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Abstract 

How well can a cryptocurrency serve as a means of payment? Cryptocurrencies need to 
overcome double spending by using costly mining and by delaying settlement. We 
formalize this insight through an incentive constraint that rules out double spending and 
pins down the welfare costs of a cryptocurrency. We find that it is optimal to use 
seignorage rather than transaction fees to finance costly mining. We estimate that Bitcoin 
generates a large welfare loss that is about 500 times as large as a monetary economy 
with 2% inflation. This welfare loss can be lowered in an optimal design to the equivalent 
of a monetary economy with moderate inflation of about 45%. 
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1 Introduction

How well can a cryptocurrency serve as a means of payment? Since the creation of Bitcoin in

2009, many critics have denounced cryptocurrencies as fraud or outright bubbles. Others have

argued that such currencies are only there to support payments for illegal activities or simply

waste resources. Advocates point out, however, that – based on cryptographic principles to ensure

security – these new currencies can support payments without the need to designate a third party

that controls the currency or payment instrument, possibly for its own profit.1

We take up this discussion and develop a general equilibrium model of a cryptocurrency that uses

a blockchain as a record-keeping device for payments. Many existing models of cryptocurrencies

are built by computer scientists who focus mainly on the feasibility and security of these systems.

Crucial issues, such as the incentives of participants to cheat, and the endogenous nature of some

key variables, such as the real value of a cryptocurrency in exchange, have been largely ignored.

Such considerations, however, are pivotal for understanding the optimal design and, hence, the

economic value of cryptocurrency as a means of payment.

Our focus is thus primarily on understanding how the design of a cryptocurrency influences the

interactions among participants and their incentives to cheat. These incentives arise from a so-called

double-spending problem. Cryptocurrencies are based on digital records that can be duplicated

easily and costlessly and, thus, that can potentially be used multiple times in transactions.

Our first contribution is to formalize this double-spending problem and show how it is addressed

by (i) a resource-intensive competition for updating the records of transactions – a process com-

monly referred to as mining; and (ii) by introducing confirmation lags for settling transactions.2

Double spending with a cryptocurrency requires one to change the record of transactions after the

transactions have been recorded and confirmed in the blockchain. Since a blockchain builds records

based on previous records, to revoke past transactions, one must create an alternative history of

transaction records in order to double spend successfully. More intensive competition to update

the chain and longer confirmation lags make it more costly and hence more difficult to create an

1Some central banks and financial institutions have also started to explore the adoption of cryptocurrency and

blockchain technology for retail and large-value payments. Examples that use the technology are the People’s Bank of

China for a nationwide digital currency, the Bank of Canada and the Monetary Authority of Singapore for interbank

payments, Ripple and JP Morgan for facilitating cross-border payments.
2A more detailed description of the double-spending problem can be found in the online appendix.
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alternative history.3

These insights lead us to derive a constraint – called the “no-double-spending constraint” – that

guarantees that users of a cryptocurrency do not have an incentive to double spend. The con-

straint formalizes the fact that larger payments require more intensive competition and/or longer

confirmation lags in order to reduce the net benefits from recouping a payment through double

spending. But the constraint also implies that any cryptocurrency will face a trade-off between

how fast transactions settle and a guarantee (or “finality”) for their settlement. Consequently,

unlike cash, cryptocurrencies cannot achieve immediate and final settlement of transactions.

Our second contribution is to look into the optimal design of cryptocurrencies. A key parameter is

the reward to finance mining activities and, hence, create competition for updating the blockchain.

There are two ways to generate these rewards: seignorage from issuing new cryptocurrency, and

transaction fees. We show that it is always better to use seignorage rather than transaction fees.

Both inflation and fees are distortionary taxes. Inflation, however, has two advantages. First,

when double spending, one can reclaim the payment and the fee. Hence, using inflation reduces

the incentives to double spend and relaxes the double-spending constraint. Second, relative to

inflation, transaction fees have a lower “tax base,” as one only taxes cryptocurrency used currently

in transactions. This implies that one has to resort to a higher tax rate, which forces users to carry

more cryptocurrency and increases the liquidity costs of holding cryptocurrency. Both effects give

inflation the advantage to be less distortionary when raising the same rewards for mining.4

Our third contribution is to quantify the costs of using a cryptocurrency as a payment instrument.

We embed our model of a cryptocurrency into the general equilibrium model of Lagos and Wright

(2005), where a medium of exchange is required to support decentralized trade.5 Calibrating

our model to Bitcoin data, we assess the welfare costs that arise endogenously from supporting

transactions in Bitcoin without the threat from double spending.

3In reality, double spending is a prime concern for cryptocurrencies. In 2018, a number of smaller cryptocurrencies

were subject to double-spending attacks due to the relatively low mining rewards offered. In response to these attacks,

users increased the required number of confirmations to settle transactions (see, for example, goo.gl/H2GeJr).
4There can be other reasons for imposing some transaction fees. For example, transaction fees rule out spamming

as there is a (small) cost to sending a payment. Fees can also be used to sort transactions according to their

urgency. Notwithstanding, our result is still valid, as such considerations would imply that the optimal design of a

cryptocurrency should rely on transaction fees as little as possible.
5Koeppl et al. (2008; 2012) have extended this framework to study payment systems with periodic settlement. In

the online appendix, we use their approach to formally define a blockchain as a record-keeping device for payments.
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The findings are striking. Using the growth rate of 25 bitcoins, for every block and average trans-

action fees in 2015, we find that Bitcoin generates a large welfare loss that is about 500 times as

large as in a monetary economy with 2% inflation.6 The reason is that, in its current form, Bitcoin

spends too many resources to rule out double spending. Reducing the growth rate to 0, but relying

on sufficiently large transaction fees – like in the long-run design of Bitcoin – will reduce these costs

significantly. Still, the optimal design of Bitcoin implies relatively large welfare losses. Compared

to the first-best allocation, an optimally designed Bitcoin protocol would lead to a loss of about

0.19% of the consumption in the first-best allocation. This is equivalent to the welfare loss that

would be generated in a monetary system with a moderate inflation rate of about 45%.

The economic literature on cryptocurrencies is just emerging.7 We provide the first analysis that

captures the interplay of three crucial elements of a cryptocurrency: its security, its value and its

mining ecosystem. As shown in Figure 1, sufficient mining is required for ensuring the security of

the blockchain, safeguarding it against double-spending attacks. Moreover, only when users trust

the security of the system will the cryptocurrency be widely accepted and traded at a high value.

Finally, the value of the currency supports a reward scheme that incentivizes miners so that they

engage in sufficient mining.

The existing literature also evolves around these three basic components but does not connect them

in a unified framework. A large amount of research has focused on understanding the valuation of

cryptocurrencies. Schilling and Uhlig (2018) and Biais et al. (2018) use a Euler equation approach

to capture the price dynamics in models where Bitcoin is being used for both transactions and

speculation. Choi and Rocheteau (2019) use a model of mining choice to study the dynamics

and indeterminancy of equilibrium prices of a cryptocurrency. Cong et al. (2018) study the price

dynamics of cryptocurrencies in a model with endogenous user adoption. In our model, the value of

a cryptocurrency arises from its use as a means of payment that enables decentralized exchange.8

A second line of research investigates how the incentives of miners influence the reliability of the

6We found consistent results when using more recent data after Bitcoin reward was halved to 12.5 bitcoins (BTC).
7There is some earlier work on related topics such as digital money in the form of smart cards (Berentsen (1998)),

digital currencies on platforms such as Facebook Credits (Gans and Halaburda (2013)) or general e-money technologies

such as PayPal and Octopus Card (Chiu and Wong (2015)). See also Camera (2017), who discusses the challenges of

issuing and adopting electronic alternatives to cash.
8See also Fernández-Villaverde and Sanches (2016), who study cryptocurrencies as privately issued fiat currencies

and analyze – in the tradition of the literature on the free banking era – whether competition among different

currencies can achieve price stability and efficiency of exchange.
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Figure 1: The Interplay of Mining, Security and Valuation in a Cryptocurrency

blockchain. Biais et al. (2017) model the proof-of-work protocol as a stochastic game and analyze

the incentives of miners. Eyal and Sirer (2018) assess the incentives for selfish mining under the

Bitcoin protocol. Saleh (2018) examines an alternative protocol, proof-of-stake, and establishes

conditions under which this protocol can generate consensus on the state of a blockchain. We focus

instead on the incentives of traders to double spend when competing against honest miners.

Finally, some work tries to understand the relationship between mining and fees. Huberman et al.

(2017) and Easley et al. (2019) both study the willingness of users in Bitcoin to post fees that

support costly mining. The key channel here is that Bitcoin offers limited throughput that makes

fast settlement a scarce resource. We look at a similar channel when endogenizing transaction fees

to discuss our main results.

Only very recently, some other papers have also started to look into the design of a cryptocurrency.

The closest work to ours is Pagnotta (2018), who presents an equilibrium analysis to study the equi-

librium prices, mining and usage of Bitcoin. He concentrates, however, on the stability properties

of cryptocurrency equilibria against network attacks instead of the double-spending problem. Auer

(2019) also recognizes the fundamental difference between inflation and fees to generate revenue,

4



but mainly questions the ability to generate sufficient fees in the long run to offer sufficient rewards

for mining in Bitcoin.9

2 A Model of the Double-Spending Problem

As pointed out in the previous section, due to its digital nature, a cryptocurrency system is subject

to the double-spending problem. This section develops a partial equilibrium model to study the

incentives to double spend in a single period, taking transactions as given. Our model captures

three main features: first, a consensus protocol based on proof-of-work (PoW), according to which

miners compete to update a blockchain; second, a reward scheme that gives miners incentives to

compete for updating the blockchain; and third, settlement lags such that N validations in the

blockchain are required before fulfilling any obligations. We will show that these features make

revoking a payment (aka double spending) difficult.

In the next section, we will incorporate this basic set-up into a general equilibrium monetary model

to endogenize both transactions in cryptocurrency and mining rewards financed by transaction fees

and seignorage. Throughout the main part of the paper, we make two facilitating assumptions.

First, we assume that the blockchain does not have any capacity constraints. In other words,

there is no congestion and all transactions within a single period can be included in a single block.

Second, we approximate the attempt to double spend by a sequence of exponential races where one

needs to win all contests sequentially in order to double spend successfully.

2.1 Basic Set-up

We begin our analysis by looking at a single transaction period. As shown in Figure 2, there are

N̄ + 1 subperiods within the single period. In subperiod 0, a buyer meets a seller to negotiate a

trade. All other subperiods 1, . . . , N̄ serve as periods for confirming and settling trades that take

place in subperiod 0.

The buyer carries a real balance of cryptocurrency equal to z that can be used to buy an amount of

9A related area of research is on central banks using digital currency. For example, Agarwal and Kimball (2015)

advocate that the adoption of digital currencies can facilitate the implementation of a negative interest rate policy,

while Rogoff (2016) suggests that phasing out paper currency can undercut undesirable tax evasion and criminal

activities. For a general overview, see Bordo and Levin (2017).
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n = 0 n = 1 n = 2 ... n = N̄

buyer sends d

seller

n = N

double
buyer

spends
delivers xnegotiate (x, d,N)

...

Figure 2: Timeline for a Single Transaction Period

goods x from a seller. Upon being matched, the buyer and the seller bargain to determine the terms

of trade (x, d,N), which specify that the buyer pays the seller d ≤ z units of real balances and that

the seller commits to deliver x units of goods after a number of successive payment confirmations

N ∈ {0, . . . , N̄} in the blockchain.10 We call N the confirmation lag of the transaction. For now,

the terms of trade are taken as given but will be determined endogenously in the next section.

The seller produces the good at unit costs, while the buyer’s preference for consuming an amount

x with confirmation lag N are given by

δNu(x), (1)

where δ ∈ (0, 1) is the discount factor between two subperiods and u is a continuous, increasing

and strictly concave function. Hence, discounting across the whole transaction period is given by11

β = δN̄+1. (2)

Finally, both buyers and sellers value real balances linearly and discount all payoffs that arise after

the single transaction period at β.

2.2 Mining

There are M miners who compete to update the blockchain with one block for each subperiod

n = 0, ..., N̄ . Since there is no capacity constraint, the first block contains all transactions from the

subperiod, thereby validating them. All other blocks are empty but verify the update of the first

block.

For each subperiod, miners perform exactly one costly computational task with a random success

10We consider the case in which a seller can commit to deliver the good. If this were not the case, only spot trades

could be conducted, which – as we show later – will always be subject to double spending.
11There are two ways to interpret the discount factor δ: (i) buyers prefer earlier consumption or (ii) a buyer’s

preference can change over time so that a seller’s goods will no longer generate utility with probability 1 − δ.
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rate by investing computing power, q, measured in real balances of cryptocurrency. This task is

called the proof-of-work. We assume that miners also value real balances linearly.

As motivated by the Bitcoin protocol, if the computational power of miner i in a subperiod is q(i),

then the probability that a particular miner i will win the mining game is given by

ρ(i) =
q(i)

∑M
m=1 q(m)

. (3)

In other words, the probability of winning is proportional to the fraction of computational power

owned. By winning the competition in any subperiod, a miner can update the blockchain (i.e.,

append the nth block to the blockchain in the subperiod) and receives a reward R in real balances.

We assume that miners receive and consume this reward after the period, discounted by the factor

β.

Note that the mining games are independent across subperiods. Hence, taking as given the choice

by all miners m 6= i, a miner i solves in any subperiod

max
q(i)

ρiβR− q(i), (4)

with the first-order condition given by
∑M

m=1 q(m)− q∗(i)
(∑

i 6=j q(m) + q∗(i)
)2βR = 1. (5)

Imposing q(m) = Q for all m, we obtain

Q =
M − 1

M2
βR (6)

as the Nash equilibrium of the mining game. Consequently, the total computing cost of mining in

any subperiod is

MQ =
M − 1

M
βR. (7)

The expected profit of a miner in equilibrium across the single transaction period is thus given by

Πm = (N̄ + 1)

[
Q

∑M
m=1Q

βR−Q

]
=
N̄ + 1

M2
βR. (8)

To capture the fact that mining tends to be competitive and open to new entrants, we assume that

M →∞ for the remainder of the paper.12

12In reality, mining tends to be organized around mining pools where individual miners pool their resources to

compete against other miners (see Cong, He and Li (2019) for an analysis of strategic competition between a finite

number of mining pools). Still, mining appears to be competitive, as currently 10 mining pools comprise about 95% of

computational power (see https://www.blockchain.com/en/pools). Miners can also shift their computational power

between mining different cryptocurrencies, ensuring that there is free entry.
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Lemma 1. As M → ∞, the expected value of miners is zero, and the aggregate computing power

of miners dissipates all rewards from mining

MQ = βR.

2.3 Secret Mining

To complete a transaction, the buyer sends instructions to miners to update the blockchain with

his payment to the seller. Seeing such an instruction, however, is not enough for the seller to be

sure to receive the payment. Why? The buyer can attempt to mine a block himself in which the

payment is not recorded. A seller, however, can protect himself from not receiving the payment

by waiting to deliver the goods until the payment has been incorporated into the blockchain. A

simple confirmation of the payment in the blockchain, however, may still not be enough. A buyer

can secretly mine a different blockchain, which he releases only some periods after the seller has

delivered the goods, to replace the original blockchain. We call such mining secret mining.

When such secret mining succeeds, the buyer keeps his original balances and the goods, while the

seller will be left empty-handed – in other words, the buyer double spends the cryptocurrency.13 In

response, the seller can choose to postpone the delivery of the goods and wait for N confirmations.

This confirmation lag can potentially deter double spending by the buyer. The idea is that, to undo

a transaction with a confirmation lag of N subperiods, a dishonest buyer needs to win the mining

game at least N + 1 times. As the number of lags increases, the total PoW required to revoke a

transfer is increasing, making it more costly for a buyer to double spend.

When double spending, the buyer competes against honest miners. Consequently, secret mining

is also deterred by the total investment in computing power which, according to Lemma 1, is

increasing in the reward R that is offered for finding new blocks. We now look into the incentives

to double spend and call an offer (x, d,N) double spending proof if the buyer has no incentive to

engage in secret mining in order to double spend.

13Note that a buyer cannot spend the balances of any other agent because these balances are protected by cryp-

tography. Hence, a buyer can only (i) change the payment instructions of his own transaction and (ii) remove other

payment instructions from being mined – and, hence, confirmed – in a block. This implies that in reality a buyer

trying to double spend has to remove his own payment and all other payment instructions involving his original

balance being spent again.
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Figure 3: Double-Spending Problem – Stylized Description

2.4 Double-Spending-Proof Offers

Consider a trade with the terms (x, d,N). The buyer will receive the goods in subperiod N when

exactly N confirmations of the payment d have been observed in the blockchain. To double spend,

a buyer can secretly mine an alternative history and undo his original payment after he has received

the goods.

For simplicity, we assume that to be successful, the buyer needs to be the first one solving the PoW

problem in each of N + 1 consecutive subperiods. For each of the first N subperiods, however,

the buyer does not announce the solution immediately, so that some other miners will update

the blockchain and confirm his payment to the seller. The buyer announces his secretly mined

blockchain only after he receives the goods and solves the N+1th PoW problem. When the double-

spending attack succeeds, the buyer has received the good x, the original payment is cancelled, and

the N + 1 rewards will be given to the buyer (for a stylized representation of the double-spending

problem, see Figure 3).

To analyze the incentives to double spend, note first that the quantity of good x being exchanged

does not directly matter for a double-spending attack, as it changes neither the payoffs nor the

incentives to engage in an attack. Consider subperiod N where the seller delivers his goods.
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Conditional on having been successful N times with secret mining, a buyer can now double spend

successfully by mining a new block in subperiod N . His expected payoff from investing qN is given

by

ρ(qN )β(d+ (N + 1)R)− qN . (9)

The first term captures the expected revenue from double spending. Conditional on having solved

N blocks, with probability

ρ(qN ) =
qN

MQ+ qN
, (10)

the buyer wins the competition again in the N + 1th round, so that he can double spend. The

revenue from double spending is given by the original payment in subperiod 0, which is d. Also,

the buyer obtains the rewards from all the new blocks in his chain of length N + 1. The value in

real balances of a successful double spend is thus given by β(d+R(N + 1)), where we have taken

into account that the real balances can only be spent in the following period.

Define

∆ =

(
d

R
+ (N + 1)

)
. (11)

Since MQ = βR, the buyer’s optimal choice of investing in computing power in subperiod N is

given by

q̂N (d,N) = βR
(√

∆− 1
)

(12)

so that the probability of successful double spending in subperiod N is equal to

ρ(qN ) =

√
∆− 1√

∆
. (13)

To find conditions for offers to be double spending proof, we work backwards to subperiod 0.

Given (d,N) and R, the expected payoff for a double-spending buyer in subperiod N having been

successful N times already is

DN (d,N) = βR(
√

∆− 1)2. (14)

Define recursively the expected payoff from double spending in subperiod n for n ∈ {0, . . . , N − 1}

by

Dn(d,N) = max
qn

ρ(qn)Dn+1(d,N)− qn, (15)

which takes into account that the buyer was n times successful, as otherwise the attempt to double

spend has failed already. Note that Dn(d,N) can be positive only if Dn+1(d,N) is positive and
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q̂n > 0 only if Dn(d,N) > 0. The first-order condition describing the optimal investment is thus

given by

q̂n(d,N) =
√
βR ·Dn+1(d,N)− βR. (16)

By backward induction, we then obtain the following result.

Lemma 2. The expected payoff, probability of success and optimal investment for double spending

in subperiod N − s are given by

DN−s(d,N) = βR
(√

∆− (s+ 1)
)2

(17)

ρN−s(d,N) =

√
∆− (s+ 1)√

∆− s
(18)

q̂N−s(d,N) = βR
(√

∆− (s+ 1)
)

. (19)

It follows immediately that Dn(d,N) is strictly increasing in n and, consequently, that the invest-

ment into double spending q̂n is also increasing in n. Hence, if it was optimal to engage in secret

mining in subperiod n and one has been successful in subperiod n to solve the PoW problem first,

it is also optimal to continue with secret mining in subperiod n+1. Consequently, double spending

is not optimal for the buyer whenever

βR
(√

∆− (N + 1)
)
< 0,

so that q̂0 = 0 and D0(d,N) = 0. This yields the following no-double-spending constraint (NDS).14

Proposition 3. A contract is double spending proof if

d ≤ R(N + 1)N . (20)

The intuition for the NDS constraint (20) is straightforward. The reward R increases the incentives

to mine and, thus, increases the costs of a double-spending attempt. Similarly, for a given payment

d, one can rule out double spending by increasing the confirmation lag N as this reduces the

14When constraint (20) is binding, a buyer may consider offering a contract that gives him an incentive to double

spend but compensates the seller for this possibility with a higher, but uncertain, payment d. In Section 3, we

introduce a sufficient condition so that contracts that violate (20) can never increase the joint surplus of the buyer

and seller and, consequently, will never be offered.
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probability of a successful double spend. Interestingly, while the impact of the reward R is linear,

the effect of N follows a power law. The intuition is that lengthening the confirmation lag N reduces

the probability of a successful double spend exponentially, while growing additional rewards only

linearly.

More generally, the expected payoff from double spending is given by

D0(d,N) = βR
(√

∆− (N + 1)
)2
, (21)

which is decreasing in R and N and increasing in d. The unconditional probability of a successful

double spending is

P (d,N) =

√
∆− (N + 1)√

∆
. (22)

This allows us to study the settlement properties of a cryptocurrency system, for which we first

define the following concepts.

Definition 4. The settlement of a contract (x, d,N) is immediate if N = 0 and delayed if N > 0.

The settlement is final if P (d,N) = 0 and probabilistic if P > 0.

The NDS constraint (20) can thus be interpreted as a condition for finality. Given any payment d

and given rewards R, one needs to delay settlement sufficiently to guarantee settlement. As shown

in Figure 4, this points to a trade-off between the trade size d, the settlement lag N and finality

as captured by 1 − P (d,N). Given a reward R, finality is only feasible for small transactions and

sufficiently delayed settlement. Fast settlement of large transactions can only be probabilistic, with

the probability decreasing in d and increasing in N . This can be summarized in the following result.

Theorem 5. For any cryptocurrency based on a PoW protocol, settlement cannot be both immediate

and final.

3 General Equilibrium Framework

We now incorporate our model of double spending into a general equilibrium model where a cryp-

tocurrency is used as a medium of exchange. Recall from the introduction that a cryptocurrency is

a closed system where the value of the cryptocurrency determines the rewards that miners receive.
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Figure 4: Trade Size, Confirmation Lag and Probabilistic Finality

These rewards determine the mining effort and, thus, the incentives to double spend. This in turn

will feed back into whether people accept the cryptocurrency as a medium of exchange and, thus,

the value of the currency. Our general equilibrium can therefore be used to explore the optimal

design of a cryptocurrency and to compare the surplus produced by an existing cryptocurrency

such as Bitcoin with the surplus of a traditional monetary system.

3.1 A Dynamic Model of Trade

Our model is based on Lagos and Wright (2005). Time is discrete and denoted by t = 0, 1, 2, ....

There are a large number B of buyers and a large number S = σB of sellers, where σ ∈ (0, 1).

There is also an infinite number of miners so that mining is perfectly competitive.

In each period, there is first a centralized, competitive market where people trade a general good h

that they can produce and consume. Then a decentralized market opens where buyers and sellers

meet bilaterally. As shown in Figure 5, the time when this market is open is divided further into

N̄ +1 consecutive subperiods, with N̄ ≥ 1. In the first subperiod, individual buyers are matched to

individual sellers with probability σ. Once matched, sellers can produce a good x for buyers at unit

cost in the first subperiod. To introduce heterogeneity among transactions, buyers’ preferences are

given by
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Figure 5: Timeline

δNεu(x), (23)

where ε is a random variable being drawn from a distribution F (ε) with support in the interval

[ε, ε̄] ⊂ (0,∞) when the centralized market opens. We assume that ε is known to the buyer and

seller in a match and that the seller can commit to deliver the good in subperiod N . Preferences

express the fact that buyers discount consumption of the good across subperiods according to

δ ∈ (0, 1), and we assume that all people discount utility across periods according to β = δN̄+1.

We define x∗(ε) as the first-best level of consumption such that εu′∗(ε) = 1.

3.2 Cryptocurrency

A cryptocurrency is a digital record of ownership of nominal balances m that can be used to

pay for transactions. For any transaction, the buyer gives instructions to transfer ownership of a

certain amount of his balances to the seller.15 We assume that transactions and payments in the

centralized market can be perfectly monitored. This implies that when a payer makes a payment in

cryptocurrency in this market, the payer is liable for its authenticity. More precisely, if a payment

were to be undone for the payee, the payer would need to reimburse the payee for the loss. This

rules out incentives to double spend in the centralized market.16 To the contrary, trades in the

decentralized market are anonymous. Hence, such trades require a medium of exchange, which we

15In the online appendix, we follow Koeppl et al. (2008) to formalize the notion of a blockchain as a transaction-

based ledger that records these transfers of cryptocurrency balances throughout time.
16One can interpret transactions in the centralized market as special, in that they convert cryptocurrency into

another financial asset, such as regular currency. In reality, this regularly occurs through exchanges that need to keep

customer data on file and, hence, make transactions in cryptocurrency traceable. Furthermore, depending on the

type of transaction, metadata often allow one to link transactions to people. For these reasons, cryptocurrencies are

often labelled as pseudonymous. Newer versions of cryptocurrencies are designed to give full anonymity. However,

even these cryptocurrencies can be traced to people once they are traded on an exchange. Finally, some transactions

can be interpreted to take place with known counterparties where an independent, auditable record of the transaction

exists. Reputation and legal recourse can thus discourage double spending for such transactions.
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assume to be cryptocurrency, and thus these trades are subject to a double-spending problem. The

updating of the blockchain with such trades follows a PoW protocol where miners compete for the

right to add a new block to the chain each subperiod.

The mining game is identical to the one presented in Section 2, but the reward R is now not

exogenous anymore and depends on the design of the cryptocurrency. First, the cryptocurrency can

create new balances, which are paid to miners that win the competition to update the blockchain.

We denote the growth rate of new balances by µ ≥ 1. In addition, the blockchain can set a

transaction fee for including transactions into a block. We denote τ ≥ 0 the fraction of the payment

in cryptocurrency that is to be paid to the successful miner as a fee for including the payment into

the blockchain. For simplicity, the N̄+1 block winners share the total reward equally. Consequently,

the reward per block is given by

R =
Z(µ− 1) +Dτ

N̄ + 1
, (24)

where Z is the aggregate, real balance of cryptocurrency in circulation and D is the aggregated

payments in the decentralized market. Rewards for blocks are only paid next period in the central-

ized market. Since they are expressed in real terms, we need to take into account inflation across

periods. Consequently, miners will discount the reward they receive in real terms by β/µ.

3.3 Centralized Market

In the centralized market, all buyers, sellers and miners can produce and consume the general good

with a linear utility function. Miners can also convert general goods one for one into computing

power q at any time. Since they cannot transact in the decentralized market, miners will not hold

balances across periods due to discounting. Upon receiving balances as rewards, they will simply

sell them for the general good in the centralized market. Hence, the problem of miners is identical

to the one we analyzed in Section 2, adjusted simply for the discount factor β/µ ≤ β < 1.

To ease exposition, we abuse notation and set ε = 0 for the seller. We use w(z, ε) and v(z, ε) to

denote the value functions in the centralized market and the decentralized market, respectively.

The problem of a buyer that draws ε (or a seller with ε = 0) entering the centralized market with
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real balances z is given by

w(z, ε) = max
z′,h
−h+ v(z′, ε) (25)

subject to

z + h ≥ z′ ≥ 0, (26)

where h > 0 (h < 0) denotes production (consumption) of the general good and z′ are the real

balances carried into the decentralized market, which have a value of v(z′, ε). The optimal demand

for balances is

1 ≥ ∂v(z′, ε)

∂z′
(27)

with equality when z′ > 0. Linear preferences imply that

w(z, ε) = z + w(0, ε). (28)

Hence, the value function before the realization of ε is

w̄(z) = E[w(z, ε)] = z +W, (29)

where W = E[w(0, ε)] is a constant.

3.4 Decentralized Market

With probability σ, a buyer meets a seller in the decentralized market. Holding real balances z and

being of type ε, he then makes a take-it-or-leave-it offer (x, d,N) that specifies a payment d ≤ z

for obtaining x goods to be delivered after confirmation of the payment in N consecutive blocks.

The value of a buyer entering the decentralized market with real balances z is then given by

v(z, ε) = σ
(
δNεu(x) +D0(d,N) + βw̄((z − d)/µ)

)
+ (1− σ)βw̄(z/µ)

=
β

µ
z + σ

(
δNεu(x) +D0(d,N)− β

µ
d

)
+ βW, (30)

where D0(d,N) is the expected value from double spending. It is understood here that D0(d,N) = 0

if the buyer has no incentive to double spend given the offer (x, d,N). Also note that the value

of unspent real balances declines between different periods because of discounting and inflation µ.

Since the seller has a linear technology to produce x, the value function of a seller accepting the

offer is given by

v(z, 0) =
β

µ
d(1− τ) (1− P (d,N))− x+

β

µ
z + βW . (31)

16



With probability P (d,N) a double-spending attack is successful, leaving the seller without balances

from the trade, where P (d,N) = 0 if the buyer has no incentive to double spend. Furthermore,

the seller only receives the payment net of the transaction fee, which is a fraction τ of the total

payment in terms of real balances d.

If balances can be used for trading in the decentralized market, buyers will have a positive demand

for real balances (z′ > 0). Furthermore, since µ ≥ 1 > β, it is costly to carry extra real balances

into the decentralized market. This implies that sellers do not carry any balances, while buyers

carry only the amount of balances into the decentralized market that they will use to make an offer

(z′ = d). The buyer’s optimal take-it-or-leave-it offer is thus a solution to the problem

max
(x,d,N)

−d+ (1− σ)
β

µ
d+ σ

(
δNεu(x) +D0(d,N)

)
(32)

subject to

d =
µ

β

x

(1− τ) (1− P (d,N))
, (33)

where the constraint expresses the fact that the seller receives zero expected surplus. The first term

in the objective function expresses the expected cost of transacting in the decentralized market.

The buyer needs to acquire real balances d in the centralized market but can spend them only with

probability σ to reap a surplus from trade in the decentralized market. With probability 1 − σ,

the buyer cannot trade and the buyer’s real balance depreciates in value by β/µ due to discounting

and inflation.

Buyers and sellers may have an incentive to negotiate an offer that involves a positive probability

of double spending. The buyer needs to compensate the seller for the expected loss from double

spending with a higher promised payment d, but needs to profit himself from consuming the quantity

x earlier due to a lower settlement lagN . The values ofD0(d,N) and P (d,N) in the buyer’s problem

depend therefore on whether the offer is double spending proof or not. The mining game and the

buyer’s incentives to engage in double spending are identical to Section 3 except that payoffs are

discounted across periods by β/µ < β. By Proposition 3, the offer is then double spending proof

and P (d,N) = D0(d,N) = 0 if and only if it satisfies condition (20). Otherwise, we have

D0(d,N) =
β

µ
R
(√

∆− (N + 1)
)2

> 0, (34)

with P (d,N) given by equation (22). Note that double spending gives the buyer an additional

payoff D0(d,N) but also tightens the seller’s participation constraint, thereby reducing the amount

being transacted in the decentralized market.
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In general, the buyer’s problem may have multiple solutions. For example, a buyer can be indifferent

between double spending and a double-spending-proof offer. Similarly, a buyer can be indifferent

between a contract with a long confirmation lag and large consumption and one with earlier but

smaller consumption. For completeness, the seller’s value function is given by

v(z, 0) =
β

µ
z + βW , (35)

so that sellers do not carry any real balances into the decentralized market.

3.5 Double-Spending-Proof Equilibrium

In what follows, we concentrate on equilibria in which the cryptocurrency is being used as a medium

of exchange in the decentralized market and all offers are double spending proof. Since we cannot

ensure that such offers are preferred, we assume that there are costs (ξb, ξs) for the buyer and

seller to negotiate such an offer.17 We show in Appendix A.2 that imposing the following sufficient

condition on these costs can rule out a preference of buyers and sellers for offers that imply double

spending.

Lemma 6. It is optimal for the buyer to make a double-spending-proof offer if

ξb + ξs

(
1− (1− σ)β

σβ

)
≥ εmaxu(x∗(εmax))(1− β). (36)

Note that buyers still have an incentive to double spend. Lemma 6 simply allows us to impose the

NDS constraint (20) directly on the bargaining problem, since buyers will not make any offers that

lead to actual double spending. The sufficient condition reflects that the advantage to consume

faster increases with discounting, while the liquidity cost falls with the likelihood of trading. Hence,

small σ and a discount factor close to 1 reduce the benefit of a double-spending offer. Also, the

condition can be fulfilled even if only one party to the trade incurs a fixed cost. We assume from

17In practice, it seems difficult to negotiate such offers. The fixed costs are meant to capture the time costs involved

and the costs of forecasting accurately the probability of successful double spending. Allowing for double spending

in equilibrium also goes against the very idea to rule it out through the design of the cryptocurrency protocol (see

for example Nakamoto (2008)).
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now on that this condition is satisfied, so that we can rewrite the buyer’s problem as

max
(x,d,N)

−d+ (1− σ)
β

µ
d+ σδNεu(x) (37)

subject to

d =
µ

β

x

1− τ
(38)

d ≤ RN(N + 1). (39)

Fix rewards R and define the set of optimal real money demand as Γ(ε;R). For a given selection

z∗(ε;R) from the set Γ(ε;R), aggregate real money demand and aggregate real payments in the

decentralized market are given by

Z = BE(z) = B

∫ ε̄

ε
z∗(ε;R)dF (ε) (40)

D = BσE(d) = Bσ

∫ ε̄

ε
z∗(ε;R)dF (ε). (41)

Definition 7. A double-spending-proof cryptocurrency equilibrium with (µ, τ) is given by offers

(x∗(ε), d∗(ε), N∗(ε)), real money demand z∗(ε) > 0 and a mining choice q∗, such that

1. real money demand and the offer solves the buyer’s problem (37)-(39) for all ε taken as given

rewards R

2. the mining choice is a Nash equilibrium of the mining game in every subperiod given R

3. the centralized market for real balances clears

4. rewards R are generated by (µ, τ) and real money demand.

We next show that under a fairly weak additional condition, a double-spending-proof equilibrium

exists. We only discuss the intuition for this result and relegate the formal proof of the result to

Appendix A.3. One needs a sufficiently large number of cryptocurrency users B. This ensures

that – for any given (µ, τ) – the reward R is sufficiently high to support enough mining to rule

out double spending. If R is too small, double spending can only be averted by requiring a large

number of confirmations N . This, however, could make the surplus too small to have trade in the

decentralized market. This result thus highlights an important feature of a cryptocurrency: the
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mining reward R is financed by the aggregate transaction volume, which increases with the number

of users B, while the incentives to double spend depend only on the individual transaction size d.

Proposition 8. If the number of buyers B is sufficiently high, a double-spending-proof cryptocur-

rency equilibrium exists.

3.6 Optimal Cryptocurrency Design

We now look into the optimal design of a cryptocurrency. Since we take the PoW protocol as given,

this is equivalent to looking at how to optimally finance the reward of miners to maximize social

welfare. As a first step, we restrict attention to steady state allocations and derive a social welfare

function.

For steady state allocations, the aggregate surplus for buyers is given by

∫ ε̄

ε
B

(
−d(ε) + (1− σ)

d(ε)

µ
+ σδN(ε)εu(x(ε))

)
dF (ε). (42)

All buyers replenish their balances to d in order to transact in the centralized market. There

are B(1 − σ) buyers that have not spent their balances since they had no trade in the previous

decentralized market. Their real balances are given by d
µ taking into account inflation. Finally,

a measure of Bσ of buyers has a transaction in the current decentralized market. Similarly, the

aggregate surplus of sellers is given by

∫ ε̄

ε
σB

(
d(ε)

µ
(1− τ)− x(ε)

)
dF (ε). (43)

There are Bσ sellers who had a trade in the decentralized market in the previous period and earned

d(1 − τ)/µ real balances, taking into account inflation. Also, Bσ sellers will have a trade in the

current period decentralized market, where they produce an amount x. Finally, the aggregate

surplus of miners is given by

(N̄ + 1)

(
R

µ
− βR

µ

)
= B

(µ− 1 + στ)

µ
Z(1− β). (44)

In the centralized market, miners turn the block reward R/µ they have earned from mining N̄ + 1

blocks in the previous decentralized market into the general good for consumption. At the same

time, they make an investment into new computational power for each block. Lemma 1 implies

that the investment is simply the real present value of the total mining rewards βRµ per block.
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Summing over these expressions, we obtain that total surplus in any period t is given by

W = Bσ

∫ ε̄

ε

(
δN(ε)εu(x(ε))− x(ε)

)
dF (ε)− βR

µ
(N̄ + 1). (45)

This is intuitive. Aggregate welfare is given by the surplus generated in the decentralized market

and the aggregate cost spent on mining, which is the second term. All other value generated in the

centralized market is simply lump-sum transfers between people.

To characterize the optimal design, we look at a Ramsey problem. A social planner chooses the

optimal inflation rate µ and fee rate τ to maximize aggregate welfare.18 When doing so, he has to

take into account that his choice will change the equilibrium in the economy. This implies that the

constraints for the planner are the market-clearing condition and the fact that buyers make optimal

take-it-or-leave-it offers that are double spending proof. For stationary allocations, the problem for

the social planner is then given by

max
µ,τ

B

∫
σ[δN(ε)εu(x(ε))− x(ε)]dFε(ε)−

β

µ
R(N̄ + 1), (46)

subject to

(d(ε), x(ε), N(ε)) solves problem (37) - (39) for all (µ, τ,R) (47)

R(N̄ + 1)

µ
= B(µ− 1 + στ)

∫
1

β

x(ε)

1− τ
dFε(ε). (48)

Intuitively, the planner trades off relaxing the NDS constraint by raising revenue R through inflation

and fees against the costs of mining, which are dead weight. When doing so, his policy choice leads

to an allocation (x,N) that satisfies the conditions for an optimal offer

σδNεu′(x) ≥ 1

1− τ

(
µ

β
− (1− σ)

)
(49)

µ

β

x

1− τ
≤ R(N + 1)N , (50)

where the rewards R are generated endogenously by his choice of policy (µ, τ) and the allocation

according to condition (48).

The next result on the optimal reward structure is then driven by two considerations. The planner

would like to keep mining costs low. At the same time, for any given level of mining costs, he would

18Note that N̄ could also be a system parameter in our model. We simply impose here that N̄ is sufficiently large

to allow for enough confirmation lags in the optimal double-spending-proof contract given for the largest surplus

given by the transaction with ε̄.
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like to raise the rewards to finance them in a way that is the least distortionary for consumption.

The optimal way to finance rewards is using seignorage instead of fees.

Proposition 9. The optimal reward structure sets transaction fees to zero and only relies on

seignorage; i.e., τ = 0 and µ > 1.

Using fees paid in cryptocurrency is inefficient for two reasons. First, fees imply a larger liquidity

cost for buyers. The reason is that all buyers with positive balances are taxed when using inflation,

while only buyers who trade in the current period are taxed when fees are used. Hence, the tax

base is smaller for fees whenever σ < 1. To raise the same real revenue when using fees, the planner

needs to induce buyers to carry extra liquidity, which is costly.

To illustrate this further, hold the amount x consumed by a buyer constant and look at two policies

that yield the same real rewards according to equation (48). The first policy uses fees τ̄ and no

inflation (µ = 1), while the second policy uses no fees, but only inflation that is set equal to

µ = 1 +
τ̄σ

1− τ̄
. (51)

For the first policy, the liquidity cost for a buyer is given by

Φ1 =
x

1− τ̄
− (1− σ)β

x

1− τ̄
, (52)

where the first term expresses the real value of cryptocurrency acquired in the centralized market,

while the second gives the real value of the unspent balances in the centralized market next period.

Similarly, the liquidity costs when using inflation only is

Φ2 =

(
1 +

τ̄σ

1− τ̄

)
x− (1− σ)βx. (53)

Thus, the liquidity cost associated with fees is larger, with the difference given by

∆Φ = (1− σ)(1− β)

(
τ̄

1− τ̄

)
x. (54)

Hence, as long as σ < 1, replacing fees by inflation can lower the costs for carrying liquidity, thereby

reducing the distortions in the decentralized market.

Second, when double spending, a buyer can reclaim his entire payment including fees. Given the

mining cost βR/µ per block, the NDS constraint is given by

x+

(
τ

1− τ

)
x ≤ βR

µ
(N + 1)N . (55)
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The left-hand side of the constraint shows that the buyer can recoup not only his payment to the

seller but also the fees paid to miners. Other things being equal, higher fees make double spending

more attractive. This implies that replacing fees by inflation can relax the NDS constraint and

reduce the mining cost that is required to support the same amount x to be transacted.19

4 The Welfare Costs of Bitcoin

Based on our theoretical analysis, we are now seeking to understand the limits of using cryptocur-

rencies for payments. We first use the current parameters of Bitcoin and estimate the welfare

loss for using Bitcoin to make payments. Changing the key parameters of the reward scheme –

seignorage and transaction fees – we then discuss why an additional loss arises relative to a classi-

cal monetary economy. Finally, we repeat this comparison by looking at a situation where Bitcoin

employs the optimal reward structure.

4.1 Calibration

We use aggregate data on Bitcoin transactions from 2015.20 Table 1 shows summary statistics of

Bitcoin usage and transaction fees for the calendar year 2015. We can use these data to calibrate

aggregate parameters of the model. The length of a period in our model is set to be one day.

We first calibrate the total volume of transactions σB. In 2015, the average total number of

bitcoins in circulation was about 14, 342, 500. The average transaction size based on block-level

data is approximately 2.086659. Using the total number of bitcoins available, we therefore set

B = 6, 873, 428. This matches the maximum number of average-sized transactions that bitcoins

in circulation could support in 2015.21 Next, we set σ = 0.0178 to match the average fraction of

bitcoins spent per day.

The average currency growth rate is set to reflect an increase in the stock of bitcoin over one day.

This yields µ = (1+25/14342502.95)6×24 = 1.00025 per day, which translates into an average annual

19In Bitcoin one can indeed recoup the transaction fee when double spending.
20This choice is motivated by the fact that the block reward for Bitcoin halved in 2016. Also, Bitcoin experienced

extreme price volatility in 2017 and 2018. Hence, usage during this time period is likely to be influenced more by

speculative trading of Bitcoin than payments.
21Interestingly, this value is also close to the number of blockchain wallet users, which is 5,439,181 at the end of

2015 (see blockchain.info).
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Table 1: Bitcoin Transaction Characteristics for 2015

Per day Per block

No of transactions 122129.7534 848.1232877

Estimated transaction volume (BTC) 254843.1781 1769.744292

Transaction fees (BTC) 22.45900183 0.15596529

Source: blockchain.info

currency growth rate of about 9.6%.22 Transaction fees are given by τ = 0.15596529/1769.744292 =

0.000088129 to match the average transaction fee data in Table 1.

To calibrate preferences, we assume that the buyers’ utility function is given by

u(x) = ε(log(x+ b)− log b),

where b = 10−60 ≈ 0.23 The length of a period is a day, and the length of each subperiod is equal

to the average block time of 10 minutes. We therefore set the discount factor per day β so that

the annualized discount factor is equal to 0.97. To find a distribution for ε, we first solve for the

buyer’s take-it-or-leave-it offer (N(ε), x(ε), d(ε)), given the reward function R. This is possible for

the calibrated currency growth rate and transaction fees for the average bitcoin transaction. We

then use data reported by Ron and Shamir (2013) on the distribution of transaction sizes in Bitcoin

to back out the distribution F (ε) where we have normalized the mean of the distribution on the

data to make it consistent with 2015 data.

Finally, we assume that the fixed costs ξb and ξs are large enough given our calibrated parameters

so that the sufficient condition (36) in Lemma 6 is satisfied. This allows us to impose the NDS

constraint directly when doing our numerical exercises. We verify later on that in the benchmark

and in our comparative statics exercises on the optimal policy, there is no incentive to negotiate

for a contract that involves double spending even if those costs are zero. Table 2 summarizes our

benchmark parameters.

22In Bitcoin, the effective currency growth rate decreases with every block, as the reward per block is constant

except for periodic halving of the reward. Taking this into account explicitly will not influence our quantitative

results in any significant way.
23As in Lagos and Wright (2005), the constant b is added to normalize utility so that u(0) = 0.
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Table 2: Benchmark Parameters

Values Targets

β 0.999916553598325 period length = 1 day

δ 0.999999420487088 δ = β1/(1+N̄)

µ 1.00025 currency growth rate

τ 0.000088 transaction fee

B 6, 873, 428 max. no. of average-sized transactions

σ 0.0178 velocity per block (block length = 10 mins)
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Figure 6: Optimal Offer (x(ε), N(ε))

4.2 Comparative Statics

Figure 6 shows a buyer’s equilibrium offer as a function of his type ε given our baseline calibration.

It is straightforward to verify that using log utility implies that, when the NDS constraint is not

binding, transaction size x is a linear function of ε. Once the NDS constraint becomes binding

as x increases, the buyer can increase the confirmation lag. The concavity of N(ε) confirms that

settlement lags relax the NDS constraint according to a power law.

Equilibrium transactions in a cryptocurrency system are inefficient. Relative to the first-best al-

location, the equilibrium consumption size is too low and the confirmation lag is too long. To

examine these distortions further, we define first ∆(ε) as type ε buyer’s loss relative to the first-
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Figure 7: Buyers’ Loss Relative to First-best Transactions

best allocation measured in consumption units

εu ((1−∆(ε))x∗(ε))− x∗(ε) = δN(ε)εu (x(ε))− d(ε). (56)

We also define a related variable ∆δ(ε) which measures the loss that arises only from the settlement

delay N(ε):

εu ((1−∆δ)x
∗(ε))− x∗(ε) = δN(ε)εu (x∗(ε))− x∗(ε). (57)

Figure 7 confirms that that welfare loss in a transaction arises from two sources. First, inflation

and transaction fees are distortions that reduce the amount transacted relative to the first-best

allocation. Second, confirmation lags delay settlement and, hence, consumption. Importantly, the

loss for individual transactions is increasing in ε. Larger transactions bear a larger loss than smaller

transactions, with the main source being delayed settlement. While all traders help finance the

mining reward, small transactions are subject to shorter confirmation lags, since the NDS constraint

is less binding.

We next vary the currency growth rate µ in our calibrated economy. When doing so, we fix τ at its

calibrated value. This implies that, even without seignorage, sufficient rewards can be generated

through transaction fees to satisfy the NDS constraint for all transactions. Figure 8 shows the

effects of increasing µ on total welfareW. Interestingly, there is a hump-shaped response of welfare

to inflation. To understand this finding, we examine the two components of welfare, total trade

surplus and the costs of mining, in Figure 8.
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Figure 8: Effects of Currency Growth

The trade surplus first rises as inflation increases above zero, which is very different from a classical

monetary economy, where inflation reduces trade surplus monotonically. While consumption falls

on average due to the inflation tax, transactions are being settled faster, as one needs fewer con-

firmation lags to make transactions double spending proof. This is because higher rewards induce

mining activities that help relax the NDS constraint.

The second effect of inflation stems from the costs of mining. Higher rewards financed by currency

growth induce miners to spend more resources on mining activities, which is socially costly. Overall,

the positive effect of faster settlement outweighs the additional mining costs at first for low inflation,

but mining costs start to dominate for higher money growth rates. This trade-off generates the

hump-shaped response of welfare in Figure 8, resulting in a socially optimal positive inflation rate

even in the presence of positive transaction fees.

4.3 Welfare Costs and Optimal Design

As a first step, we derive the welfare costs of Bitcoin associated with different growth rates µ,

assuming that transaction fees are adjusted to maximize social welfare. We express the welfare

cost as the percentage of consumption ∆w that people would be willing to give up to move from

the cryptocurrency economy to another one supporting the first-best allocation. Denoting W(µ, τ)
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as the equilibrium welfare of using a cryptocurrency with µ and τ , the welfare costs are then given

by ∆w, satisfying

W(µ, τ) = Bσ

∫ ε̄

ε
[δN(ε)εu(x∗(ε)(1−∆w(µ, τ)))− x∗(ε)]dF (ε). (58)

Figure 9 plots, for different µ, the welfare-maximizing τ as well as the implied welfare costs. The

annualized inflation rates on the horizontal axes are reported in log scale. Markers on the curves

indicate values corresponding to the actual Bitcoin system as it reduces its block rewards over time.

For example, the leftmost marker on a curve denotes the value associated with the Bitcoin system

in 2015 with a block reward of 25 BTC.
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Figure 9: Optimal Fee and Welfare Costs for Different µ

For high block rewards, seignorage is sufficient to make transactions double spending proof. Hence,

it is optimal to set transaction fees to zero. Conversely, if seignorage becomes too small, transaction

fees need to be strictly positive. This simply reflects the fact that Bitcoin needs to generate rewards

from fees as block rewards converge to 0. Figure 9 also suggests that currently most welfare losses

in Bitcoin stem from extremely high mining costs, but that these costs will diminish substantially

as block rewards fall for Bitcoin over time.

We then compare the current Bitcoin regime with two benchmarks: (i) the optimal Bitcoin regime,

and (ii) a cash economy that operates with 2% inflation. Table 3 summarizes our quantitative

findings. We first report the welfare costs as a fraction of first-best consumption, ∆w, as defined

above. Furthermore, we consider a hypothetical economy in which people use a traditional cash
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system but face a 2% inflation rate. We calculate the welfare costs of this cash economy and then

express the welfare costs of Bitcoin as a multiple of this hypothetical cash economy.

Table 3: Welfare Comparison between Cryptocurrency and Cash Systems

Bitcoin (benchmark) Bitcoin (optimal policy)

µ− 1 9.59% 0.40%

τ 0.0088% 0%

welfare costs (% first-best consumption) 1.43% 0.19%

welfare costs (× 2% cash economy) 478 times 65 times

break-even inflation tax 233.63% 47.58%

In the benchmark regime, the Bitcoin system in 2015 involves welfare costs equal to 1.43% of

first-best consumption. That is, in our model people would be willing to give up 1.43% of their

consumption in order to migrate from Bitcoin to an economy that supports the first-best allocation

(e.g., cash with the Friedman rule). In contrast, the welfare costs of the cash economy with 2%

inflation are only 0.003% of first-best consumption. Hence, according to our model, Bitcoin in

2015 generated a welfare cost almost 500 times bigger than the loss in a 2% cash economy. This

welfare cost, however, would shrink significantly in a Bitcoin-like system where rewards are designed

optimally. Still, the implied welfare costs in this optimal system are fairly large (65 times of that

in a 2% cash economy). To put this further into perspective, we have calculated a money growth

rate of about 48% to equate the welfare cost in a cash economy to that of an optimal Bitcoin

scheme. Even though the optimally designed system has a much lower inflation rate of zero, people

would be better off in an economy with inflation below 48%, as one avoids the mining costs and

the additional distortions that arise from the NDS constraint in the Bitcoin-like system.

4.4 Discussion

Welfare losses in a cryptocurrency that uses a PoW protocol are mainly related to the costs of

mining. A high level of mining is required to overcome the double-spending problem. Mining,

however, is a public good. Once the NDS constraint is satisfied, adding more transactions does not

require additional mining activities. This implies that the total volume of transactions matters a

lot for how efficient a cryptocurrency can be (see Figure 10, which shows the effect of scaling the
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number of participants B in our calibration by a factor χB).
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Figure 10: Welfare Costs and Scale

The intuition for this result is straightforward. Costly mining helps discourage double spending

in each transaction, independent of the number of transactions. At the same time, the intensity

of mining increases with the total rewards. Hence, with more transactions, it becomes easier to

finance mining rewards to protect the system. For the optimal design, this means that seignorage

per transaction can fall when there are more transactions. This in turn implies smaller distortions

and, thus, smaller welfare costs.

Our analysis also confirms that smaller cryptocurrencies (in terms of market value and transaction

volume) can be at risk for double-spending attacks as they do not generate enough mining rewards

to disincentivize such attacks.24 Moreover, when the potential gains from a double-spending attack

are small, the mining reward required to protect the system will be lower. This would be the case

for a system used only for low-value transactions. In conclusion, a cryptocurrency would work best

as a retail payment system where there is a large volume of transactions that are relatively small

in value. To the contrary, using a cryptocurrency for infrequent large-value payments seems to be

very costly.

24For example, in 2018, a number of small cryptocurrencies such as Monacoin, Bitcoin gold, Zencash, and Litecoin

cash were under 51% attacks.
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5 Conclusion

Distributed record-keeping with a blockchain based on consensus through PoW is an intriguing

concept. The economics of this technology can be understood by looking at the individual incentives

to double spend and the costs associated with reining in these incentives. These costs are both

private in the form of delayed settlement and social in the form of mining, which is a public good.

Consequently, a cryptocurrency becomes more efficient as its scale increases. This explains why a

cryptocurrency can avoid double spending only when the user pool is sufficiently large, and why

a cryptocurrency works best when the volume of transactions is large relative to the individual

transaction size. This insight seems to be very much ignored in the current debate about the

scalability of a cryptocurrency like Bitcoin.

For Bitcoin, we find that the cryptocurrency is not only extremely expensive in terms of its mining

costs, but also inefficient in its long-run design. However, the efficiency of the Bitcoin system

can be significantly improved by optimizing the rate of coin creation and minimizing transaction

fees. Another potential improvement is to eliminate inefficient mining activities by changing the

consensus protocol altogether. In Appendix D, we explore the possibility of replacing PoW by a

proof-of-stake (PoS) protocol. Our analysis finds conditions under which PoS can strictly dominate

PoW and even support immediate and final settlement. Notwithstanding, as we point out in this

appendix as well, many fundamental issues of a PoS protocol still need to be sorted out. There

remains much to be learned about the economic potential and the efficient, economic design of

blockchain technology.
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A Appendix – Proofs

A.1 Proof of Lemma 2

We first look at the incentives to stop and continue with secret mining. Note first, by assumption, if

the buyer fails to win the mining competition, the double-spending attempt fails as well. It is then

optimal for the buyer to stop mining. Next, we show that – having started – it is never optimal for

a buyer to stop a double-spending attack if successful in the first n steps.

Lemma A.1. If double spending with (q0, ..., qN ) generates a positive payoff, then the buyer has

no incentives to quit mining after winning a block in n < N .

Proof. Consider first the case with N = 2. We have

D0 = ρ0ρ1ρ2
β

µ
[d+ 3R]− ρ0ρ1q2 − ρ0q1 − q0 = ρ0

[
ρ1

[
ρ2
β

µ
[d+ 3R]− q2

]
− q1

]
− q0. (A.1)

Define D1 = ρ1

[
ρ2

β
µ [d+ 3R]− q2

]
− q1. Since

D0 = ρ0D1 − q0 > 0, (A.2)

we have

ρ1

[
ρ2
β

µ
[d+ 3R]− q2

]
− q1 >

β

µ
R. (A.3)

Similarly, define D2 = ρ2
β
µ [d+ 3R]− q2. Inequality (A.3) implies that

ρ1D2 − q1 >
β

µ
R, (A.4)

so that D2 > 2βµR or

ρ2
β

µ
[d+R(1 +N)]− q2 > 2

β

µ
R. (A.5)

Inequality (A.5) then implies that

ρ2
β

µ
[d+ 3R]− q2 + u(x) > 2

β

µ
R+

β

µ
d, (A.6)

where the left-hand side is the expected payoff of continuing with secret mining in subperiod 2 and

the right-hand side is the payoff of stopping secret mining and announcing the two blocks. Hence,

there is no incentive to stop secret mining after having found two blocks.
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Similarly, condition (A.3) implies that

ρ1

[
ρ2
β

µ
[d+ 3R]− q2

]
− q1 + δu(x) >

β

µ
R+

β

µ
d, (A.7)

which shows that there is no incentive to stop secret mining in subperiod 1, having been successful

in the first step.

For a general N , we can show similarly that

DN = ρN
β

µ
[d+R(1 +N)]− qN >

β

µ
NR (A.8)

DN−1 = ρN−1DN − qN−1 >
β

µ
(N − 1)R (A.9)

... (A.10)

D1 = ρ1D2 − q1 >
β

µ
R (A.11)

D0 = ρ0D1 − q0 > 0. (A.12)

It follows that

ρN
β

µ
[d+R(1 +N)]− qN + u(x) >

β

µ
(NR+ d), (A.13)

ρN−1DN − qN−1 + δu(x) >
β

µ
[(N − 1)R+ d] (A.14)

... (A.15)

ρ1D2 − q1 + δN−1u(x) >
β

µ
(R+ d). (A.16)

Hence, there are no incentives to quit after winning, having found n blocks in a row.

The remainder of the proof is done by induction. The result is true for s = 0.

Suppose, then, the result holds true for s = n− 1. For s = n, we obtain

qN−n(d,N) =
√
MQ ·DN−n+1(d,N)−MQ (A.17)

= βR(
√

∆− n)− βR (A.18)

= βR[
√

∆− (n+ 1)] (A.19)

for the optimal investment into mining,

ρN−n(d,N) =
qN−n(d,N)

MQ+ qN−n(d,N)
(A.20)

=

√
∆− (n+ 1)√

∆− n
(A.21)
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for the probability of finding a block first, and

DN−n(d,N) = ρN−n(d,N)DN−n+1(d,N)− qN−n(d,N) (A.22)

=

√
∆− (n+ 1)√

∆− n
βR(
√

∆− n)2 − βR[
√

∆− (n+ 1)] (A.23)

= βR[(
√

∆− (n+ 1)]2 (A.24)

for the expected value from secret mining. This completes the proof.

A.2 Proof of Lemma 6

Let (x̂, d̂, N̂) be a contract with double spending for a buyer with ε. To compensate the seller, the

buyer needs to offer a payment d̂ = µ
β

1
1−P

x̂+ξs
(1−τ) . The payment reimburses the seller for his fixed

cost ξs and the expected loss from double spending.

Consider now a new contract (x′, d′, N ′), where

x′ = x̂ (A.25)

d′ =
x̂

1− τ
µ

β
(A.26)

N ′ = min{N :
x̂

1− τ
µ

β
≤ R(N + 1)N}. (A.27)

By construction, this contract satisfies the NDS constraint. Furthermore, such a contract is feasible,

since the buyer never wants to consume more than the first-best quantity x∗(ε) ≤ x∗(εmax) and

where we assume that x∗(εmax)
1−τ

µ
β ≤ R(N̄ + 1)N̄ .

The expected payoff of the contract (x̂, d̂, N̂) for the buyer is given by

V (x̂, d̂, N̂) = −d̂+ (1− σ)
β

µ
d̂+ σ

(
δN̂εu(x̂) +D0(d̂, N̂)− ξb

)
(A.28)

≤ −d̂+ (1− σ)
β

µ
d̂+ σ

(
δN̂εu(x̂) + Pβ

d̂

µ
− ξb

)
(A.29)

= d̂

(
β

µ
− 1

)
+ σ

(
δN̂εu(x̂)− (1− P )β

d̂

µ

)
− σξb (A.30)

=
µ

β

(
1

1− P

)(
x̂+ ξs
1− τ

)(
β

µ
− 1

)
+ σ

(
δN̂εu(x̂)− x̂+ ξs

1− τ

)
− σξb. (A.31)

The weak inequality follows from the fact that miners make zero profits and, thus, a secret miner

can make at most zero profits from obtaining the mining rewards and paying the mining costs.
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Hence, his expected profit can be at most the additional expected reward P d̂(β/µ) from reclaiming

the payment next period.

The expected payoff from the contract (x′, d′, N ′) that satisfies the NDS constraint is given by

V (x′, d′, N ′) = d′
(
β

µ
− 1

)
+ σ

(
δN
′
εu(x′)− βd

′

µ

)
(A.32)

=
µ

β

(
x̂

1− τ

)(
β

µ
− 1

)
+ σ

(
δN
′
εu(x̂)− x̂

1− τ

)
. (A.33)

Therefore, this new contract is better for the buyer if

µ

β

(
x̂

1− τ

)(
β

µ
− 1

)
+ σ

(
δN
′
εu(x̂)− x̂

1− τ

)
(A.34)

>
µ

β

(
1

1− P

)(
x̂+ ξs
1− τ

)(
β

µ
− 1

)
+ σ

(
δN̂εu(x̂)− x̂+ ξs

1− τ

)
− σξb (A.35)

or

σδN
′
εu(x̂) >

µ

β

(
ξs

(1− τ)

)(
β

µ
− 1

)
+ σ

(
δN̂εu(x̂)− ξs

1− τ

)
− σξb, (A.36)

where the last inequality follows from the fact that µ ≥ 1 > β. This reduces to

ξb + ξs

(
1 +

1− β
σβ

)
> εu(x̂)

(
δN̂ − δN ′

)
. (A.37)

The sufficient condition then implies that the new contract is better for any buyer with type ε,

since

εmaxu(x∗(εmax))(1− β) ≥ εu(x∗(ε))(1− β) > εu(x̂(ε))
(
δN̂ − δN ′

)
. (A.38)

A.3 Proof of Proposition 8

Given (µ, τ), define the correspondence

ϕ(R) = B

(
µ− 1 + στ

N̄ + 1

)∫
z(ε;R)dF (ε), (A.39)

where
∫
z(ε;R)dF (ε) is aggregate money demand. The correspondence ϕ expresses total rewards

for mining as a function of aggregate money demand, which itself is a function of R through the

NDS constraint (20). Since z(ε;R) is a correspondence, it is useful to define zn(ε;R) as the optimal

money demand conditional on confirmation lag n ∈ {1, . . . , N̄}. Note that zn(ε;R) is a function

that is continuous by the Theorem of the Maximum and weakly increasing in R.
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We will show that the correspondence ϕ has a fixed point for some R by using Kakutani’s fixed

point theorem. This implies that (i) we need to restrict the mapping ϕ to a non-empty, convex and

compact set, and (ii) we need to show that ϕ is non-empty, upper hemicontinuous, convex-valued

and closed-valued. To restrict the mapping to a compact interval, we start out by choosing the

number of buyers B large enough for any R so that ϕ(R) > R. Then, we show that for any B, we

can bound the value of ϕ(R).

Lemma A.2. For Rmin > 0, there exists a sufficiently large B such that ϕ(R) ≥ Rmin for all

R ≥ Rmin.

Proof. Note first that for R > 0, zn(ε;R) > 0 for all ε. For any Rmin > 0, we can then find B

sufficiently large so that

B

(
µ− 1 + στ

N̄ + 1

)∫
min
n
zn(ε;Rmin)dF (ε) > Rmin. (A.40)

Since zn(ε;R) is weakly increasing in R, we have that

ϕ(R) = B

(
µ− 1 + στ

N̄ + 1

)∫
z(ε;R)dF (ε) ≥ B

(
µ− 1 + στ

N̄ + 1

)∫
min
n
zn(ε;Rmin)dF (ε) (A.41)

for all R ≥ Rmin.

Lemma A.3. Given B, there exists Rmax such that ϕ(R) ≤ Rmax for all R ≤ Rmax.

Proof. The surplus from real balances z is bounded by

σ(εu(x∗)− x∗)− z + (1− σ)
β

µ
z, (A.42)

where x∗ satisfies εu′(x∗) = 1. Hence, there is an upper bound z̄(ε) on money demand that is

independent of R. Thus, given B, for all R ≤ Rmax, we have that

ϕ(R) = B

(
µ− 1 + στ

N̄ + 1

)∫
z(ε;R)dF (ε) ≤ B

(
µ− 1 + στ

N̄ + 1

)∫
z̄(ε)dF (ε) = Rmax. (A.43)

Hence, for any Rmin > 0, there exists a sufficiently large B and Rmax such that Rmin < ϕ(R) ≤

Rmax. This allows us to restrict the correspondence ϕ to a compact interval [Rmin, Rmax], where

ϕ(R) : [Rmin, Rmax] → [Rmin, Rmax], whenever B is large enough. We turn next to the properties

of the correspondence ϕ.
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Lemma A.4. The money demand correspondence z(ε;R) is non-empty, compact-valued and upper

hemicontinuous.

Proof. Take the optimal money demand functions conditional on n and form the constraint corre-

spondence

Z =
N̄⋃

n=1

zn(ε;R). (A.44)

Note that this correspondence is both upper and lower hemicontinuous and, hence, continuous.

Furthermore, it is compact-valued, as it is comprised of a finite number of values.

Let Vn(R) be the utility associated with zn(ε;R). Then, the optimal money demand is given by a

solution to the problem

max
n

Vn(R) (A.45)

subject to

zn(R) ∈ Z. (A.46)

By the Theorem of the Maximum, we have that the correspondence of the maximizer z(ε;R) is

non-empty and upper hemicontinuous. Since it comprises at most a finite number of elements, it

is also compact-valued.

It follows immediately that the correspondence ϕ(R) is also non-empty, compact-valued and convex-

valued (see Aumann (1965), Theorem 1, 2 and 4). Furthermore, ϕ(R) is upper hemicontinuous (see

Aumann (1965), Corollary 5.2). By Kakutani’s Fixed Point theorem, there exists R∗ ∈ [Rmin, Rmax]

such that

R∗ ∈ ϕ(R∗), (A.47)

which completes the proof.

A.4 Proof of Proposition 9

The idea of the proof is as follows. If fees are not zero, one can design a new policy that (i) uses less

mining costs and (ii) makes all buyers better off. The policy change will combine three changes.

First, it reduces transaction fees to zero. Second, it will increase the seignorage rate to compensate

for the loss in the expected revenue from fees, taking into account the different tax base for the two

taxes. Third, it will generate at least the same rewards for miners.
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The proof relies on the fact that the planner can generate more revenue than the amount of rewards

paid out to miners. Hence, we assume for now that the revenue constraint (48) is a weak inequality.

This implies that the planner makes a distinction between the revenue raised and the rewards paid

to miners. To this end, we define a policy to be (µ, τ,R). In the last step of the proof, we will show

that this assumption is innocuous.

Step 1

Suppose that τ0 > 0, µ0 ≥ 1 and R0 is a feasible policy. Consider the following policy change:

τ1 = τ0 − ξ (A.48)

µ1 = µ0 + σξ (A.49)

R1 = R0
1− τ0

1− τ1

µ1

µ0
. (A.50)

Note that τ0 ≥ ξ > 0 is arbitrary, and thus we can set it to τ0. We denote the optimal choice for

each policy by (x∗i (ε), N
∗
i (ε)) and show first that this policy change is feasible, if the transaction

size increases in all bilateral meetings.

Lemma A.5. The policy change is feasible if x∗1(ε) ≥ x∗0(ε) for all ε.

Proof. For any n ∈ {1, . . . , N̄}, the no-double-spending constraint at the old policy is given by

µ0

β

x(ε)

1− τ0
≤ R0(N(ε) + 1)N(ε). (A.51)

Using the definition of R1, it is immediate that – by construction – the NDS constraints are

identical for all n ∈ {1, . . . , N̄} for the new policy. Hence, the set of feasible choices (x,N) remains

unchanged.

Next, we show that the revenue constraint is also fulfilled as long as the optimal individual trans-

action sizes do not decrease. We have

B(µ1 − 1 + στ1)

∫
x∗1(ε)

1− τ1
dFε(ε) (A.52)

≥ B(µ0 + σξ − 1 + στ0 − σξ)
∫

x∗0(ε)

1− τ1
dFε(ε) (A.53)

≥ β

µ1
R0

1− τ0

1− τ1

µ1

µ0
(N̄ + 1) (A.54)

=
β

µ1
R1(N̄ + 1), (A.55)

which completes the proof.
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Step 2

Next, we show that the policy change increases the planner’s objective as long as consumption and

confirmation lags weakly increase for all ε.

Lemma A.6. If x∗1(ε) ≥ x∗0(ε) and N∗1 (ε) ≥ N∗0 (ε), the policy change increases the planner’s

objective function.

Proof. First, mining costs decrease since we have

β

µ1
R1(N̄ + 1) =

β

µ0
R0

1− τ0

1− τ0 + ξ
(N̄ + 1) <

β

µ0
R0(N̄ + 1). (A.56)

Second, we can rewrite the trade surplus in the decentralized market for each ε as

σ
(
δN
∗
1 εu(x∗1)− x∗1

)
= σδN

∗
1 εu(x∗1)− x∗1

1− τ1

µ1

β
+ (1− σ)

x∗1
1− τ1

(A.57)

− σx∗1 +
x∗1

1− τ1

µ1

β
− (1− σ)

x∗1
1− τ1

,

where the first three terms correspond to the buyer’s objective function. Since the buyer’s choice

is optimal, we obtain using the conditions in the lemma that

σ
(
δN
∗
1 εu(x∗1)− x∗1

)

≥ σδN∗0 εu(x∗0)− x∗0
1− τ1

µ1

β
+ (1− σ)

x∗0
1− τ1

− σx∗1 +
x∗1

1− τ1

µ1

β
− (1− σ)

x∗1
1− τ1

(A.58)

= σ
(
δN
∗
0 εu(x∗0)− x∗0

)
+

1

1− τ1

(
µ1

β
− 1 + στ1

)
(x∗1 − x∗0) (A.59)

≥ σ
(
δN
∗
0 εu(x0)− σx∗0

)
, (A.60)

which completes the proof.

Step 3

We are left to show that it is weakly optimal for the buyer to increase both the optimal size of

the transaction and the confirmation lag. Define x∗(n) as the buyer’s optimal choice of x given a

fixed confirmation lag n. We first show that, for any given n, the optimal choice x∗(n) is weakly

increasing in the policy change, and then show that the buyer is never better off lowering the

optimal confirmation lag N∗ when the policy changes.
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Lemma A.7. Given n, the optimal choice x∗(n) is weakly increasing in the policy change for all

ε.

Proof. Define x∗(n) as the optimal quantity chosen by the buyer for any given n, that is,

x∗(n) = arg max
x
− x

1− τ
µ

β
+ (1− σ)

x

1− τ
+ σδnεu(x) (A.61)

subject to

x

1− τ
µ

β
≤ R(n+ 1)n. (A.62)

The first-order condition is given by

σδnεu′(x) ≥ 1

1− τ

(
µ

β
− (1− σ)

)
, (A.63)

with equality when the NDS constraint (A.62) for n is not binding.

We have that

(
µ0

β
− (1− σ)

)
(1− τ1)−

(
µ1

β
− (1− σ)

)
(1− τ0)

=

(
µ0

β
− (1− σ)

)
(1− τ0 + ξ)−

(
µ0 + σξ

β
− (1− σ)

)
(1− τ0) (A.64)

=
µ0

β
ξ − (1− σ)ξ − (1− τ0)

σ

β
ξ (A.65)

=
ξ

β
(µ0 − β(1− σ)− σ(1− τ0)) (A.66)

> ξ(µ0 − 1) > 0. (A.67)

Hence, the right-hand side of the first-order condition is decreasing in the policy change so that,

for any given n, the optimal choice is x∗1(n) ≥ x∗0(n).

Lemma A.8. For all ε, we have N∗1 (ε) ≥ N ∗0 (ε).

Proof. We first show that for the optimal offer, all NDS constraints must be binding for n < N∗

and that x∗(n) < x∗(N∗) for all n < N∗.

Suppose to the contrary that the NDS constraint is not binding for some n < N∗. Denoting the

optimal choice conditional on n by x∗(n), we then have that

σδN
∗
εu′(x∗(N∗)) ≥ σδnεu′(x∗(n)) =

(
µ

β
− (1− σ)

)
1

1− τ
, (A.68)
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with strict inequality if the NDS constraint is binding at N∗.

Since n < N∗, it must be the case that

x∗(n) > x∗(N∗). (A.69)

But this implies that x∗(N∗) is feasible with a confirmation lag n. Hence, N∗ cannot be opti-

mal, since choosing (x∗(N∗), n) is feasible, has the same cost, but has earlier consumption. A

contradiction.

By a similar argument, it is then straightforward to show that x∗(n) < x∗(N∗), since otherwise

x∗(N∗) would be feasible with n and yield a higher utility than confirmation lag N∗.

With the policy change, we have that for all n < N∗0 , the NDS constraints are still binding. Hence,

the optimal choice is given by x∗1(n) = x∗0(n) for n < N∗0 . We have

σδN0εu(x∗0)− σδnεu(x∗0(n)) ≥ (x∗0 − x∗0(n))

(
1

1− τ0

)(
µ0

β
− (1− σ)

)
(A.70)

> (x∗0 − x∗0(n))

(
1

1− τ1

)(
µ1

β
− (1− σ)

)
, (A.71)

since x∗0 > x∗0(n) and the last term is decreasing with the policy change. This implies that the

original choice at N0 still yields higher utility than the optimal choice for n < N0 after the policy

change. Hence, the optimal choice must satisfy N∗1 ≥ N∗0 , which completes the proof.

Step 4

We are left to show that a binding feasibility constraint is optimal for the planner. Set τ = 0 and

suppose that the revenue constraint is not binding. Consider now a policy change according to

µ1 = µ0 − ξ (A.72)

R1 = R0
µ1

µ0
. (A.73)

Lemma A.5 follows immediately since the revenue constraint was slack at (µ0, 0, R0). Similarly,

Lemma A.6 goes through, except that the mining costs remain constant with the change now.

Finally, nothing in the remainder of the proof is affected by keeping τ = 0, since larger transaction

sizes become cheaper with lower inflation. This implies that the proposed policy change will increase

the planner’s objective function until the feasibility constraint will eventually become binding for

µ sufficiently close to 1.
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B A Stylized Introduction to the Double-Spending Problem

Our modern economy relies heavily on digital means of payments. Trade in the form of e-commerce,

for example, necessitates the usage of digital tokens. In a digital currency system, the means of

payment is simply a string of bits. This poses a problem, as these strings of bits, like any other

digital record, can easily be copied and reused for payment. Essentially, the digital token can be

counterfeited by using it twice, which is the so-called double-spending problem.

Traditionally, this problem has been overcome by relying on a trusted third party who manages,

for a fee, a centralized ledger and transfers balances by crediting and debiting buyers’ and sellers’

accounts. This third party is often the issuer of the digital currency itself, one prominent example

being PayPal, and the value of the currency derives from the fact that users trust the third party

to prohibit double spending (top of Figure 11).

Cryptocurrencies such as Bitcoin go a step further and remove the need for a trusted third party.

Instead, they rely on a decentralized network of (possibly anonymous) validators to maintain and

update copies of the ledger (bottom of Figure 11). This necessitates that consensus between the

validators is maintained about the correct record of transactions so that the users can be sure to

receive and keep ownership of balances. But such a consensus ultimately requires that (i) users

do not double spend the currency and (ii) users can trust the validators to accurately update the

ledger.

How do cryptocurrencies such as Bitcoin tackle these challenges? Trust in the currency is based

on a blockchain, which ensures the distributed verification, updating and storage of the record of

transaction histories.25 This is done by forming a blockchain. A block is a set of transactions

that have been conducted between the users of the cryptocurrency. A chain is created from these

blocks containing the history of past transactions that allows one to create a ledger where one

can publicly verify the amount of balances or currency a user owns. Hence, a blockchain is like a

book containing the ledger of all past transactions, with a block being a new page recording all the

current transactions.

Figure 12 illustrates how the blockchain is updated. To ensure consensus, validators compete for the

25In this sense it is different from traditional money, which is merely a partial memory of past transactions as

it records only the current distribution of balances and does not record how past transactions generate the current

distribution.
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Figure 11: Digital Currency vs. Cryptocurrency
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Figure 12: Blockchain-based Validation in a Cryptocurrency

right to update the chain with a new block. This competition can take various forms. In Bitcoin,

it happens through a process called mining. Miners (i.e., transaction validators) compete to solve

a computationally costly problem, which is called proof-of-work (PoW). The winner of this mining

process has the right to update the chain with a new block. The consensus protocol prescribes,

then, that the “longest” history will be accepted as the trusted public record.26 Since transaction

validation and mining are costly, a reward structure is needed for mining to take place. In Bitcoin,

for example, such rewards are currently financed by the creation of new coins and transaction fees.27

The main concern for users when trusting a cryptocurrency is the double-spending problem: after

having conducted a transaction, a user attempts to convince the validators (and, hence, the general

public, if the blockchain is trusted) to accept an alternative history in which some payment was

not conducted.28 If this attack succeeds, this user will keep both the balances and the good or

26In general, there is no explicit requirement to follow the consensus protocol, in the sense that validators and users

can trust an alternative history or blockchain that is not the longest one. Well-designed cryptocurrency, however,

tries to ensure that there are sufficient incentives to work with the longest history. For example, in Bitcoin, the

reward paid to a successful miner is contained in the new block itself. Should a different chain be adopted at a later

stage, this reward will be obsolete. For a game-theoretic analysis of the incentives to build on the longest chain, see

Biais et al. (2017).
27Huberman et al. (2017) explore the reward structure of cryptocurrencies from the perspective of the mining

game, but without modelling the double-spending problem.
28While basic cryptography ensures that people cannot spend others’ balances, a miner can exclude from a block

some transactions that have been initiated by other people. With positive transaction fees, a miner does not have an
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service he obtained, while the counterparty will be left empty-handed. Hence, the possibility of

such double spending can undermine the trust in the cryptocurrency.

A blockchain based on a PoW consensus protocol naturally deals with changing transaction history

backwards. The blockchain has to be dynamically consistent, in the sense that current transactions

have to be linked to transactions in all previous blocks.29 Consequently, if a person attempts to

revoke a transaction in the past, he has to propose an alternative blockchain (with that particular

transaction removed) and perform the PoW for each of the newly proposed blocks. Therefore, it is

very costly to rewrite the history of transactions backwards if the part of the chain that needs to

be replaced is long. Hence, the “older” transactions are, the more users can trust them.

Unfortunately, a blockchain does not automatically protect a cryptocurrency against a double-

spending attack that is forward-looking. Figure 13 considers a spot trade between a buyer and

a seller involving a cryptocurrency. The buyer instructs the miners to transfer a payment to the

seller while the seller simultaneously delivers the goods. Notice that the buyer can always secretly

mine an alternative history (or submit to some miners a different history) in which the fund is

not transferred. The final outcome of the transaction depends on which payment instruction is

incorporated into the blockchain first. If the former payment instruction is incorporated, then the

double-spending attempt fails. The seller receives the payment and the buyer gets the goods. If

the latter is accepted instead, then the double-spending attempt succeeds. In this case, the buyer

gets the goods without paying the seller.

Such a double-spending attack can be discouraged by introducing a confirmation lag into the

transactions. By waiting some blocks before completing the transaction (i.e., the seller delays the

delivery of the goods), it becomes harder to alter transactions in a sequence of new blocks. Figure

14 illustrates how a confirmation lag of one block confirmation raises the secret mining burden of

a double spender. The seller delivers the goods only after the payment is incorporated into the

blockchain, at least in one new block. Again, the buyer can secretly mine an alternative history

in which the payment does not happen. How successful secret mining is depends on the mining

competition and the length of the confirmation lag.

Suppose the buyer successfully solves the PoW for the block containing this alternative history.

incentive to remove other people’s transactions and lose such fees.
29For example, if someone transfers a balance d in block T , it must be the case that the person has received

sufficient net flows from block 0 to block T − 1 so that the accumulated amount is at least d.
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Figure 13: Double-Spending Attack
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Note that the buyer has an option whether to broadcast the secretly mined block immediately or

withhold it for future mining. If he decides to broadcast the block immediately, the seller will not

receive the payment, but he will also not deliver the goods as shown on the top of the figure. Hence,

the double-spending attack is not successful for the buyer.

Alternatively, the buyer can temporarily withhold the solved block and continue to secretly mine

another block (depicted on the bottom of the figure). Specifically, the buyer needs to allow other

miners to confirm the original payment to the seller, so as to induce the seller to deliver the goods.

At the same time, the buyer needs to secretly mine two blocks in a row for which the original

transaction is removed.30 If the buyer is successful in mining two blocks faster than other miners,

he can announce an alternative blockchain after the goods are delivered. In this case, the buyer

gets the goods without paying the seller. More generally, if the seller delivers the goods only after

observing N confirmations of the payment, the buyer needs to solve blocks N +1 consecutive times

in order to double spend successfully.

30Since the consensus protocol prescribes that the longest chain is accepted by the miners, the double spender

needs to mine two blocks in order to create an alternative, longer blockchain superseding the existing one, which has

one block solved already.
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Figure 14: Double-Spending Attack with Confirmation Lag
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C A Formal Description of the Blockchain

Aggregate State

Let mC
t (i) ≥ 0 denote the cryptocurrency balance held by person i in period t of the centralized

market. We use SDt = {mC
t (i)} to denote the entire public record of the holdings of these balances,

called the aggregate state. Similarly, mD
t,n(i) ≥ 0 and SDt,n denote the balances and the state at the

beginning of the nth subperiod of the period t decentralized market. The economy starts with a

given initial state SC0 .

Payments

We use ∆C
t (i, j) and ∆D

t,n(i, j) to denote transfers of balances from agent i to agent j in the

centralized and the decentralized market. We call these transfers payments. A payment in the

centralized market is feasible if

∆C
t (i, j) ≥ 0 (C.1)

mC
t (i) ≥

∑

j

∆C
t (i, j). (C.2)

Similarly, a payment in the decentralized market in subperiod n is feasible if

∆D
t,n(i, j) ≥ 0 (C.3)

mD
t,n(i) ≥

∑

j

∆D
t,n(i, j). (C.4)

The interpretation is that any person can pay positive amounts to others and the total payments

are bounded by the balances a person has accumulated.31 A person’s balance accumulates over time

as a result of net payment inflows. Therefore, given any payments, the state is updated according

to

mD
t,0(i) = mC

t (i) +
∑

j

∆C
t (j, i)−∆C

t (i, j) + Tt(i), (C.5)

mD
t,n(i) = mD

t,n−1(i) +
∑

j

∆D
t,n−1(j, i)−∆D

t,n−1(i, j), for n = 1, ..., N̄ (C.6)

mC
t+1(i) = mD

t,N̄ (i) +
∑

j

∆D
t,N̄ (j, i)−∆D

t,N̄ (i, j) (C.7)

31Through cryptography, the authenticity of payments is protected by digital signatures that only the owner of the

balance controls. As a result, only the owner of a balance can transfer it to another person. This gives rise to the

non-negativity and the cash-in-advance constraints as used in these definitions.
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for payments in the centralized and decentralized market, where T (i) denotes the potential transfers

of new balances created by the cryptocurrency to person i in the centralized market.

Blockchain

Since we assume public monitoring in the centralized market, feasible payments during this market

automatically update the aggregate state according to the rule (C.5). The new state at the start

of the decentralized market is thus given by

SDt,0 = ΨD
0 (SCt ,BCt ), (C.8)

where BCt = {∆C
t (i, j)} is the entire set of transfers in the centralized market and is called a block.

The update function ΨD
0 is defined according to the payments as described in equation (C.5).

Payments made during the decentralized market, however, enter the state through a process we

call mining. When agent i makes a payment to agent j in the decentralized market, he needs to

send out an instruction for a feasible payment ∆D
t,n(i, j) to miners who compete to update the state

with a new block of feasible payments in subperiod n of the market. The set of feasible payment

instructions BDt,n = {∆D
t,n(i, j)} is the nth block of period t payments in the decentralized market.

A sequence of blocks {BCt , {BDt,n}N̄n=0}Tt=0 iteratively generates a sequence of states {SCt , {SDt,n}N̄n=0}
T+1
t=0

according to

SDt,0 = ΨD
0 (SCt ,BCt ) (C.9)

SDt,n = ΨD
n (SDt,n−1,BDt,n−1), for n = 1, ..., N̄ (C.10)

SCt+1 = ΨC(SDt,N̄ ,B
D
t,N̄ ), (C.11)

where the update functions ΨD
n ,Ψ

C are defined by the equations (C.5)-(C.7). We call the sequence

of blocks BT = {BCt , {BDt,n}N̄n=0}Tt=0 a blockchain. Determined by the process of mining, one specific

blockchain is used to construct the public state and can be observed by everyone in the economy

at all times.
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D Proof-of-Stake (PoS) Consensus Protocol

We assume that the right for updating of the blockchain is allocated randomly across people. The

probability that one can update the chain is proportional to the unused balances in the night

market.

This is identical to pledging balances that are not used in transactions in order to gain a right

to update the chain. For simplicity, we assume that people can pledge balances after they learn

whether they have a match or not.

Denote the balances chosen in the day market for transaction purposes as d and the additional

amount of balances chosen for having a stake in the voting procedure as z′.

Whenever z′ > 0, we have that there is a strictly positive probability that there is a double spend,

since the buyer in a transaction will propose a block that undoes the payment whenever he is

allowed to do so.

Fix N . The problem is given by

max
d,z′
− (z′ + d) + σ

[
δNεu(x) +

β

µ

(
z′ +

(
z′

(1− σ)Z

)N+1

d+

(
z′

(1− σ)Z

)
R(N̄ + 1)

)]
+

(1− σ)
β

µ

[
z′ + d+

(
z′ + d

(1− σ)Z

)
R(N̄ + 1)

]
.

When having a transaction, a buyer is only allowed to update the chain if z′ > 0. Given N , he

needs to win the right to update N + 1 in order to double spend. If a buyer has no transaction, he

will pledge all his balances as a stake. Note that participation of the seller requires

x =
β

µ
d(1− τ)

(
1−

(
E(z′)

Z

)N+1
)

.

Notice that the buyer’s choice of z′ is not observed by the seller, so x depends on the seller’s

expectation E(z′) instead.

Lemma D.1. The objective function is strictly convex in z′ for all N ≥ 1 and linear in z′ for

N = 0.

Proof. Differentiating the objective function, we obtain

−i+

(
1

1− σ

)
(στ + (µ− 1)) +

(
σ

1− σ

)
(N + 1)

(
z′

(1− σ)Z

)N ( d
Z

)
. (D.1)
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Differentiating again, we obtain

(
σ

1− σ

)
(N + 1)N

(
z′

(1− σ)Z

)N−1( d
Z

)
> 0, (D.2)

or 0 if N = 0.

We are only looking for a sufficient condition so that we can support the policy N = 0, µ = 1

and τ = 0. Interestingly, for N = 0, we only need to check the slope at z′ = 0. This case implies

settling of the trade on the spot without delay. The idea is that the buyer has zero probability of

updating the chain and, hence, can never double spend.32

Importantly, setting µ = 1 and τ = 0 implies that people have nothing at stake when updating the

chain. They do not receive a reward and there are no penalties. In turn, setting positive rewards

increases the incentives for traders to acquire more balances.

Proposition D.2. Set N = 0, µ = 1 and τ = 0. Then the PoS protocol avoids double spending

for B sufficiently large and σ sufficiently small.

Proof. For the policy parameters, (D.1) implies that the objective function is decreasing in z′ if

(
σ

1− σ

)(
d

Z

)
≤ i =

1

β
− 1,

which is satisfied for B sufficiently large and σ sufficiently small since d is bounded.

Note that even though a system based on PoS can avoid the double-spending attacks studied above,

it may still be subject to “long-range attacks.” For example, if all coins are owned initially by one

issuer, then he can easily propose a long fork starting from the initial block to claim all existing

balances in any future dates. By assuming that the blockchain cannot be rewritten after the end

of the night period, our model has ruled out these types of long-range attacks. This captures the

feature of checkpoints introduced in Bitcoin.

Interestingly, these are exactly the concerns and proposals raised by practitioners. For example,

BitFury (2015, p.13) pointed out that “In PoW-type systems, this [long range] attack is prevented

32We might need to look at N = 1 since the buyer can still broadcast a different transaction so that the seller at

least needs to see one transaction in the chain to hand over the good. This will, however, not influence the analysis,

since the condition for z′ = 0 being optimal is identical except that we do not need to check the slope, but the value

of the function at z′ = (1 − σ)Z. Or we could require a negative derivative at z′ = (1 − σ)Z.
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by the enormous amount of computational power needed to build the blockchain from scratch;

however, this task is within the realm of possibility with proof of stake. As the attacker is able

to move coins freely in the blockchain he is building, he has a much higher dimensionality of the

search space ... To prevent a long range attack, the protocol can specify the maximum allowed

depth of a branching point.”

Finally, note that there are issues with PoS other than double spending. Consensus could be a

problem, especially if there is a nothing-at-stake problem, or if we need to ensure that new parties

can decide unambiguously between competing chains. Our model is not developed to address these

issues.
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E Appendix Alternative Calibration to 2016 Data

We recalculated our welfare losses with data from 2016, where congestion was higher and the

Bitcoin reward was halved to 12.5 BTC. The calibration shows that the number of transactions

roughly doubled and transaction fees tripled. Based on these numbers, we obtain µ = 1.00011,

τ = 0.00029499, B = 14765708.778, σ = 0.0158. While the total number of users has doubled, the

likelihood of an individual making a transaction remained constant.

Per day Per block

No. of transactions 233717.2866 1623.0367

Estimated transaction volume (BTC) 251833.8527 1748.8462

Transaction fees (BTC) 74.2892 0.5159

Based on 2016 data, the implied welfare costs during this period are summarized in the table below.

As expected from our theoretical analysis, the welfare cost is about 50% of the welfare cost in the

2015 calibrated economy. This is not surprising at all, as the block reward has halved as well, and

the transaction fees – while higher – have little impact on this result. Indeed, for our benchmark

calibration, halving the reward in our comparative statics exercise yields almost exactly the same

number (0.74%). Similarly, welfare losses for the optimal policy remain unchanged, reflecting the

public good character of the no-double-spending constraint: most transactions can free ride on

large-value transactions, which require high overall rewards to safeguard against double spending.

Bitcoin (benchmark) Bitcoin (optimal policy)

µ− 1 4.2% 0.37%

τ 0.0295% 0%

welfare loss 0.7698% 0.20%

equivalent inflation tax 111.85% 47.03%
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