Are sunspots effective in a big crowd? Evidence from a large-scale bank run experiment

Jasmina Arifovic (Simon Fraser U)

Joint work with Cars Hommes (U of Amsterdam) Anita Kopanyi-Peuker (U Amsterdam) and Isabelle Salle (Utrecht U)

Tenth Workshop on Theoretical and Experimental Macroeconomics

Motivation

Motivation

- Many economic situations can be described as coordination problems
 → should agents attack the currency? should they withdraw their
 money from the bank?
- Financial crises might not only happen when the state of the economy is bad → they can occur as pure coordination failure → agents simply coordinate on "bad" equilibria
- $\bullet\,$ Beliefs about others' actions play an important role $\to\,$ especially if coordination is more difficult

Motivation

- Many economic situations can be described as coordination problems
 → should agents attack the currency? should they withdraw their
 money from the bank?
- Financial crises might not only happen when the state of the economy is bad → they can occur as pure coordination failure → agents simply coordinate on "bad" equilibria
- $\bullet\,$ Beliefs about others' actions play an important role $\to\,$ especially if coordination is more difficult
- With this research we aim to understand under what circumstances **bank runs** are more likely and under which conditions subjects follow **sunspot announcements**
 - Is coordination on a sunspot equilibrium more or less likely in a large group?
 - 2 How does it depend on the structure of the sunspot announcements?

Sunspot announcements

- Random extrinsic variable that is independent of the economic outcomes
- In our case: Public announcement (A) that forecasts whether many or few people will choose to withdraw
- Sunspots might serve as coordination device \rightarrow to be effective: language must be meaningful + scarce information should be provided to subjects (Duffy and Fisher, 2005)
- References: Marimon, Spear and Sunder (1993), Duffy and Feltovich (2010), Fehr, Heinemann and Llorente-Saguer (2012), Arifovic, Evans and Kostyshyna (2013),

Motivation

Evidence so far in bank run

- Arifovic et al. (2013) run bank run experiments in groups of 10 with different short-term return on deposits → for more extreme values of return subjects more easily coordinate on one of the pure equilibria of the game
- Arifovic and Jiang (2019) investigated 3 different values of short-term return, as well as sunspot announcements → They find that sunspot equilibria are more likely when uncertainty about coordination is higher
- We expand Arifovic and Jiang (2015) to groups e of 70-90, and consider different announcement structures
- Further literature: Madiès (2006), Garrat and Keister (2009), Schotter and Yorulmazer (2009), Kiss et al. (2012), Klos and Sträter (2013), Chakravarty et al. (2014), Brown et al. (2012), Arifovic et al.(2014)

The bank run game I

• *N* subjects have deposit in the bank (normalized to 1) \rightarrow they can either withdraw their money, or wait \rightarrow payoffs depend on the publicly known fixed short-term rate (r = 1.54 or r = 1.33) and long-term rate (R = 2 > r), and number of withdrawals (e)

$$\pi_{\text{withdraw}} = \min\left\{r, \frac{N}{e}\right\};$$

$$\pi_{\text{wait}} = \max\left\{0, \frac{N - re}{N - e}R\right\}.$$

The bank run game I

1

• *N* subjects have deposit in the bank (normalized to 1) \rightarrow they can either withdraw their money, or wait \rightarrow payoffs depend on the publicly known fixed short-term rate (r = 1.54 or r = 1.33) and long-term rate (R = 2 > r), and number of withdrawals (e)

$$egin{array}{rl} \pi_{ extsf{withdraw}} &= \min\left\{r, rac{N}{e}
ight\}; \ \pi_{ extsf{wait}} &= \max\left\{0, rac{N-re}{N-e}R
ight\}. \end{array}$$

Arifovic, Jiang, and Xu, 2013

The bank run game II

- Two realizations for sunspot announcements:
 - "The forecast is that e* or more people will choose to withdraw."
 - "The forecast is that e* or less people will choose to withdraw."
- Arifovic and Jiang (2019) N =10, r = 1.1, r = 1.54, and r = 1.82
- persistence parameter $\rho = 0.8$

Arifovic and Jiang, 2019, r=1.11

Arifovic and Jiang, 2019, r = 1.54

Arifovic and Jiang, 2019, r = 1.82

- objective: investigate the behavior in small versus large groups
- we chose the following parameters:
- e^* : number of people withdrawing such that the two strategies result in the same payoff \Rightarrow for r = 1.54 (r = 1.33) 30% (50%)
- Markov process: A remains same in next period with a given probability, ρ ($\rho = 0.5$ or $\rho = 0.8$) \rightarrow same sequence of extrinsic random variable realizations was used for all sessions

Treatments and procedure

Payoff structure	<i>r</i> = 1.54	<i>r</i> = 1.54	<i>r</i> = 1.33
Persistence parameter	ho = 0.5	ho= 0.8	ho = 0.8
group size			
Small	SmallVar	SmallRun	SmallWait
Large	LargeVar	LargeRun	LargeWait

Table 1: Summary of the experimental treatments

- 56 periods of simultaneous move game: 6 (unpaid) training + 50 formal \rightarrow during training subjects played against robots programmed to follow the sunspot
- The labs in Amsterdam and Valencia connected via internet: 4-4 groups for the large treatments, 6-6 groups in the small treatments (16 sessions in total with 1246 subjects) → each session ≈ 2 hours with mean earnings ≈ 17 euros plus show-up

Jasmina Arifovic (SFU)

• Group size does not affect the coordination of the participants in the experiment.

Group size does not affect the coordination of the participants in the experiment.
 partially

- Group size does not affect the coordination of the participants in the experiment.
 partially
- **②** Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case.

- Group size does not affect the coordination of the participants in the experiment.
 partially
- Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case. confirmed

- Group size does not affect the coordination of the participants in the experiment.
 partially
- Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case. confirmed
- Sunspot-driven coordination is more likely when r = 1.54 than when r = 1.33, but does not depend on group size N.

- Group size does not affect the coordination of the participants in the experiment.
 partially
- Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case. confirmed
- Sunspot-driven coordination is more likely when r = 1.54 than when r = 1.33, but does not depend on group size *N*. partially

- Group size does not affect the coordination of the participants in the experiment.
 partially
- Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case. confirmed
- Sunspot-driven coordination is more likely when r = 1.54 than when r = 1.33, but does not depend on group size *N*. partially
- Sunspot-driven coordination is more likely when $\rho = 0.5$ than when $\rho = 0.8$, but does not depend on group size N.

- Group size does not affect the coordination of the participants in the experiment.
 partially
- Groups coordinate more often on the 'wait'-equilibrium in case of r = 1.33 compared to the r = 1.54 case. confirmed
- Sunspot-driven coordination is more likely when r = 1.54 than when r = 1.33, but does not depend on group size *N*. partially
- Sunspot-driven coordination is more likely when $\rho = 0.5$ than when $\rho = 0.8$, but does not depend on group size *N*. partially

Main results

- 5 types of behavior were observed
 - Convergence to run equilibrium
 - Onvergence to wait equilibrium
 - **③** Following the **sunspot** announcements
 - Transient sunspot followed by convergence to run
 - Transient sunspot followed by convergence to wait

Main results

- 5 types of behavior were observed
 - Convergence to run equilibrium
 - Onvergence to wait equilibrium
 - **③** Following the **sunspot** announcements
 - Transient sunspot followed by convergence to run
 - Transient sunspot followed by convergence to wait

	Small group	Large group	
$r = 1.54, \ \rho = 0.5$	3 type 1, 1 type 2, 2 type 3	<mark>4</mark> type 1	
$r = 1.54, \ \rho = 0.8$	2 type 1, 2 type 2, 2 type 5	3 type 1, 1 type 4	
$r = 1.33, \ \rho = 0.8$	6 type 2	4 type 2	

r = 1.54 and ho = 0.5 (no persistence)

r = 1.54 and $\rho = 0.8$, small groups

June, 2019 16 / 25

Jasmina Arifovic (SFU)

r = 1.54 and $\rho = 0.8$, large groups

r = 1.33 and $\rho = 0.8$

Mean withdrawal rates

Mean withdrawal rates

Whole data:

• For r = 1.54, ρ fixed significant group size difference

Mean withdrawal rates

Period 7:

- No group size difference
- $\bullet\,$ For r fixed, significant difference when changing $\rho\to$ effect of the first announcement

Jasmina Arifovic (SFU)

Following the announcement

Following the announcement

Whole data:

• Weakly significant group size effect in Var treatment (ho=0.5)

Following the announcement

First change:

• No group size difference

On discarding the announcement

On discarding the announcement

| 1 || 2 || 3 || 4 || 5

Notes: The answers are scaled from 1, corresponding to 'strongly disagree', to 5, i.e. 'strongly agree', with 3 being a 'neutral' statement.

Jasmina Arifovic (SFU)

On strategic uncertainty

On strategic uncertainty

Develop a behavioral model

- Individual evolutionary learning model adapts to 'no-run' equilbrium for 'low' values of r
- It adapts to 'run' equilibrium for 'high' values of r
- it learns to follow the 'announcements' for intermediate values of r
- no difference in between 'small' and 'large' groups
- we are working on developing a behavioral model that would take this into account

- Large groups are more likely to end up in the run equilibrium than small groups, when 'waiting' is perceived relatively risky
- Group size does not matter when 'wait' is more attractive
- Sunspot announcements have only weak effect for large groups \to in small groups (close to) sunspot equilibrium was observed in the more volatile environment
- Following the message is viewed more risky in large groups

Thank you for your attention. Any questions, comments?

Decision screen

On discarding the announcement

| 1 || 2 || 3 || 4 || 5

Notes: The answers are scaled from 1, corresponding to 'strongly disagree', to 5, i.e. 'strongly agree', with 3 being a 'neutral' statement.

Jasmina Arifovic (SFU)

On strategic uncertainty

Large groups r = 1.54 and $\rho = 0.5$

Small groups r = 1.54 and $\rho = 0.5$

Small groups r = 1.54 and $\rho = 0.5$ (cont.)

Large groups r = 1.54 and $\rho = 0.8$

Small groups r = 1.54 and $\rho = 0.8$

Small groups r = 1.54 and $\rho = 0.8$ (cont.)

Large groups r = 1.33 and $\rho = 0.8$

Small groups r = 1.33 and $\rho = 0.8$

Jasmina Arifovic (SFU)

June, 2019 36 / 25

Small groups r = 1.33 and $\rho = 0.8$ (cont.)

