme downside risk is demanded. A possibility is that the sensitivity to
the exposure is not equal among all firms. Table 8 shows the average excess

0Cokurtosis is excluded from the Fama-MacBeth regressions due to near perfect corre-
lation with coskewness in various subsamples.
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Table 5: Fama-MacBeth regressions

1 2 3 4 5 6 7
onstant . . . . . . .
C 0.0417  0.0472  0.0632 0.0513  0.0548 0.051 0.0506
(0)#k* (0)*** (0)F%  ()*** (0)#k* (0)*** (0)#k*
g 0.051 0.0539 0.0479  0.0437 0.0498 0.0504
(0)*** (0)** (0)*** (0)*** (0)** (0)***
pSMB 0.0114 0.0103 0.013 0.0124
(0.026)** (0.045)**  (0.009)***  (0.013)**
pHML -0.0269 -0.0268 -0.0262 -0.0262
(0)*** (0)#k* (0)*** (0)%k*
BF’ 0.0199 0.0211  0.0199 0.0201 0.0204
(0)*** (0)*** (0)*** (0)*** (0)***
pMem 0.0604 0.0596 0.0599
, (0)*** (0)*** (0)***
plia 0.0169 0.0169 0.0154
(0.016)** (0.02)** (0.03)**
Coskewness -0.1003 -0.0085
(0.449) (0.097)*
R? 0.074 0.164 0.062  0.107 0.139 0.175 0.178

This table shows the results of the second stage of the Fama and MacBeth (1973) regres-
sions of 60-month excess returns on realized-risk characteristics. An overlapping 60-month
rolling window is employed on assets that are listed on the NYSE, AMEX, NASDAQ or
NYSE Arca. ™ is the market beta. ﬂFé is the beta based on the factor of extreme
downside risk, §. The factor is constructed by subtracting the average return of the high-
est 20% minus the lowest 20% ¢ stocks. The portfolios are reconstructed at the start of
each year. BHML and pSMB are high-minus-low and small-minus-big betas (Fama and
French, 1996), respectively. BL% is the liquidity beta by Stambaugh and Lubos (2003).
pMom is the momentum beta created by Carhart (1997). coskewness is the risk factor, by
Harvey and Siddique (2000), which measures third moment co-movement. Included in the
analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca
for 60 months, that have share code 10 or 11, and that have a stock price above 5 dollars
at the formation of the portfolio. The sample period is from 1963 to 2015. The p-values
for the overlapping Fama-MacBeth regression are computed using the Newey and West
(1987) autocorrelation and heteroskedastic robust standard errors. The last row reports
the average R? over the rolling windows of the second-stage regressions. *, ** *** are
indicators for the significance level at 10%, 5% and 1% of the coefficients, respectively.

returns for stocks that are listed for longer than 180 months on one of the
stock exchanges.!! These stocks have a slightly lower premium for extreme
downside dependence. This is an indication that the exposure to the extreme
dependence risk is important for firms that are relatively young.

Financial firms, such as banks, are highly leveraged. The high leverage might

Here, time of being listed on one of the exchanges functions as a proxy for the maturity
of the firm.
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mean these firms are very sensitive during market turmoil. Table 1 shows
that for the financial sector, the average ¢ is the highest among the different
sectors. This could imply that the results are solely driven by financial firms.
In Table 9 I exclude financial firms and find that the results of the average
excess returns are quantitatively comparable.

In the analysis, ¢ is measured over the whole sample period. This implies
that the firm’s average ¢ is used in the analysis. To account for the possible
variability in a firm’s d over time, in the rolling window analysis I use returns
preceding and within the rolling window to estimate d;. Table 11 reports the
average excess return on the ‘H-L’ portfolio. The excess returns are positive
and significant and are on average 2 to 2.5%. This is lower than the base
results. This is also reflected in the estimation of the risk premia via the
Fama and MacBeth (1973) procedure. Table 12 shows that the estimated
risk premium is approximately 0.65% and mostly significant.

6 Conclusion

The dependence of a stock on the extreme movements of the market is an es-
sential part of understanding the compensation investors demand for bearing
risk. In these infrequent and extreme cases, investors care most about the
performance of their own portfolios. In this paper, a measure for the depen-
dence of stock returns on the extreme downward movements of the market
is created. This measure is derived from statistical extreme value theory.

The measure of extreme downside risk is subsequently used in a portfolio
double sort and Fama and MacBeth (1973) regressions to explain the cross-
section of average excess returns. This reveals whether investors care about
this extreme dependence on top of other risk factors and whether extreme risk
fetches a premium or a discount. The results from the cross-sectional analy-
sis show that extreme downside risk carries a premium, as one would expect.
The difference in the average realized return between a quintile portfolio that
has high extreme downside risk and one that has low extreme downside risk is
around 3.5% per annum and remains significant in various robustness checks.
These results are in line with the literature to date. The disaster/jump risk
literature finds that investors indeed require a premium for stocks that have
high returns when tail risk is high. Ang et al. (2006) find in their downside
beta framework that there is a premium for the downside beta in excess to
the market factor. In line with the bisection of the beta model, I proposed
a further division of the risk sensitivity of the market model. I find that
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adding extreme downside risk to Ang et al. (2006)’s downside beta forms a
significant and natural extension to their framework.
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A Appendix

A.1 Quantile estimator
The starting point for the quantile estimators is the first-order term in (4):
1—F () = Aa~/ [1+0(z7)]. (4)

This function is identical to a Pareto distribution if the higher-order terms
are ignored. By inverting (4), one gets the quantile function

zz{ikéfﬁq_%. 8

To turn the quantile function into an estimator, the empirical probability
J/n is substituted for P (X > z). A is replaced with the Weissman (1978)
estimator %(Xn_kﬂ,n)a, and « is estimated by the Hill estimator.!?> The
quantile is thus estimated by

k 1ay,
qoxuzxa%ﬂm(;) | (6)

Here j indicates that the quantile estimate is measured at probability (n=3)/n.

12The estimate of A is obtained by inverting P = Az~ at threshold X,,_g11p.
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A.2 Double-sorted portfolio

To explicitly control for other factors, the asset pricing literature often uses
double-sorted portfolios. For time ¢, in months, we have excess return r;;
for stock 4, as the return in excess of the risk-free rate. To construct the
double-sorted portfolios, we first estimate the loading for factor F7, g}, for
the n; stocks. I use returns from time ¢ to ¢ + 60 to estimate:

J . .
_ Ac FI 1
Tti = Dir + § j=17hT Fi +eir. (7)

Here, J is the total number of factors included in the regression for stock .
Given that I repeat the to-be-described procedure for different time windows,
I use 7 to indicate the particular window. In the basic setup, the factors
included are the market, SMB, HML, momentum and liquidity factors. To
carry out the double sorting, we also need to estimate the extreme downside
risk, ¢;, for each stock. To estimate ¢; we use the whole available sample,

T; I
Zt*lei{’/’i,t* <'U7Rm,t* <w} ’ (8)

Zt*zll{rm’t* <w}

where t* are daily returns. Here, T; is the total sample size of stock i, and
I is the indicator function. Furthermore, 1, is the excess return on the
market portfolio.

(Si:

Dependent sorting

Given the loadings BZF TJ and §;, the stocks are first sorted by Af TJ and put into
quintile portfolios. Stocks with rank smaller than /5 are allocated to the
first quantile portfolio. Within each quintile portfolio, I subsequently sort
on ¢; and allocate an equal number of stocks to five sub-quintile portfolios.
This totals 25 P" portfolios. Here b is the portfolio rank for BF and d for

§, ranging from 1 to 5 in both cases. For each P>? the 5-year average excess
t+59

return, »_ rf’d, is calculated. For a fixed b we subtract the average excess
i=t

return of P from Pb!, giving E[rf~*],. This shows for a given level of BTF ’
the premium of holding high ¢ stocks relative to low ¢ stocks.

The dependent sorting has a disadvantage. If the loadings Bf 7 and §; are
correlated, then the average 5 for given d over different b portfolios might dif-
fer. This makes it difficult to interpret the different E[r~*],. To circumvent
this problem one can independently sort the stocks.
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Independent sorting

For the independent sort, stocks receive a rank for both factors indepen-
dently. This is in contrast to the sequential sorting in the dependent sort.
Given the rank for both factors, stocks with ranks for Af 7 and 4; smaller
than n¢/5 are allocated to portfolio P*'. Stocks with rank BZF 7 smaller than
nfs and a rank for ; between nt/s and 2nt/s are allocated to P2, and so on.
This guarantees that the average Af T] is equal across the different d portfolios
for a given b and that the average 5 is equal across the different b portfolio
for given d. The disadvantage is that in some P»? portfolios the number of

stocks can be limited.

Given either form of sorting, this procedure is repeated for 7 =1, ..., T — 60.
The E[r{] and E [rtH _L/} , are averaged over the different time periods and
reported. The time series of E [T;H‘L’ , are utilized to estimate the Newey
and West (1987) heteroskedastic and autocorrelation robust t-statistics for
the [rtH ’L/] \ excess returns, which are reported in the last column of the

tables.
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A.3 Tables and figures

Figure 3: Characteristics ¢;
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These graphs depict the distribution of the different characteristics of the extreme downside
risk measure. The upper-left picture depicts the sample fraction of the total data used to
define the extreme negative region of the stock. On the right you see this for the market.
The lower-left picture depicts the difference in the number of observations applied in the
count measure for the market and stock 7. The picture on the bottom right gives the
distribution of the extreme downside risk measure.
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Table 6: Double-sorted value-weighted portfolios
Low o 2 3 4 High 6 H-L  t-stat

Low g™ 5.77 5.96 5.72 5.36 6.54 0.77 | ]
2 667 7.09 623 665 712 0.45 [0.98]

3 718 6.33 6.71 6.75 7.85 0.68  [1.19]

3.31]

[4.34]

4 591 536 744 684 736 1.45 [3.31

High ™ 434 466 7.16 7.64 792 3.58 [4.34
panel (a)

Low g°MB 683 510 7.11 6.96 742  0.58 [1.42

2 606 640 6.77 668 7.06 1.00 [2.51

[1.42]
[2.51]
3 577 712 613 678 667  0.90 [1.63]
[5.02]
[7.07]

4 472 649 678 602 755  2.83 [5.02

High gSMB 413 394 576 640 848  4.35 [7.07
panel (b)

Low gAML 858 834 875 944 990 1.31 [1.23

2 641 631 803 725 717 0.76 [1.66

[1.23]
[1.66]
3 587 550 579 615 645 058  [1.31]
[1.91]
[4.66]

4 585 611 596 6.09 671 0.85 [1.91

High gAML 372 425 594 565 693  3.21 [4.66
panel (c)

Low 8% 628 639 632 7.15 8.42 2.14 [271

2 659 516 654 7.04 795 1.36 [2.97

[ 2.71]
[2.97]
3 605 596 725 662 749 144 [2.92]
[-1.27]
[4.10]

4 728 636 648 692 673 -0.55 [1.27

High g% 375  6.11 822 598  6.89 3.14 [4.10
panel (d)

Low gMem (080  2.01 3.26 3.44 2.55 1.75 [2.35

2 476 306 483 510 550 0.74 [1.33

4  8.66 8.88 846 881 9.17 0.50
High gMem 10.29 11.15 11.68 11.06 12.77  2.47
panel (e)

[2.35]
[1.33]
3 712 588 665 653 7.68 0.55 [L17]
[0.83]
[3.77]

This table lists the value-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 6. 8™ is the market beta. 7ML and ME are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. %% is the liquidity beta by Stam-
baugh and Lubos (2003). °™ is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, 9, is estimated over the whole sample period of
an asset. The average realized return of each formed portfolio is measured over the 5-year
horizon used to estimate the factor loadings. The seventh column provides the average
difference between the realized return on the high and low ¢ portfolios. Included in the
analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca for
60 months, that have share code 10 or 11, and that have a stock price above 5 dollars at
the formation of the portfolio. The sample period is from 1963 to 2015. The t-statistics
in the last column are computed using the Newey and West (1987) autocorrelation and
heteroskedastic robust standard errors.
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Table 7: Non-linear factors — value-weighted portfolios

Low § 2 3 4 High 6 H-L t-stat

Low g™ 342 490 575 592 689 3.47 [4.38
2 4.32 5.18 5.88 5.34 6.63 2.32 |
3 323 453 591 587 6.21 299 |

4 059 564 596 7.14 651 592 [3.38
[

High g™ 240 7.05 884 7.96 8.94 6.54 [3.03
panel (a)

Low B~ 3.17  5.03 5.67 5.69 5.81 2.64 [2.70

2 4.02 4.82 5.82 5.60 6.43 241 1.82

[2.70]
[1.82]
3 372 533 494 6.08 653 2.81 [2.13]
[3.67]
[4.45]

4 057 559 719 8.20 7.68 7.11  [3.67

High 5~ 3.31 736 9.80 &8.75 11.70 8.39 [|4.45
panel (b)

Low 8= — g™ 0.62 453 6.09 6.40 6.27 5.65 |[3.17

2 275 513 6.13 b5.75 6.60 3.85 [2.76

[3.17]
[2.76]
3 328 612 651 601 684 3.56 [2.61]
[4.61]
[6.16]

4 4.21 5.79 6.82 6.86 8.77 4.56 [4.61

High p—-p™ 373 571 7.86 740 10.57 6.83 [6.16
panel (c)

Low Coskewness 3.84 5.29 6.81 6.92 7.76 3.92 [3.15

2 296 542 6.72 6.34 7.53 4.57 [3.48

[3.15]
[3.48]
3 216 515 6.62 587 737 5.21 [3.91]
[2.79]
[2.22]

4 2.21 5.45 T7.18 6.51 6.28 4.07 [2.79

High Coskewness 3.06 5.81 5.76 7.41 6.73 3.68 [2.22
panel (d)

Low Cokurtosis  3.00 597 5.73 7.41 6.42 3.42 [1.96

2 2.43 5.93 T7.48 6.36 6.33 3.89 [2.60

4 268 494 639 649 746  4.78
High Cokurtosis 4.08 5.12 6.81 6.94 8.04 3.96
panel (e)

[1.96]
[2.60]
3 213 516 664 587 740 5.27 [3.97]
[3.74]
[3.75]

This table lists the value-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 4. ™ is the market beta. 3~ is the downside beta by Ang et al. (2006).
coskewness and cokurtosis are risk factors, by Harvey and Siddique (2000), which measure
higher moment co-movement. The factor exposures are estimated with monthly return
data each month with a 5-year rolling window. The extreme dependence measure, 4, is
estimated over the whole sample period of an asset. The average realized return of each
formed portfolio is measured over the 5-year horizon used to estimate the factor loadings.
The seventh column provides the average difference between the realized return on the
high and low ¢ portfolios. Included in the analysis are stocks that have traded listed on
NYSE, AMEX, NASDAQ or NYSE Arca for 60 months, that have share code 10 or 11,
and that have a stock price above 5 dollars at the formation of the portfolio. The sample
period is from 1963 to 2015. The t-statistics in the last column are computed using the
Newey and West (1987) autocorrelation and heteroskedastic robust standard errors.
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Table 8: Double-sorted portfolios — traded more than 15 years
Low § 2 3 4 High § H-L t-stat

Low g™ 6.16 6.71 7.35 8.70 9.81 3.66 | ]

2 7.70 8.32 820  8.62 9.70 2.00 | ]

3 8.78 9.27 8091 9.60 10.85 2.07 [3.92]

[2.16]

[3.26]

4 1029 10.05 10.53 1094 11.42 1.13 [2.16

High g™ 12.24 1292 13.75 14.10 14.43 2.19 [3.26
panel (a)

Low 8°MB 805 842 9.06 9.28 10.73 2.68 [4.39

2 822 876 883 9.65 10.58 2.37 [4.98

[4.39]
[4.98]
3 858 958 940 992 1079 2.21 [4.2§]
[5.85]
[7.80]

4 9.16 9.44 9.75 1046 11.92 2.77 [5.85

High #SMB 1023  9.89 11.01 13.35 14.08 3.86 [7.80
panel (b)

Low GPMT 1211 13.06 1349 1419 1539 3.28 [4.10

2 897 9.32 9.86 10.61 11.34 2.37 [4.73

[4.10]
[4.73]
3 779 861 851 954 1007 2.27 [4.73]
[4.18]
[4.78]

4 7.80 8.19 848 8.70 9.79 1.99 [4.18

High BPML 755 764 814 922 1027 272 [4.78
panel (c)

Low g% 10.14 10.18 10.95 12.38 1346 3.32 [5.25

2 88 907 916 985 11.02 2.15 [3.67

4 839 864 9.06 951 10.30 1.90

High g% 850  9.42 10.10 11.46 12.66 4.16
panel (d)

Low gMom™  6.06  6.57 7.53 7.83 850 2.44

[5.25]
[3.67]
3 827 898 898 929 1003 1.76 [4.23]
[4.12]
[6.11]

[3.51]

2 7.05 747  8.03 876 8.92 1.88 [3.54]

3 829 8.65 898  9.89 10.76  2.46 [4.72]

4 10.02 10.26 10.23 11.20 12.33 2.32 [4.68]

High gMom 12,82 13.15 13.49 14.67 16.90 4.08 [7.36]

panel (e)

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 6. 8™ is the market beta. S7ML and MB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. 3% is the liquidity beta by Stam-
baugh and Lubos (2003). 5™ is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, 4, is estimated over the whole sample period of
an asset. The average realized return of each formed portfolio is measured over the 5-year
horizon used to estimate the factor loadings. The seventh column provides the average
difference between the realized return on the high and low ¢ portfolios. Included in the
analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca for
60 months, that have share code 10 or 11, and that have a stock price above 5 dollars at
the formation of the portfolio. The assets have to be listed consecutively on one of the ex-
changes for at least 180 months. The sample period is from 1963 to 2015. The t-statistics
in the last column are computed using the Newey and West (1987) autocorrelation and
heteroskedastic robust standard errors.

30



Table 9: Double-sorted portfolios — non-financial firms

Low § 2 3 4 High § H-L t-stat

Low ™  6.01 6.26  7.57  8.55 9.54 3.53 [6.78
2 134 798 815 8.52 988 2.54 |
3 839 853 880 9.77 10.64 2.26 |

4 947 9.48 10.29 10.88 11.82 2.35 [4.16
[

High g™ 11.89 12.12 1322 13.71 1450 2.60 [3.71
panel (a)

Low 8°MB 784 814 9.10 942 1099 3.15 [4.80

2 796 858 890 965 10.73 2.78 [5.30

4 8.64 8.85 9.43 10.36 11.98 3.33
High 65MB 946 892 10.60 1246 13.55 4.09
panel (b)

Low B7MT 12.06 1243 13.33 14.07 1507 3.91 [5.00]
2 870 898 999 1076 11.84 3.14 [5.67]

3  7.35 8.05 8.51 9.50 10.15 2.80 [5.59]

[4.52]

[5-32]

[4.80]
[5.30]
3832 907 929 1001 1106 2.74 [5.08]
[6.11]
[7.62]

4 7.1 7.79 8.07  8.61 9.53 2.02 [4.52

High gAML 6.77 6.82 7.76 8.84 9.92 3.15 [5.32
panel (c)

Low pr  9.32 9.45 10.52 12.06 1329 3.97 [6.10

2 8.26 8.60 9.11 9.92 11.09 2.83 [4.96

[6.10]
[4.96]
3799 846 9.07 941 1031 2.32 [5.43]
[5.48]
[5.95]

4 810 8.41 9.10  9.58 10.81 2.71 [5.48

High gL 8.37 8.54 9.70 11.21 12,52 4.16 [5.95
panel (d)

Low pgMem 547 5.99  6.82 7.73 8.94 3.47 |4.76

2 675 712 788 8.73 8.84 2.08 [3.89

4 9.75 9.79 1042 11.05 1247 2.72
High gMem 1223 1217 1341 14.92 16.81 4.57
panel (e)

[4.76]
[3.89]
3 708 822 886 9.82 1071 2.72 [5.09]
[5.58]
[7.60]

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and 6. 8™ is the market beta. S7ML and MB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. 3% is the liquidity beta by Stam-
baugh and Lubos (2003). 5™ is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, ¢, is estimated over the whole sample period
of an asset. The average realized return of each formed portfolio is measured over the
b-year horizon used to estimate the factor loadings. The seventh column provides the
average difference between the realized return on the high and low § portfolios. Included
in the analysis are stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE
Arca for 60 months, that have share code 10 or 11, and that have a stock price above 5
dollars at the formation of the portfolio. Assets with SIC codes between 6000 and 6200,
i.e. financial firms, are excluded. The sample period is from 1963 to 2015. The t-statistics
in the last column are computed using the Newey and West (1987) autocorrelation and
heteroskedastic robust standard errors.
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Table 10: Double-sorted portfolios — additional factors
Low § 2 3 4 High 6 H-L t-stat
Low g“MA 556  9.37 10.92 12,57 13.62 8.06 [8.64
2 6.18 8.60 10.00 10.82 10.90 4.72 [7.23

3  6.03 8.01 9.90 10.28 10.34 4.31 [
4 6.25 7.88 996 10.33 10.18 3.93 [4.83

[

High M4 676 941 11.10 11.55 10.82  4.06  [4.09
panel (a)

Low fEMW 555 899 11.06 11.78 11.39 5.84 [5.51

2 546 750  9.27 970  9.88  4.42  [5.80

4 656 847 10.16 10.86 11.09  4.53

High AEMW 753 1046 11.96 12.94 13.15 5.61
panel (b)

Low g«cs 6.67 9.66 11.19 1238 12.56 5.89 [7.28]

2 6.35 8.06 9.77 10.21 10.73 4.38 [6.48]

3 591 7.76  9.42 9.94 10.13 4.22 [6.07]

]

]

[5.51]
[5.80]
3 570 7.69 939 1013 1041  4.71  [7.44]
[6.47]
[5.99]

4  6.09 8.07 9.67 10.20 10.35 4.25 [6.21
High gecs 5.65 9.32 11.62 12.72 12.92 7.27 [7.42
panel (c)
Low Bk-Mkt  9.33 1142 13.54 15.05 15.83 6.50 |
2 693 896 11.22 11.86 12.17 5.24 |
3 5.72 845 994 10.56 10.34 4.62 [ 6.67
[
[

4  4.60 8.43 9.86 10.24 9.43 4.84 .
High Bk-Mkt 3.33 6.52 8.45 9.14 9.25 5.92 4.42
panel (d)
Low o, 6.47 747 795  8.02 8.47 2.00 3.77
2 740 8.06 9.14  9.65 10.14 2.74

4 8.45 10.35 11.43 13.60 14.87 6.42
High op, 3.75 8.23 11.86 14.00 16.35 12.60
panel (e)

[
[
3 776 887 1018 11.50 12.24  4.49 [8.14
[
[

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and §. BEMA and BEMW are respectively the conservative-minus-aggressive and
robust-minus-weak betas by Fama and French (2015). 8*¢S is the beta w.r.t. the cross-
sectional tail index measure by Kelly and Jiang (2014). Bk-Mkt is the book-to-market
ratio, and o, is the variance of the asset return. The factor exposures are estimated with
monthly return data each month with a 5-year rolling window. The extreme dependence
measure, 0, is estimated over the whole sample period of an asset. The average realized
return of each formed portfolio is measured over the 5-year horizon used to estimate the
factor loadings. The seventh column provides the average difference between the realized
return on the high and low ¢ portfolios. Included in the analysis are stocks that have
traded listed on NYSE, AMEX, NASDAQ or NYSE Arca for 60 months, that have share
code 10 or 11, and that have a stock price above 5 dollars at the formation of the portfolio.
The sample period is from 1963 to 2015. The t-statistics in the last column are computed
using the Newey and West (1987) autocorrelation and heteroskedastic robust standard
errors.
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Table 11: Double-sorted portfolios — conditional &
Low & 2 3 4 High §; H-L t-stat

Low g™ 5.91 6.59 7.03 8.27 8.49 2.58 | |
2 738 808 7.96 853 904 1.66 [2.60]

3 8.18 9.18 9.11 9.44 9.60 1.42 [1.99]

[1.77]

[2.89]

4 913 1022 1045 10.90 10.41 1.29 [1.77

High g™ 10.78 12.78 13.25 13.41 1327 2.66 [2.89
panel (a)

Low B°MB 712 837 860 9.87 9.91 2.79 [3.59

2 760 875 893 9.74 991  2.31 [4.74

[3.59]
[4.74]
3 812 926 935 1011 1022 2.10 [4.36]
[4.46]
[4.47]

4 811 9.32 959 1037 10.75 2.65 [4.46

High gSMB 885  10.12 10.82 11.29 11.75 2.96 [4.47
panel (b)

Low gAML 1110 12.80 1291 1452 1429 3.19 [3.94

2 8.02 872 970 10.80 10.72 2.70 [4.80

[3.94]
[4.80]
3 717 855 856 924 961  2.44 [4.46]
[3.09]
[2.93]

4 7.20 8.47 822 8.64 8.97 1.77 |[3.09

High SYML 681 753 7.86 814 890 2.10 [2.93
panel (c)

Low pri 8.43 10.46 10.59 11.66 12.23  3.80 [5.27

2 7.97 8.96 9.30 10.14 10.18  2.21  [3.91

[5.27]
[3.91]
3 776 861 887 959 977  2.00 [3.57]
[3.74]
[4.51]

4 749 887 895 950 9.79  2.30 [3.74

High gl 8.11 9.10 9.60 10.53 10.71  2.61 [4.51
panel (d)

Low gMom 528 6.64 7.06 7.51 6.90 1.62 [2.15

2 634 754 785 863 821  1.87 [3.32

4 9.10 10.04 10.31 11.03 11.61 2.51
High gMem 1140 12.50 13.06 14.55 15.44  4.05
panel (e)

[2.15]
[3.32]
3 766 887 894 972 990 223 [4.14]
[4.29]
[6.32]

This table lists the equal-weighted average excess returns of double-sorted portfolios. The
assets are independently sorted by their exposure to a risk factor, mentioned in the first
column, and §;. B™ is the market beta. 7ML and BSMPB are high-minus-low and small-
minus-big betas (Fama and French, 1996) respectively. (L is the liquidity beta by Stam-
baugh and Lubos (2003). *°™ is the momentum beta created by Carhart (1997). The
factor exposures are estimated with monthly return data each month with a 5-year rolling
window. The extreme dependence measure, d;, is estimated with information till time ¢.
The average realized return of each formed portfolio is measured over the 5-year horizon
used to estimate the factor loadings. The seventh column provides the average difference
between the realized return on the high and low d; portfolios. Included in the analysis are
stocks that have traded listed on NYSE, AMEX, NASDAQ or NYSE Arca for 60 months,
that have share code 10 or 11, and that have a stock price above 5 dollars at the formation
of the portfolio. The sample period is from 1963 to 2015. The t-statistics in the last col-
umn are computed using the Newey and West (1987) autocorrelation and heteroskedastic
robust standard errors.
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Table 12: Price of risk — conditional §

1 2 3 4 5 6 7

Constant 0.0417 0.0472 0.0902 0.0489 0.0562 0.0548 0.0544
(0)*** (0)*** (0)%** (0)*** (0)*** (0)%** (0)%**

M 0.051 0.0539 0.0503 0.0481 0.0522 0.0526

(0%t (0) ok (0) %k (0) %k (0)#k* (0) %k

BSMB 0.0114 0.0083 0.01 0.0097
(0.026)** (0.117)  (0.044)**  (0.052)*

pHML -0.0269 -0.0282  -0.0273 -0.0278

(0)*** (0)*** (0)*** (0)***

B 0.0046  0.0066 0.0064 0.0064 0.0066
(0.183)  (0.034)**  (0.02)**  (0.016)** (0.016)**

pMom 0.0604 0.0537 0.0545

plia 0.0169 0.0048 0.0037

(0.016)** (0.346) (0.47)

Coskewness -0.1003 -0.0041

(0.449) (0.366)

R? 0.074 0.164 0.03 0.094 0.129 0.157 0.159

This table shows the results of the second stage of the Fama and MacBeth (1973) regres-
sions of 60-month excess returns on realized-risk characteristics. An overlapping 60-month
rolling window is employed on assets that are listed on the NYSE, AMEX, NASDAQ or
NYSE Arca. ™ is the market beta. 5F§t is the beta based on the factor of extreme
downside risk, d;. J; is estimated with information up to time ¢. The factor is constructed
by subtracting the average return of the highest 20% minus the lowest 20% §; stocks. The
portfolios are reconstructed at the start of each year. S7ML and ¥ME are high-minus-
low and small-minus-big betas (Fama and French, 1996), respectively. 3% is the liquidity
beta by Stambaugh and Lubos (2003). M°™ is the momentum beta created by Carhart
(1997). coskewness is the risk factor, by Harvey and Siddique (2000), which measure
third moment co-movement. Included in the analysis are stocks that have traded listed on
NYSE, AMEX, NASDAQ or NYSE Arca for 60 months, that have share code 10 or 11,
and that have a stock price above 5 dollars at the formation of the portfolio. The sample
period is from 1963 to 2015. The p-values for the overlapping Fama-MacBeth regression
are computed using the Newey and West (1987) autocorrelation and heteroskedastic ro-
bust standard errors. The last row reports the average R? over the rolling windows of the
second-stage regressions. *, ** *** are indicators for the significance level at 10%, 5%
and 1% of the coefficients, respectively.
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Table 13: Correlation matrix of factor loadings

1 2 3 4 5 6 7 8 9 10 11 12 13

14

™ 1.00 020 -0.24 -0.05 -0.09 024 092 -0.19 0.14 -0.11 0.01 0.45 0.07
BSMB 020 1.00 -0.02 -0.08 -0.11 -0.06 0.27 0.15 -0.11 0.03 0.01 0.48 -0.00
BHML _024 -0.02 1.00 0.08 -0.03 -0.04 -0.24 -0.02 -0.05 0.06 -0.08 -0.16 -0.08
pgMom 005 -0.08 0.08 1.00 -0.02 0.00 -0.04 0.04 -0.15 0.09 0.10 -0.08 -0.00

gLia -.0.09 -0.11 -0.03 -0.02 1.00 -0.03 -0.06 0.09 -0.19 0.05 0.10 -0.03 -0.01

§ 0.24 -0.06 -0.04 0.00 -0.03 1.00 0.21 -0.07 0.06 -0.03 -0.01 -0.03 0.01

B~ 092 027 -0.24 -0.04 -0.06 0.21 1.00 0.20 0.05 -0.05 0.02 0.53 0.07

B~ —p™ -0.19 0.15 -0.02 0.04 0.09 -0.07 020 1.00 -0.21 0.15 0.01 0.23 0.01

Coskewness 0.14 -0.11 -0.05 -0.15 -0.19 0.06 0.05 -0.21 1.00 -0.58 0.04 -0.01 0.01
Cokurtosis -0.11  0.03 0.06 0.09 0.05 -0.03 -0.05 0.15 -0.58 1.00 -0.05 -0.00 -0.01
Bxcs  0.01 0.01 -0.08 0.10 0.10 -0.01 0.02 0.01 0.04 -0.05 1.00 0.08 0.00

or, 045 048 -0.16 -0.08 -0.03 -0.03 0.53 0.23 -0.01 -0.00 0.08 1.00 0.06
Bk-Mkt 0.07 -0.00 -0.08 -0.00 -0.01 0.01 0.07 0.01 0.01 -0.01 0.00 0.06 1.00

log(size) 0.28 -0.37 -0.02 -0.05 -0.03 0.26 0.14 -0.34 0.17 -0.11 -0.03 -0.41 0.07

0.28
-0.37
-0.02
-0.05
-0.03

0.26

0.14
-0.34

0.17
-0.11
-0.03
-0.41

0.07

1.00

This table describes the pairwise correlation between factor loadings that are used in this paper.
correlations shown are the average correlations measured over a 5-year overlapping rolling window.

number of firms included in the analysis is between 1437 and 3889.
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