
Inflation and Welfare in the Laboratory

Janet Hua Jiang (Bank of Canada) Daniela Puzzello (Indiana University) Cathy Zhang (Purdue University)

10th Workshop on Theoretical and Experimental Macroeconomics 25 June 2019

costs and benefits of inflation

- Important to evaluate costs and benefits of inflation
- Policymakers may benefit from studies on welfare implications of monetary policies

- An experimental study on the effects of inflation and monetary policy
 - Based on Lagos and Wright (2005) and Rocheteau and Wright (2005) models of monetary exchange
- Three implementation schemes for inflationary policy
 - Govt spending using seigniorage
 - 2 Lump-sum transfers
 - Opportional transfers (neutral)

・ロト ・得ト ・ヨト ・ヨト

- How different inflationary policies affect output traded, prices, inflation, and welfare relative to laissez-faire benchmark
- Empirical exploration of quantity theory of money
- Implications for monetary policy design, welfare cost of inflation

why a laboratory experiment?

- Monetary policy experiments in the field difficult, especially without prior wind tunnel
- Controlled testbed for effects of monetary policy through different implementation schemes
 - Are theoretical implications of monetary policies supported in the lab?
 - Do policies work as intended?
- Welfare implications of monetary policies difficult to measure and assess in the field
 - How costly is inflation in welfare terms?

Comparison of **laissez-faire** (Constant Money Supply) vs. **inflationary** treatments (Govt Spending, Lump Sum, Proportional)

- Quantities traded and welfare lower, prices higher with Govt Spending and Lump Sum; stronger effects with Govt Spending
 - Higher inflation associated with more detrimental effects
- Quantities traded and welfare not significantly different with Proportional transfers, relative to Constant Money, but prices higher
- Largely consistent with the theory
 - Inflation close to theoretical inflation in stationary equilibrium
 - Govt Spending has strongest impact on output and welfare

イロト 不得 トイヨト イヨト 二日

related literature

Experiments on money as a medium of exchange

- Brown (1996), Duffy and Ochs (1999, 2002), Camera, Noussair, and Tucker (2003), Berentsen, McBride, and Rocheteau (2014)
- Camera and Casari (2014), Duffy and Puzzello (2014)
- Jiang and Zhang (2018), Rietz (2018), Ding and Puzzello (2018)

Experiments on effects of monetary policy and inflation

- Marimon and Sunder (1993, 1994, 1995), Lim, Prescott, and Sunder (1993), Bernasconi and Kirchkamp (2000)
- Deck, McCabe, and Porter (2006)
- Anbarci, Dutu, and Feltovich (2015)
- Duffy and Puzzello (2017)

Inflation and welfare in search models

 Lagos and Wright (2005), Molico (2006), Rocheteau and Wright (2009), Aruoba, Rocheteau, and Waller (2007), Craig and Rocheteau (2008)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

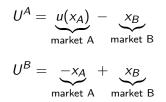
THEORETICAL FRAMEWORK

э

・ロト ・四ト ・ヨト ・ヨト

Experiments based on version of Rocheteau and Wright (2005)

- Microfounded model of money as a medium of exchange
- Two rounds of competitive market trade
- Monetary policy formalized as growing money supply
- Testable predictions on effects of money growth through different implementation schemes


environment

- Finite population of 2N infinitely lived agents
- Each period has two competitive markets, A and B, opening sequentially
- Lack of commitment, no formal enforcement, private trading histories
- Two types of agents (fixed roles)
 - Type A: want to consume Good A produced in market A by Type B
 - Type B: want to consume Good B produced in market B by Type A
- Good A and B both divisible, nonstorable across periods and markets
- Fiat money is divisible and storable, grows at constant gross rate $\gamma \equiv M_{t+1}/M_t$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

environment

Period utilities of type A and B agents:

Opportunity to readjust money balances + linear preferences in market B (gets rid of wealth effects) \rightarrow degenerate distribution of money holdings

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Different schemes to implement inflationary monetary policy (i.e. $\gamma > 1$)

- Government spending: govt sets expenditures financed through seigniorage (γ_H > γ_L > 1)
- 2 Lump-sum transfers: helicopter drop of money to some agents at the beginning of market B ($\gamma_H > 1$)
- **③** Proportional transfers: transfers proportional to token holdings at the beginning of market B ($\gamma_H > 1$)

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

Theoretical predictions

- Policies 1 and 2 yield same stationary equilibrium where inflation constant at $\gamma_H 1$ with quantities and welfare lower than in laissez-faire baseline regime
- Policy 3 has no real effects
- Policy 1 with different money growth rates allows for a more exhaustive exploration of the quantity theory of money

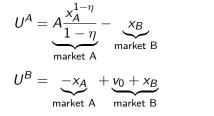
・ロト ・得ト ・ヨト ・ヨト

THE EXPERIMENTS

æ

5 treatments run at Purdue and Indiana University in 2018 and 2019

- Constant money growth (CM)
- Overnment spending 15 (GS15)
- **Government spending 30** (GS30)
- **Ump-sum transfers 30** (LS30)
- **Oreportional transfers 30** (PR30)


- 4 同 6 4 日 6 4 日 6

- Each session consists of several sequences
- Each sequence consists of an indefinite number of periods
 - Sequence continued with probability $\beta = 0.9$
 - Block random termination: subjects get feedback on termination each period only after "block" of first 10 periods (see Frechette Yuksel 2017)
 - Sessions averaged 32.3 total periods (median of 3 sequences)
- Each period consists of market A followed by market B

< ロ > < 同 > < 回 > < 回 > < □ > <

setup

- 2N = 8,10 subjects equally split between
 - Type A: consumers in market A, producers in market B
 - Type B: consumers in market B, producers in market A
- Period utilities:

where A = 2.65, $\eta = 0.378$, $v_0 = 5$ ($v_0 = 6$ in GS15, $v_0 = 8$ in CM and PR30)

• Mapping of production / consumption to points presented to subjects in tables (in written instructions and on computer screen)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- Market game as in Shapley-Shubik (1977) as foundations for competitive equilibrium (see Duffy, Matros, Temzelides (2011), Duffy and Puzzello (2014, 2017))
- In both market A and B
 - Producers submit quantity to produce $(x_A \text{ or } x_B)$
 - Consumers submit bid of tokens for Good A or B (b_A or b_B)
- In each market, price is given by

$$P = \frac{\text{Total Tokens Bid}}{\text{Total Amount Produced}}$$

イロト 不同 ト イヨト イヨト

schedule of token increases

- Type A endowed with 5 tokens each at start of new sequence
- In Constant Money Supply, token supply fixed at 25
- Otherwise, token supply increased by 15% or 30% in market B each period (all schemes publicly known)
 - In GS15 and GS30, "robots" in market B create and use new tokens to buy Good B
 - ▶ In LS30, Type B get lump-sum tokens at the start of each market B
 - ► In PR30, all types get 30% transfer at the start of each market B

	Total	Total Token
Period	Tokens	Increase
1	25.00	7.50
2	32.50	9.75
3	42.25	12.68
4	54.93	16.48
5	71.40	21.42
6	92.82	27.85
7	120.67	36.20
8	156.87	47.06
9	203.93	61.18
10	265.11	79.53
*		

(4回) (日) (日)

sample screenshot

Pitce of good A	You are a CONSUMER in market A, and a PRODUCER in market B.	Table: Your cost of producing xB and benefit of consuming xA measured in points		
		xA or xB	cost producing xB	benefit consuming
		0	0	0
		1	1	4.27
		2	2	6.58
	Tradeoff You Face	3	э	8.46
		4	4	10.12
	In each producer-consumer cycle, you face the following tradeoff.	5	5	11.62
	Production cost in market B: you incur a cost of xB points from producing xB units	6	6	13.01
	of good B.	7	7	14.32
	Consumption benefit in the next market A: if the sequence continues to the next	8	8	15.58
•	market A, then you use your sales revenue of xB*pB tokens in market B to buy and	9	9	16.74
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	consume xB*pB/pA additional units of good A in the next market A.	10	10	17.88
Pailed	Your cost from producing good B and benefit from consuming good A are listed in the	11	11	18.97
	table on the right.	12	12	20.02
Price of good B		13	13	21.04
		14	14	22.04
		15	15	23.00
		16	16	23.94
		17	17	24.86
		18	18	25.76
	We are in market A, and you are a CONSUMER.	19	19	26.64
		20	20	27.50
	Your current token holdings are 450	21	21	28.35
	The amount of tokens you would like to spend on good A	22	22	29.18
		23	23	30.00
	(Please choose a number between 0 and 4.50)	24	24	30.00
	(Up to 2 decimal points are allowed.)	25	25	31.60
1 2 3 4 5 5 7 8 0 10 11 12 13 14 15 16 17 18 10 20		26	26	32.38
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Peted		27	27	33.14

Jiang, Puzzello, Zhang

Inflation and Welfare in the Lab

session summary

- Sessions lasted 2 hours (instructions + quiz + experiment)
- Point totals from all sequences converted to cash at exchange rate 1 point = \$0.15

Treatment	Session	Date	Location	Subjects	Sequence
Constant Money Supply, CM	1	8/3/2018	Purdue	8	9,15
	2	8/24/2018	IU	10	6,8,2,16
	3	8/29/2018	IU	10	13,10,5
	4	9/5/2018	Purdue	10	5,6,4
Government Spending 15, GS15	1	3/27/2019	Purdue	10	9,15
	2	3/27/2019	Purdue	10	6,8,2
	3	3/27/2019	IU	10	13,10
	4	3/27/2019	IU	10	5,6,4,1
Government Spending 30, GS30	1	7/25/2018	Purdue	10	9,15
	2	8/27/2018	IU	10	6,8,2,16
	3	9/19/2018	Purdue	10	13,10
	4	9/4/2018	Purdue	10	5,6,4,1
Lump Sum Transfers 30, LS30	1	9/26/2018	Purdue	10	9,15
	2	9/27/2018	Purdue	10	6,8,2
	3	10/10/2018	Purdue	10	13,10,5
	4	10/23/2018	Purdue	10	5,6,4
Proportional Transfers 30, PR30	1	11/27/2018	Purdue	10	9,15
	2	11/27/2018	Purdue	10	6,8,2
	3	12/7/2018	Purdue	10	13,10
	4	12/7/2018	Purdue	10	5,6,4 >

Treatment	XA	ХB	m _t	p _{b,t}	Inflation	Welfare Ratio
1. CM	10	10	5	0.5	0	0.98
2. Govt Spending 15	6.91	7.95	$5 imes 1.15^{t-1}$	1.15^{t-1}	15%	0.91
3. Govt Spending 30	5	6.5	$5 imes 1.3^{t-1}$	1.3^{t-1}	30%	0.82
4. Lump Sum 30	5	6.5	$5 imes 1.3^{t-1}$	1.3^{t-1}	30%	0.82
5. Proportional 30	10	10	$5 imes 1.3^{t-1}$	1.3^{t-1}	30%	0.98

• First-best output in market A is $x_A^* = 13.2$

 Welfare ratio defined as sum of individual surpluses in market A over first-best surplus

$$\frac{\sum_{i} [u(x_{A,i}) - x_{A,i}]}{N[u(x_{A}^{*}) - x_{A}^{*}]}$$

3

(日) (同) (三) (三)

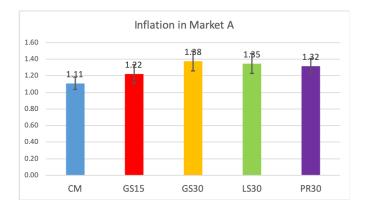
hypotheses

Hypothesis 1. Inflation and prices are higher in GS15, GS30, LS30, and PR30 than in CM.

Hypothesis 2. Output and welfare in market A are lower in GS30, GS15 and LS30 relative to CM and PR30.

Hypothesis 3. Output and welfare in market A are the same across GS30 and LS30.

Hypothesis 4. Output and welfare in market A are the same across CM and PR30.

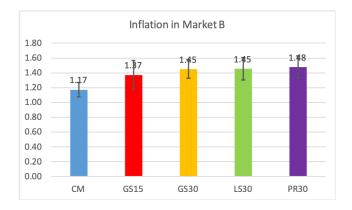

Hypothesis 5. Changes in prices correspond to changes in the money supply.

FINDINGS

æ

market A inflation

hypothesis 1: inflation


25 / 38

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

market B inflation

hypothesis 1: inflation

26 / 38

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hypothesis 1: inflation

Partial support for hypothesis 1

• Market A inflation magnitudes in line with theoretical predictions

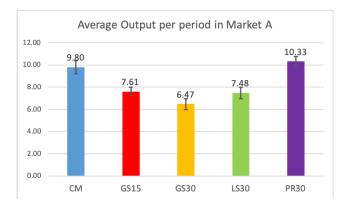
	(1)	(2)	(3)	(4)	(5)			
VARIABLES	CM	GS15	GS30	LS30	PR30			
Period	0.0371***	0.132***	0.241***	0.207***	0.225***			
	(0.00396)	(0.00283)	(0.00314)	(0.00476)	(0.00315)			
Constant	-1.375***	-0.923***	-0.822***	-1.070***	-1.298***			
	(0.0272)	(0.0209)	(0.0233)	(0.0329)	(0.0190)			
Observations	1,290	1,290	1,340	1,180	1,080			
R-squared	0.072	0.628	0.821	0.646	0.817			
Robust standard errors in parentheses								
	***	* p<0.01, ** p<	0.05, * p<0.1					

3

イロト イポト イヨト イヨト

hypothesis 1: inflation

Partial support for hypothesis 1

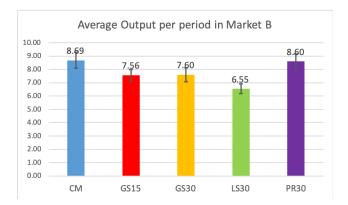

• Market B inflation magnitudes in line with theoretical predictions

	(1)	(2)	(3)	(4)	(5)			
VARIABLES	СM	GS15	GS30	LS30	PR30			
Period	0.0502***	0.156***	0.252***	0.242***	0.276***			
	(0.00466)	(0.00343)	(0.00320)	(0.00403)	(0.00415)			
Constant	-1.341***	-0.859***	-0.752***	-0.793***	-1.176***			
	(0.0277)	(0.0211)	(0.0253)	(0.0266)	(0.0274)			
Observations	1,290	1,290	1,340	1,180	1,080			
R-squared	0.096	0.608	0.823	0.763	0.787			
Robust standard errors in parentheses								
*** p<0.01, ** p<0.05, * p<0.1								

э

イロト 不同 ト イヨト イヨト

market A output hypotheses 2-4: output and welfare



э

-∢ ≣ →

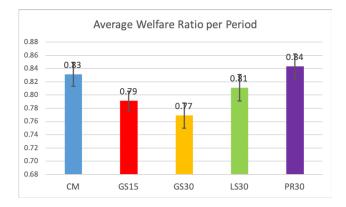
< A >

market B output hypotheses 2-4: output and welfare

э

< ∃⇒

< 6 >


welfare

Treatment	Average Welfare Ratio					
rreatment	1st Half	2nd Half	All			
1. CM	0.91	0.90	0.91			
2. CM	0.79	0.71	0.75			
3. CM	0.91	0.88	0.89			
4. CM	0.86	0.85	0.85			
Avg. 1-4	0.87	0.83	0.85			
1. GS15	0.82	0.76	0.79			
2. GS15	0.90	0.83	0.87			
3. GS15	0.79	0.73	0.76			
4. GS15	0.80	0.75	0.77			
Avg. 1-4	0.83	0.77	0.80			
1. GS30	0.85	0.80	0.82			
2. GS30	0.83	0.80	0.82			
3. GS30	0.83	0.77	0.80			
4. GS30	0.70	0.65	0.68			
Avg. 1-4	0.80	0.76	0.78			
1. LS30	0.93	0.79	0.86			
2. LS30	0.69	0.68	0.68			
3. LS30	0.86	0.86	0.86			
4. LS30	0.90	0.80	0.85			
Avg. 1-4	0.84	0.78	0.81			
1. PR30	0.92	0.84	0.88			
2. PR30	0.86	0.80	0.83			
3. PR30	0.82	0.74	0.78			
4. PR30	0.91	0.85	0.88			
Avg. 1-4	0.88	0.81	0.84			

Jiang, Puzzello, Zhang

31 / 38

welfare hypotheses 2-4: output and welfare

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

hypotheses 2-4: output and welfare

Partial support for hypotheses 2-4

• Market A output significantly lower in Govt Spending and Lump-Sum treatments than in Constant Money. Market A output not significantly different between Proportional and Constant Money.

	(1)	(2)
VARIABLES	Market A	Average Market A
	output	Output
GS15	-2.080*	-2.193***
	(1.225)	(0.358)
GS30	-3.213***	-3.326***
	(1.222)	(0.389)
LS30	-2.206*	-2.319***
	(1.203)	(0.397)
PR30	0.642	0.529
	(1.512)	(0.375)
Constant	9.687***	9.800***
	(0.817)	(0.303)
Observations	3,090	623
R-squared	0.051	0.218
bust standard errors	in parentheses, c	lustered at subject level in
bust standard errors	0.051	lustered at subject le

*** p<0.01, ** p<0.05, * p<0.1

- 4 同 6 4 日 6 4 日 6

hypotheses 2-4: output and welfare

Partial support for hypotheses 2-4

 Welfare lower in Govt Spending than in Constant Money. Welfare in Lump-sum not significantly lower than in Constant Money. Welfare in lump-sum not different than in Govt Spending. Welfare in Proportional not significantly different than in Constant Money.

	(1)	(2)
VARIABLES	Welfare	Welfare Ratio
GS15	-0.322***	-0.0402***
	(0.0944)	(0.0118)
GS30	-0.500***	-0.0625***
	(0.106)	(0.0132)
LS30	-0.162	-0.0203
	(0.109)	(0.0136)
PR30	0.0962	0.0120
	(0.105)	(0.0131)
Constant	6.656***	0.831***
	(0.0737)	(0.00921)
Observations	623	623
R-squared	0.066	0.066
Rob	ust standard errors in paren	theses
*	** p<0.01, ** p<0.05, * p<	<0.1

イロト 不同 ト イヨト イヨト

An experimental study on the effects of monetary policy through different implementation schemes for inflation. Insights from the experiments

- Inflation in experimental economies close to theoretical predictions
- Money growth via LS and GS leads to lower output and welfare, especially in GS treatment
- Money growth via PR is neutral
- Results largely consistent with theory, but welfare loss from inflation lower than predicted

< ロ > < 同 > < 回 > < 回 > < □ > <

- Results different from Duffy and Puzzello (2017) where inflation *increases* output
 - But many different design choices: trading protocol, probability of continuation, fixed roles, timing of lump-sum implementation, block...
- To do: more comparison across implementation schemes, e.g., dispersion of money holdings, consumption and production

< ロ > < 同 > < 回 > < 回 > .

future work

Effects of monetary policy on currency competition

- Framework with two currencies where monetary policy affects rate of return on each currency (as in Zhang 2014)
- Currency substitution, dollarization in response to inflation
- Other implementation schemes for monetary policy
 - Open market operations (as in Rocheteau, Wright, Zhang 2018)
 - Inflation targeting
- 8 Role of different trading institutions
 - Competitive pricing, bargaining, directed search, market participation (as in Rocheteau Wright 2005)
 - Optimal trading mechanism (as in Hu, Kennan, Wallace 2007, Bajaj, Hu, Rocheteau, Silva 2017)

イロト 不得 とうせい かほとう ほ

fraction tokens spent

Treatment		ige Spend F	tatio Ma	rket A		ige Spend F	tatio Ma	rket B
rreatment	1 st Half	2 nd Half	All	St. Dev.	1 st Half	2 nd Half	All	St. Dev.
1. Baseline	0.72	0.72	0.72	0.094	0.91	0.98	0.94	0.08
2. Baseline	0.86	0.94	0.90	0.102	0.76	0.75	0.75	0.1
3. Baseline	0.70	0.73	0.72	0.068	0.61	0.69	0.65	0.11
4. Baseline	0.52	0.66	0.59	0.131	0.73	0.75	0.74	0.11
Avg. 1-4	0.70	0.78	0.74	0.10	0.74	0.77	0.76	0.10
Eq. Predictions	-	-	1	-	-	-	1	-
1. Govt Spending	0.9	0.79	0.84	0.099	0.71	0.78	0.75	0.13
2. Govt Spending	0.86	0.83	0.84	0.070	0.85	0.82	0.84	0.1
3. Govt Spending	0.77	0.79	0.78	0.043	0.56	0.54	0.55	0.08
4. Govt Spending	0.78	0.77	0.78	0.063	0.66	0.61	0.63	0.07
Avg. 1-4	0.83	0.80	0.81	0.068	0.71	0.70	0.71	0.089
Eq. Predictions	-	-	1	-	-	-	1	-
1. Lump Sum	0.57	0.61	0.59	0.090	0.60	0.57	0.58	0.18
2. Lump Sum	0.6	0.54	0.57	0.090	0.71	0.69	0.7	0.08
3. Lump Sum	0.53	0.54	0.54	0.089	0.82	0.83	0.83	0.074
4. Lump Sum	0.85	0.86	0.85	0.067	0.77	0.72	0.75	0.108
Avg. 1-4	0.64	0.64	0.64	0.084	0.74	0.71	0.73	0.102
Eq. Predictions	-	-	1	-	-	-	1	-
1. Proportional	0.76	0.76	0.76	0.067	0.68	0.53	0.61	0.142
2. Proportional	0.82	0.85	0.84	0.106	0.75	0.70	0.72	0.087
3. Proportional	0.75	0.71	0.73	0.087	0.81	0.80	0.81	0.075
4. Proportional	0.70	0.73	0.72	0.065	0.76	0.84	0.80	0.097
Avg. 1-4	0.76	0.77	0.77	0.082	0.75	0.73	0.74	0.099
Eq. Predictions	-	-	1	-	-	-	1	-

Table 4: Average Spend Ratio

æ

<ロ> <同> <同> < 同> < 同>