ECONOMIC AGENTS AS IMPERFECT PROBLEM SOLVERS

Cosmin Ilut Rosen Valchev

Duke & NBER Boston College

10th International Workshop on Theoretical and Experimental Macroeconomics

June 26, 2019

Motivation

- Reasoning is costly requires thought and introspection
 - eg. solutions to math problems not immediately obvious, even though objective parameters are well defined and known
- Evidence: quality of decision-making
 - increases in effort/time spent deliberating (Hohnich et. al. (2017))
 - decreases in task complexity (Deck and Jahedi (2015))
 - increases in natural ability (D'Acunto et al. (2019a, 2019b)
- This paper: a tractable model of costly reasoning
 - Mistakes even when objective state is perfectly observed
 - Agnostic about particular deliberation process
 - $\star\,$ Capture basic trade-off of reasoning effort vs accuracy
 - \star Information accumulation and spillover to similar situations

Our paper

• Quadratic tracking problem \Rightarrow effective action:

$$\min_{\hat{c}_t} V_{cc} \mathbb{E}_t (\hat{c}_t - c^*(y_t))^2$$

- perfectly observed objective state variable $y_t \in \mathbb{R}$
- unknown optimal policy function $c^*(y)$
- Have access to costly signals about optimal policy function $c^*(.)$
 - ▶ signal on $c^*(y_t)$ at y_t is partially informative about $c^*(y)$ at other y
 - so uncertainty over best action is state and history dependent
- History and state dependent reasoning choice and effective action \hat{c}_t
 - reason less at usual state realizations (inertial behavior)
 - but more at unusual state realizations (salience & non-linearity of \hat{c}_t)
- Heterogeneity, even when controlling for observables
 - different persistent biases in inertial behavior due to histories
 - stochastic choice conditional on past

Workhorse Laboratory: Consumption-Savings problem

- Endogenous state variable: emphasizes important interaction between history dependent reasoning choice and state evolution
- Feedback between beliefs, reasoning and asset (i.e. state) evolution
 - Agents tend to settle in "learning traps" \Rightarrow inertia, endogenous habits
 - High local MPCs across the wealth distribution
 - Persistent inequality, fat-tailed wealth distribution
- Heterogeneity matters
 - Aggregate effects errors do not wash-out (selection & systematic over-reaction)
 - \star state-dependent effect, no unconditional bias
 - Amplification volatility and persistence due to aggregation effects
- Constrained optimal behavior
 - \Rightarrow responds to policy

Literature

- Imperfect actions as outcomes of procedural rationality
 - general principle: Simon (1976)
 - ▶ decision theory: Arragones et al. (2005), Ergin & Sarver (2010)
- 2 Limited attention resources
 - 'Rational inattention': Sims (1998, 2003), Matejka (2015)
 - Information choice: Woodford (2003), Reis (2006), Gabaix (2014)
- Bayesian statistics
 - ► Gaussian processes in machine learning: Rasmussen & Williams (2006)
- Evidence for reasoning as a friction in a consumption-savings problem
 - ▶ field data: cognitive ability (D'Acunto et al., 2019)
 - experimental: inertia and persistent mistakes (Khaw & Zorilla, 2018)
- Ochallenging empirical properties of consumption responses:
 - ▶ Persistence: experience effects (Malmendier & Shen, 2018)
 - High MPC out of temporary shocks: Parker (2017), Olaffson & Pagel (2018), Ganong & Noel (2018)
 - ► Fat-tailed wealth distribution: De Nardi & Fella (2017)

Outline

- General learning framework
- Consumption-Savings Application
- 3 period example analytics
- Ergodic behavior numerical solutions

Basic Framework

• Quadratic tracking problem \Rightarrow optimal action c_t :

$$c_t = \mathbb{E}(c^*(y_t))$$

- $c^*(y)$ function is unknown Bayesian non-parametric learning
- Prior is a Gaussian Process distribution: for any $\mathbf{y} = [y_1, ..., y_N]'$

$$c^{*}(\mathbf{y}) \sim N\left(\left[\begin{array}{c}c_{0}(y_{1})\\\vdots\\c_{0}(y_{N})\end{array}\right], \left[\begin{array}{c}\sigma_{0}(y_{1},y_{1})&\ldots&\sigma_{0}(y_{1},y_{N})\\\vdots&\ddots&\vdots\\\sigma_{0}(y_{N},y_{1})&\ldots&\sigma_{0}(y_{N},y_{N})\end{array}\right]\right)$$

e.g. prior is centered around the truth, state-by-state:

$$c_0(y)=c^*(y)$$

covariance function: decreasing correlation with distance

$$\sigma_0(y,y') = \sigma_c^2 \exp(-\psi(y-y')^2)$$

Reasoning

• Deliberating about best course of action: obtain signals

$$\eta(y_t) = c^*(y_t) + \varepsilon_t, \ \varepsilon_t \sim N(0, \sigma_{\eta, t}^2)$$

- no objective info as observed by econometrician (Arragones et al. 2005)
- Recursive conditional expectation for best action at state y

$$\hat{c}_t(y) = \hat{c}_{t-1}(y) + rac{\sigma_{t-1}(y, y_t)}{\sigma_{t-1}(y, y_t) + \sigma_{\eta, t}^2} \left[\eta_t - \hat{c}_{t-1}(y) \right]$$

Optimal deliberation

• Myopic trade off

$$\min_{\substack{\sigma_{\eta,t}^2}} V_{cc} \sigma_t^2(y_t) + \kappa \ln \left[\frac{\hat{\sigma}_{t-1}^2(y_t)}{\hat{\sigma}_t^2(y_t)} \right]$$

s.t. $\sigma_t^2(y_t) \le \sigma_{t-1}^2(y_t)$

• Optimal solution: choose $\sigma^2_{\eta,t}$ so posterior variance

$$\sigma_t^{*2}(y_t) = \min\left\{\frac{\kappa}{V_{cc}}, \sigma_{t-1}^2(y_t)\right\}, \forall y_t$$

Resulting signal-to-noise ratio is state and history dependent

$$\alpha_t^*(\mathbf{y}_t; \boldsymbol{\eta}_t, \boldsymbol{\eta}^{t-1}) = \max\left\{1 - \frac{\kappa/V_{cc}}{\sigma_{t-1}^2(\mathbf{y}_t)}, 0\right\}$$

Leading to the effective action

$$\hat{c}_t(y_t) = \hat{c}_{t-1}(y_t) + \alpha_t^*(y_t; \eta_t, \eta^{t-1})(\eta_t - \hat{c}_{t-1}(y_t))$$

Consumption Savings Application

- State dependent reasoning interacts with *endogenous* state evolution
- Workhorse laboratory: standard consumption savings problem
- Assuming quadratic utility u(.), $\beta = \frac{1}{1+r}$ and iid income w_t

$$\Rightarrow c^*(w_t, a_t) = \frac{r}{1+r} \underbrace{(a_t + w_t)}_{y_t}$$

- Ex-ante identical continuum of agents with $a_0^i = 0$, $w_{it} = w_t$
 - Only heterogeneity in idiosyncratic reasoning errors
 - Ex-ante prior equals truth: $c_0(y) = c^*(y)$

Evolution of Beliefs

• Time 1 optimal reasoning choice:

$$\hat{\sigma}_{i1}^2(y_1) = \frac{\kappa}{V_{cc}} \Rightarrow \sigma_{\eta^i,1}^2 = \bar{\sigma}_{\eta,1}^2 = \frac{\kappa \sigma_c^2}{W_{cc} \sigma_c^2 - \kappa}$$

• Heterogeneous reasoning signals due to idiosyncratic error:

$$\eta_{i,1} = \underbrace{\frac{r}{1+r}(a_0 + w_1)}_{=c^*(y_1)} + \varepsilon_{i1} , \ \varepsilon_{i1} \sim N(0, \sigma_{\eta^i, 1}^2)$$

• Time 1 consumption:

$$\hat{c}_{i1} = \frac{r}{1+r} y_1 + \alpha_1 \varepsilon_{i1}$$

t = 1 Conditional Beliefs

Asset Evolution

• Since reasoning errors are iid, no aggregate effect at time 1:

$$ar{c}_1 = \int \hat{c}_{i1}(y_1) di = c^*(y_1)$$

• But heterogeneity in time 1 action, leads to time 2 wealth dispersion:

$$y_{i2} = y_1 + w_2 - (1+r)\alpha_1\varepsilon_{i1}$$

• \Rightarrow agents face different uncertainty:

$$\hat{\sigma}_{i1}^2(y_{i2}) = \sigma_c^2 (1 - \alpha_1 \exp(-2\psi(y_{i2} - y_1)^2))$$

• \Rightarrow different choice of reasoning effort in time 2:

$$\sigma_{\eta^{i},2}^{2} = \frac{\kappa \hat{\sigma}_{i1}^{2}(y_{i2})}{W_{cc}\hat{\sigma}_{i1}^{2}(y_{i2}) - \kappa} \Rightarrow \alpha_{i2} = 1 - \frac{\kappa/W_{cc}}{\hat{\sigma}_{i1}^{2}(y_{i2})}$$

t = 2 Uncertainty

t = 2 Uncertainty

t = 2 Conditional Belief

Conditional Belief

$$\hat{c}_{i2}(y_{i2}) = (1 - \alpha_{i2})\hat{c}_{i1}(y_{i2}) + \alpha_{i2}(\frac{r}{1 + r}y_{i2} + \varepsilon_{i2})$$

- Different reasoning efforts \Rightarrow different $\sigma_{n^i}^2$
- But also different weights put on previous signals η_{i1}
- Aggregate effect of reasoning errors:

$$\bar{c}_2 = c^* \left(\int y_{i2} di \right) + \underbrace{\int (1 - \alpha_{i2}) \alpha_1 \exp(-\psi(w_2 - (1 + r)\alpha_1 \varepsilon_{i1})^2) \varepsilon_{i1} di}_{>0 \iff w_2 > 0} + \underbrace{\int \alpha_{i2} \varepsilon_{i2} di}_{=0}$$

t = 2 Conditional Beliefs

Ilut & Valchev

10 WTEM, Ottawa 17 / 26

t = 2 Conditional Beliefs

Stochastic Choice

$$\hat{c}_{i2}(y_{i2}) = (1 - \alpha_{i2})\hat{c}_{i2}(y_{i2}) + \alpha_{i2}(\frac{r}{1 + r}y_{i2} + \varepsilon_{i2})$$

- Two key sources of choice heterogeneity
 - ► Current period reasoning errors ⇒ stochastic choice
 - ★ iid hence wash out in aggregate
 - ► History of reasoning choices and errors ⇒ systematic behavioral differences
 - ★ experience effects, habits
 - * Aggregate effects due to selection in learning/weight on previous errors
- Additionally, state variables would also differ endogenously leading to different actions even under optimality

Asset Evolution: t = 3 Uncertainty

Evolution of Assets and Beliefs

Learning Traps

- Agents eventually settle in learning trap situations where no more reasoning occurs
- Learning stops before converging to truth
 - finite number of signals + non-random incidence
 - Initial reasoning errors do not average out
- Wealth steady state is defined by upward crossing of perceived optimal and true optimal
 - This creates a stable root in dynamics of wealth
 - Since the state (i.e. wealth) does not move around much, agent perceives no more need to keep actively learning
- Implications
 - Persistent inequality with fat-tailed wealth distribution
 - e High local MPCs
 - \Rightarrow over-reaction is the norm
 - Endogenous habit past action dependence

Ergodic Mean Policy Function

Ergodic Moments

Moments Mea	n Std	Kurt	10 th	50 th	90 th
Consumption (C_t) 1.01Wealth (Y_t) 1MPC $(\frac{\partial C_t}{\partial Y_t})$ 0.08Reasoning Effort $(\mathbb{I}(\alpha > 0))$ 0.23	L 0.09	5.10	0.86	-0.02	1.14
	2.27	5.75	-1.3	-0.29	3
	2 0.065	7.07	0.016	0.082	0.15
	3 0.39	4.75	0	0.05	0.85

• In full information economy MPC = 0.04

Impulse Response

Conclusion

- State and history dependent reasoning choices and actions
 - individual level: inertia, over-reaction, stochastic choice, biases
 - aggregate time series: shock amplification
- Study feedback between reasoning choice and endogenous states
 - reasoning signal determines state evolution (eg. consumption-savings)
 - observed state affects reasoning choice
 - future work: general equilibrium effects
- Policy implications
 - procedural rationality: patterns of errors respond to environment
 - state-dependent policy effects
- Experimental work
 - testable implications for state and history dependent reasoning errors