

Cars Hommes¹ Tomasz Makarewicz²

¹CeNDEF, University of Amsterdam; Bank of Canada

²Martin-Luther Universität Halle-Wittenberg; Otto-Friedrich Universität Bamberg

Bank of Canada Ottawa. 25 June 2019

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant

agreement no 612796

PLT and guidance

Introduction ●0000	Experimental design 00000000	Hypotheses O	Results 000000000000000000000000000000000000

- Experimental study on the effect of monetary policy with
 - Optice Level target and
 - 2 guidance.
- Simple DSGE model with zero-lower bound on the interest rate. Subjects predict inflation and output gap for 50 periods.

Main results:

- PLT can stabilize the economy...
- ... but only if *reacts strongly* to price level and output deviations.
- Guidance seems to play *little role*.
- Subjects are heterogeneous and focus on simple adaptive/trend chasing forecasting rules.

Introduction 0●000	Experimental design 0000000	Hypotheses O	Results 000000000000000000000000000000000000
Motivation			

- Zero-lower bound recession in Eurozone.
- ZLB can trigger a self-sustaining spiral of deflation—output contraction (eg. Benhabib et al., 2001).
- Lesson more *robust* monetary policy required, eg., Honkapohja and Mitra (2015):
 - Inominal price level targeting (PLT);
 - Image expectations through guidance.

Challenge: 2007 crisis \rightarrow *dynamics far from the steady state.*

Away from the steady state

- 2007 crisis took us away from the Great Moderation.
- How will agents react to the uncertainty?
- **Rational interpretation:** agents can coordinate on different equilibrium paths towards different steady states.
- **Behavioral interpretation:** different learning mechanisms result in *very different* dynamics.
- Example: PLT under adaptive learning requires agents to trust in guidance (Honkapohja and Mitra, 2015).
- We need an empirical laboratory test for the monetary policy.

Hypotheses O

Lesson from learning models

- Macroeconomy can be described as a mechanism driven by *expectations*.
- Consider partial equilibrium in simple DSGE model: *expected* inflation and output → *realized* inflation and output.

$$\begin{pmatrix} \pi_t \\ y_t \end{pmatrix} = F \begin{pmatrix} \pi_{t+1}^e \\ y_{t+1}^e \end{pmatrix}.$$

Positive feedback – higher expectations lead to higher realized variables, F'(·) > 0 (positive partial derivatives).

Lesson from learning models (cont.)

- Learning models: if the positive feedback is (sufficiently) strong, learning dynamics can yield *self-reinforcing oscillations*.
- HSM example: price oscillations in *asset markets* (Anufriev and Hommes, 2012), because agents learn to *coordinate on price trend*.
- Intuition confirmed by experiments (eg., Hommes et al., 2005, Bao and Hommes, 2014) and market studies (eg., Boswijk et al., 2007, Dieci and Westerhoff, 2016).
- **Rational interpretation:** initial uncertainty leads to coordination on explosive equilibria (e.g. rational bubbles or ZLB).

Lesson: robust monetary policy must *tame* the positive feedback.

Introduction 00000	Experimental design ●0000000	Hypotheses O	Results 000000000000000000000000000000000000
M/b_{1} on ∞	(novimont?		

Why an experiment?

- *Complementary* study to empirical and theoretical work.
- Direct control over the market, information and monetary policy.
- We can *directly observe* expectations with repeated *ceteris paribus* samples (*as if* NK economy).
- Inflation expectations depend on 'normal people', like the subjects.
- Test for what can we assume about the agents:
 - will they trust guidance?
 - what behavior will they coordinate on?

Introduction 00000	Experimental design 0●000000	Hypotheses O	Results 000000000000000000000000000000000000
Experimen	tal design		

Added value of the paper!

- Learning to Forecast experiment: Duffy (2012), Assenza et al., (2014).
- Standard DSGE economy (Benhabib et al., 2014, Mitra and Honkapohja, 2015).
- Six subjects, who are tasked to *forecast inflation* and *output gap* **two periods ahead**.
- *Realized* inflation and output gap based on the *forecasts*.
- Subjects rewarded conditional on their *forecasting accuracy*.
- This is repeated for 50 rounds.

Two treatment dimensions: Taylor rule and information given to the subjects.

Introduction	Experimental design	Hypotheses	Results
00000	0000000	O	000000000000000000000000000000000000

Experimental economy

• The aggregate consumption:

$$c_t = c_{t+1}^e \left(\frac{\pi_{t+1}^e}{\beta R_t}\right)^{1/\sigma} + \varepsilon_{ct}.$$

• The Phillips curve:

$$\pi_t = Q^{-1}[\mathcal{K}(c_t, \pi_{t+1}^e)] + \varepsilon_{pt},$$

where $Q(\pi_t) = (\pi_t - 1)\pi_t$ and
 $\mathcal{K}(c_t, \pi_{t+1}^e) = \beta \pi_{t+1}^e (\pi_{t+1}^e - 1) + \frac{\nu}{\alpha \gamma} (c_t + \bar{g})^{(1+\varepsilon)/\alpha}$
 $+ \frac{1 - \nu}{\gamma} (c_t + \bar{g}) c_t^{-\sigma}.$

Introduction	Experimental design	Hypotheses	Results
00000	000●0000	O	000000000000000000000000000000000000

Dimension: Taylor rule

$$R_{t} = 1 + \max\left\{0, \bar{R} - 1 + \psi_{P}\Psi_{t} + \psi_{y}\frac{y_{t+1}^{e} - y^{*}}{y^{*}}\right\}$$

- $\Psi_t = \pi_{t+1}^e \pi^*$ means inflation targeting \rightarrow standard specification with $\psi_P = 1.5$, $\psi_y = 1$.
- $\Psi_t = (P_{t+1}^e \bar{P}_{t+1}) / \bar{P}_{t+1}$ with $\bar{P}_{t+1} = \pi^* \bar{P}_t$ means PLT \rightarrow how to choose parameters?
- Under **naive expectations**, the system is stable only if ψ parameters are relatively **high** $\rightarrow \psi_P = 3$ and $\psi_V = 2$.
- This is 'unreasonably harsh' under rational expectations or **adaptive** learning \rightarrow Honkapohja and Mitra (2015) suggest $\psi_y = 1$ and $\psi_P = 0.25$ (under guidance).

Dimension: Information set

Always:

- Qualitative story about the market.
- Individual past forecasts, realized inflation, output gap and CB interest rate until the previous period.
- **Guidance treatments** → following *Honkapohja and Mitra (2015)*:
 - Subjects explained that the CB wants to keep prices, not inflation on a certain trajectory.
 - **②** Deviations from the intended price level shown to the subjects.

Never:

- Number of subjects in one economy (price-takers).
- Occisions and earnings of other subjects.
- The actual laws of motion and steady state values (real life).

Introduction	Experimental design	Hypotheses	Results
00000	00000000	O	000000000000000000000000000000000000

Five treatments

- **()** Inflation targeting \rightarrow benchmark (& other experiments).
- **PLT:** 2 × 2 design.

	Stability		
Taylor rule	Weak PLT rule	Strong PLT rule	
Guidance	Unstable/Guidance Unstable/No g.	Stable/Guidance Stable/No g.	

Stability: only strong rule stable under *naive expectations*. **Guidance:** additional information about the intended price path.

Introduction 00000	Experimental design 000000●0	Hypotheses O	Results 000000000000000000000000000000000000

- 6 groups per treatment, each with 6 subjects.
- One treatment: 36 subjects.
- 180 subjects in total.

Experiment

- Sessions in November and December 2015 and January and February 2016 in the CREED lab in Amsterdam.
- Typical earnings: around 15EUR in unstable, and 25EUR in stable groups.

Hypotheses

Subject computer screen

Hypotheses

Subject computer screen

Period	Inflation forecast	Realized inflation	Payoff	Output gap forecast	Realized output gap	Payoff	Interest rate	level deviatio
4	4.770000	m	???	7.800000	<i>?!!</i>	???	272	???
3	3.000000	6.557268	21.942973	4.440000	8.196779	21.022630	5.345861	-3.82512
2	2.000000	4.770651	26.520617	2.000000	7.805010	14.695056	0.000000	-5.2306
1	1.000000	3.029205	33.011962	1.000000	4.449818	22.472830	0.000000	-5.02320
Total points:		Inflation forecast points:	81.475552		Output gap forecast points:	58.190517		

Experimental hypotheses

- H1 Under PLT weak Taylor rule sufficient for stability.
- H2 Guidance can help to *stabilize* the economy.
- H3 Subjects will learn *RE equilibrium*: no trend chasing type of expectations.

Hypotheses 0

Inflation targeting – INF04

Mild oscillations, possible stability.

Good coordination between the subjects.

Results •••••••••

PLT targeting – Strong, no guidance – PLTStableNo04

Initial period 'volatile', but... ... oscillations die out and groups converge to the 'normal' steady state.

Good coordination between the subjects.

Results

PLT – Weak, no guidance – PLTUNStableNo05

Large oscillations that do not die out \rightarrow without forecasting boundaries (-8% and 15%), economies would explode/implode.

Subject coordination weaker \rightarrow more difficult environment.

Introduction	Experimental design	Hypotheses	Results
00000	00000000	O	000●000000000000000000000000000000000

Economy explodes under weak PLT Taylor rule and is stable under strong one \rightarrow H1 false!

(confirmed by a statistical test, see following slides)

PLT – Strong, guidance – PLTStableGuid02

Dampening oscillations, groups converge to the 'normal' steady state.

Very similar to no guidance counterpart.

PLT – Weak, guidance – PLTUNStableGuid03

Large oscillations that seem similar to no guidance counterpart.

Hypotheses

Phase plots – Inflation targeting

Experimental des

Hypotheses

Phase plots – PLT (2×2 setup)

Guidance No guidance 0.83 0.83 0.8 0.8 0.77 0.77 0.74 0.74 0.71 0.71 0.68 0.68 0.95 1.05 0.9 1 1.1 1.2 0.9 0.95 1.05 1.15 1 1.2 0.83 0.83 0.8 0.8 0.77 0.77 0.74 0.74 0.71 0.71 0.68 0.68 1.15 0.9 0.95 1.05 1.1 1.2 0.9 0.95 1.05 1.1 1.15 1.2

Introduction	Experimental design	Hypotheses	Results
00000	00000000	O	000000000000000000000000000000000000

- Guidance plays no stabilizing role \rightarrow H2 false!
- Formal test: Relative Absolute Deviation measures.
- Mann Whitney U test on RAD distribution gives the following stability ranking:
 - Inflation: Strong PLT > Inflation > Weak PLT.
 - **Output gap:** Strong PLT = Inflation > Weak PLT.
- Tests confirm that guidance has *no significant effect*.

Introduction 00000	Experimental design 00000000	Hypotheses O	Results ○○○○○○○○●○○○○○			
Individual behavior						

- For every subject: automated procedure to estimate two behavioral forecasting rules (inflation and output gap).
- *Joint* estimation based on a simple *First-Order rule*.
- Heterogeneity within groups and treatments and between treatments.
- Inflation rules, and rules in *stable* groups *simpler* → complicated behavior learned in complicated environment.
- Many subjects follow *adaptive* and/or *trend chasing* expectations → H3 *treatment depended*!
- 2D positive feedback results similar to asset pricing experiments.

Average (significant) used coefficient

	Treatment				
Coeff.	Inf	StrongNo	WeakNo	StrongGuid	WeakGuid
Trend π	0.586	0.397	0.496	0.299	0.513
	(18)	(13)	(29)	(13)	(34)
Trend y	0.412	0.17	0.436	0.216	0.428
	(15)	(10)	(36)	(18)	(32)
PLT π				-0.349	-0.0313
				(13)	(23)
PLT y				-0.276	-0.046
				(22)	(28)

Estimated coefficients: *average* among significant and *number*/36 of significant.

Experimental desi

Hypotheses

Trend following – estimated coefficients

environments.

Experimental design	Hypotheses	Results
		000000000000000000000000000000000000000

Guidance – estimated coefficients

Result: the effect of *guidance* is *weak*.

Introduction 00000	Experimental design 0000000	Hypotheses O	Results 000000000000000000000000000000000000
Conclusions			

- Learning to Forecast experiment in macro setting.
- Typical DSGE economy, with *inflation* or nominal price level targeting (*PLT*).
- Five treatments: inflation target; *stability* and *guidance* of PLT.
- No evidence for macro effect of guidance.
- **Remark:** we used simple version of guidance, more studies should follow.
- Indirect expectations management *less efficient*?
- PLT can be stabilizing, but only if harsh reaction to price level and output deviations.
- Can Central Banks use harsh rules?

Hypotheses O

Conclusions: individual behavior

- DSGE is a 2D positive feedback system.
- Subjects learn to *chase trends*.
- **Behavioral interpretation:** *anchor and adjustment* like in asset pricing models/experiments.
- **Rational interpretation:** *easier to coordinate* on oscillatory equilibrium paths.
- Subjects focus more often on guidance in *unstable* economies, but...
- ... guidance *does not counterweight weak monetary policy*.

Result: CB's need to consider trend chasing for their monetary rules.

Questions? Comment?

Thank you for your attention!

Appendix

Theoretical benchmark • • • • • •

Stability under inflation and stable price targeting

Phase diagrams under naive expectations in $\pi \times c$ space.

Stability under inflation and stable price targeting

Attractor (blue means vicinity of the FSS; 20 periods).

Theoretical benchmark 0 000

Unstable price level targeting

Remark: after 10 more periods blue disappears.

Theoretical benchmark ○ ○○●

Estimated rule

$$\pi_{t+1}^{e} = c^{\pi} + \alpha_{1}^{\pi} \pi_{t}^{e} + \alpha_{2}^{\pi} \pi_{t-1} + \alpha_{3}^{\pi} \upsilon_{t-1} + \beta^{\pi} (\pi_{t-1} - \pi_{t-2})$$
(1)
+ $\delta^{\pi} r_{t-1} + \gamma^{\pi} D_{t-1} + \varepsilon_{t}^{\pi},$
 $\upsilon_{t+1}^{e} = c^{\upsilon} + \alpha_{1}^{\upsilon} \pi_{t}^{e} + \alpha_{2}^{\upsilon} \upsilon_{t-1} + \alpha_{3}^{\upsilon} \pi_{t-1} + \beta^{\upsilon} (\upsilon_{t-1} - \upsilon_{t-2})$ (2)
+ $\delta^{\upsilon} r_{t-1} + \gamma^{\upsilon} D_{t-1} + \varepsilon_{t}^{\upsilon},$

where

$$\begin{pmatrix} \varepsilon_t^{\pi} \\ \varepsilon_t^{\upsilon} \end{pmatrix} \equiv \varepsilon_t \sim NID\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{\pi}^2 & \rho_{\pi,\upsilon}\sigma_{\pi}\sigma_{\upsilon} \\ \rho_{\pi,\upsilon}\sigma_{\pi}\sigma_{\upsilon} & \sigma_{\upsilon}^2 \end{pmatrix}\right).$$
(3)

Use ML for estimation and LR test for model selection (significance driven).