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Abstract 

This paper studies how the outcome of Bayesian persuasion depends on a sender’s 
information. I study a game in which, prior to the sender’s information disclosure, the 
designer can restrict the most informative signal that the sender can generate. In the binary 
action case, I consider arbitrary preferences of the designer and characterize all equilibrium 
outcomes. As a corollary, I solve a problem of how to maximize a receiver’s payoffs by 
restricting the sender’s information: Whenever the designer can increase the receiver’s 
payoffs by restricting the sender’s information, the receiver-optimal way coincides with an 
equilibrium of the game in which the receiver persuades the sender. 

Bank topic: Economic models 
JEL codes: D82, D83 

Résumé 

Dans cette étude, j’examine comment le résultat de la persuasion dans un jeu bayésien 
dépend de l’information dont dispose un expéditeur. Pour ce faire, je considère un jeu dans 
lequel, avant que l’expéditeur ne transmette la moindre information, le concepteur est 
autorisé à limiter le contenu du signal le plus porteur d’information que l’expéditeur peut 
générer. Partant de l’hypothèse que chaque joueur est confronté à un choix binaire, je me 
penche sur les préférences arbitraires du concepteur et décris toutes les situations 
d’équilibre. Comme corollaire, je résous un problème pour déterminer comment 
maximaliser les bénéfices du destinataire en restreignant l’information du côté de 
l’expéditeur : chaque fois que le concepteur peut améliorer les bénéfices du destinataire en 
restreignant l’information que peut collecter l’expéditeur, l’issue optimale pour le 
destinataire correspond à une situation d’équilibre où le destinataire persuade l’expéditeur. 

Sujet : Modèles économiques 
Codes JEL : D82, D83 



Non-technical Summary 

Online retailers such as Amazon collect consumers’ information like purchase histories and 

personal characteristics. This information can be used to offer consumers better services, for ex-

ample, to design recommendation systems that maximize consumers’ value and minimize their 

time spent searching; however, such information can also be used improperly to mislead con-

sumers and maximize retailers’ profits. Whether a regulator can increase consumers’ welfare by 

restricting these types of services and information collection is a non-trivial question.

To address this question, this paper considers a game-theoretic model of information disclo-

sure, in which the sender strategically discloses information to the receiver, who takes an action 

that affects the welfare of each player. The main focus is on how a regulator can improve the 

receiver’s welfare by restricting the information available to the sender. In the example of online 

sellers, imagine that a seller (i.e., sender) discloses consumers’ (i.e., receiver) information about 

product values, which depend on the product’s characteristics and consumers’ characteristics. The 

question is whether a regulator can improve consumer welfare by restricting the seller’s informa-

tion collection, which, in turn, limits the scope for strategic information disclosure. The paper first 

characterizes all possible outcomes when the regulator restricts the sender’s information in arbi-

trary ways. Moreover, I derive a necessary and sufficient condition under which the regulator can 

strictly improve the receiver’s welfare and social welfare by restricting the sender’s information.

In the example of online sellers, the main results have the following implication. Regulation 

benefits consumers if it allows sellers to collect just enough information to provide accurate rec-

ommendations without strategically manipulating consumers’ purchase behavior in their favor.
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1 Introduction

This paper studies how the outcome of Bayesian persuasion depends on a sender’s information.

Suppose that the sender (he) discloses information to a receiver (she), who then takes an action that

affects the welfare of both players. Now, can the receiver benefit if the sender has less information

to potentially disclose? How does social welfare depend on information available to the sender? To

answer these questions, I consider a model in which, prior to the sender’s information disclosure,

a “designer” (it) can restrict the most informative signal that the sender can generate. I assume that

the receiver has a binary action choice but impose no special assumptions on the state space and

the preferences.

The model would fit the context of delegation in an organization. Imagine that the principal

(the designer or the receiver) wants to learn division-specific information to make an appropriate

decision, and the principal asks an agent (the sender) in the division to design an experiment that

reveals information. However, because the agent puts more priority on the division, the agent might

strategically design an experiment that benefits the division instead of the principal. To avoid this

problem, can the principal set a rule determining the types of information that the agent cannot

acquire?

Another potential application is the effect of online privacy regulations. Suppose that an online

seller (the sender) launches a new product. The product values are idiosyncratic and unknown to

consumers (the receiver). However, the seller can learn about the values, say, by combining its

knowledge of product characteristics and observable individual characteristics such as consumers’

browsing histories. If the seller can obtain precise estimates of product values, it can strategically

disclose this information to influence consumers’ purchase decisions and increase sales.1 Now,

can a regulator (the designer) improve consumer welfare through online privacy regulations that

prevent the seller from observing individual characteristics and obtaining fine-grained estimates of

valuations?

1For example, the seller may design a recommendation system that determines how and whether to recommend
the new product as a function of the estimate of each consumer’s product valuation. This is similar to the idea of Rayo
and Segal (2010) where a website designs a rule to display ads to communicate the relevance of ads to users.
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The main result considers arbitrary preferences of the designer and characterizes all equilibrium

payoffs of the sender and the receiver. In other words, the result characterizes the set of all possible

equilibrium outcomes when we consider the arbitrary information of the sender.

The main result has several notable implications. First, the set of all equilibrium payoff profiles

may have an empty interior, in which case restricting the sender’s information does not affect the

receiver’s payoffs and can only reduce the sender’s payoffs. I show that this occurs if the sender

prefers one action in all states of the world. Second, as a direct corollary, I obtain the set of all

efficient outcomes that the designer can attain by restricting the sender’s information.2 Moreover,

I show that if the designer’s payoffs are increasing in the expected payoffs of the receiver and

the sender, the designer implements an efficient outcome.3 Combining these observations, we can

derive the equilibrium strategy of the designer, who puts arbitrary (nonnegative) weights on the

payoffs of the sender and the receiver.

One interesting case is when the designer aims to maximize the receiver’s payoff. I show that

whenever restricting the sender’s information strictly benefits the receiver (relative to the origi-

nal Bayesian persuasion), the receiver-optimal way coincides with an equilibrium of the “flipped

game” in which the receiver persuades the sender. Thus, we can obtain the designer’s equilibrium

strategy by solving the original Bayesian persuasion and the flipped game in which the preferences

of the sender and the receiver are switched.

This work relates to several strands of existing literature. First, the paper refers to work on

information design (e.g., Kamenica and Gentzkow 2011; Kolotilin 2015; Taneva 2015; Bergemann

and Morris 2016). We may view the current model as a new information design problem, where the

underlying game is an information design problem as well. Second, the paper also relates to works

on Bayesian persuasion with multiple senders, such as Gentzkow and Kamenica (2017) and Li and

Norman (2018). However, we should note that the designer in this paper is not a sender because

the receiver does not observe a realization drawn by the designer’s signal. Third, the cheap-talk

literature studies the idea of restricting the sender’s information (Fischer and Stocken 2001; Ivanov

2010, 2015; Frug 2016) and sequential communication among multiple senders (Ambrus et al.

2Here, an outcome is said to be efficient when there is no state-contingent action plan of the receiver that gives
both the sender and the receiver greater payoffs.

3This result is not a priori obvious, because some efficient outcomes may not arise as an equilibrium regardless of
how the designer restricts the sender’s information.
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2013). For example, Ivanov (2010) studies the problem of restricting the sender’s information

and provides a sufficient condition under which information restrictions increase the receiver’s

payoff. The literature typically uses a version of Crawford and Sobeli (1982)’s model, and it either

derives a sufficient condition for information restrictions to benefit the receiver or characterizes

the receiver-optimal outcome in a particular class of restrictions. In contrast, I characterize all

outcomes across all restrictions of the sender’s information in the context of Bayesian persuasion.

As by-products, I also obtain information restrictions maximizing the receiver’s welfare or social

welfare.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 proves

the main result and applies it to simple examples. Section 4 characterizes the set of efficient

outcomes that the designer can implement. This section also derives information restrictions max-

imizing the receiver’s payoffs and the sum of each player’s payoffs. Section 5 discusses the case

in which the receiver has more than two actions. Section 6 concludes.

2 Model

There are three players: the sender, the receiver, and the designer. The receiver has a payoff

function u(a,!) that depends on her action a 2 {0, 1} and the state of the world ! 2 ⌦. For

simplicity, I assume that ⌦ is finite.4 The sender has a payoff function v(a,!) that depends on the

receiver’s action and the state of the world. Both the sender and the receiver maximize expected

payoffs. I do not specify the preferences of the designer, who plays an auxiliary role. The sender,

the receiver, and the designer share a prior b0 2 �(⌦).5 Without loss of generality, normalize

u(0,!) = v(0,!) = 0 and write u(!) := u(1,!) and v(!) := v(1,!) for any ! 2 ⌦.

A signal (S, µ) consists of a finite realization space S and a function µ : ⌦ ! �(S). Hereafter,

I often write µ instead of (S, µ). Given state !, signal µ, and realization s 2 S, let µ(s|!) denote

the probability that µ(!) draws s.

The timing of the game is as follows. First, the designer chooses a signal, say µD. The sender

then chooses from any signals weakly less informative than µD. The informativeness is in the

4The main result remains true if ⌦ is a compact metric space.
5�(X) denotes the set of all probability distributions over set X .
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sense of Blackwell (1953). Let µ denote the sender’s choice. Nature draws the state of the world

! ⇠ b0 and a signal realization s ⇠ µ(!). The receiver observes the sender’s choice µ and its

realization s 2 S, and then chooses her action a 2 {0, 1}. The solution concept is a subgame

perfect equilibrium in which the receiver breaks ties in favor of the sender.

If it is clear from the context, I often use “equilibrium” to mean a subgame perfect equilibrium

of the subgame in which the designer has chosen some signal. For instance, if I write “the sender’s

equilibrium payoffs decrease as the designer chooses less informative signals,” the equilibrium

payoffs are the ones in the corresponding subgames.

The receiver learns about the state of the world only from the sender’s signal; however, the

designer’s signal caps the most informative signal available to the sender. We may view the de-

signer’s strategy as a restriction on what information the sender is allowed to collect or on testing

procedures and experiment techniques. If the designer chooses the fully informative signal, we

obtain a standard Bayesian persuasion.

3 Main Result

I begin with introducing several notions. First, call any signal µ : ⌦ ! �(S) with S = {0, 1}

a straightforward signal. The set of all straightforward signals is denoted by S := �({0, 1})⌦.

Given any µ 2 S , let Eµ[u] and Eµ[v] denote the payoffs of the receiver and the sender when the

receiver follows signal realizations of µ, i.e., the receiver chooses a = 1 with probability µ(1|!) at

each !.

Define the set F of all feasible payoff vectors as

F := {(Eµ[u],Eµ[v])}µ2S .

Some payoff vectors in F may not arise as an equilibrium regardless of the designer’s choice,

because the corresponding straightforward signals may not respect the incentives of the sender and

the receiver.

We say that the designer can implement (u, v) 2 F (or (u, v) is implementable) if there exists

a signal µ such that in an equilibrium of the subgame in which the designer has chosen µ, the
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receiver and the sender obtain expected payoffs of u and v, respectively.

Finally, I define the following payoffs, which enable us to concisely describe the set of imple-

mentable outcomes. First, let

u := max

a2{0,1}


a ·

Z

⌦

u(!)db0(!)

�
(1)

denote the receiver’s payoff from always choosing her ex ante optimal action. Second, let

vNO := max

a2A⇤


a ·

Z

⌦

v(!)db0(!)

�
, where A⇤

:= arg max

a2{0,1}


a ·

Z

⌦

u(!)db0(!)

�
, (2)

denote the sender’s expected payoff when the receiver chooses her ex ante optimal action in all

states of the world, breaking ties in favor of the sender (if A⇤ is not a singleton). Third, let

v := max

a2{0,1}


a ·

Z

⌦

v(!)db0(!)

�
(3)

denote the sender’s payoff when he always chooses his ex ante optimal action.

Regardless of the sender’s strategy, the receiver can secure u by taking one action determinis-

tically. Also, the sender can always attain vNO by disclosing no information. In contrast, there is

no guarantee that the sender can secure v because he never chooses an action by himself.

The main result concerns the question of what payoff vectors are implementable. In other

words, how does the outcome of Bayesian persuasion depend on the information available to the

sender? If the receiver has a binary action choice, the following result gives a comprehensive

answer to this question.

Theorem 1. Define A1 and A2 as follows.

A1 := {(u, v) 2 F : u > u and v � v} ,

A2 := {(u, v) 2 F : u = u and v � vNO} ,

where u, vNO, and v are defined by (1), (2), and (3). The designer can implement a feasible payoff

vector (u, v) 2 F if and only if (u, v) 2 A1 [ A2. If the designer can publicly randomize signals,

(u, v) is implementable if and only if (u, v) is in the convex hull of A1 [ A2.
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A2 is nonempty because the designer can implement (u, vNO) by giving the sender no infor-

mation (i.e., the designer chooses µ such that µ(!) is independent of !). In contrast, A1 can be

empty or nonempty depending on the preferences of the sender and the receiver, as the following

examples depict.

Example 1. Suppose that there are three equally likely states: ⌦ = {!1,!2,!3} and b0(!) = 1/3

for all ! 2 ⌦. The payoffs from a = 1 are shown in Table 1: The sender and the receiver agree

about preferred actions at states !1 and !3, but they disagree at !2.

!1 !2 !3

the receiver 1 �1 �1

the sender 1 1 �1

Table 1: Payoffs from a = 1

In Figure 1, the rectangle delineated by the thick black line is the set F of feasible payoff

vectors. The blue vertical line and red horizontal line correspond to the payoffs from ex ante

optimal actions for the receiver and the sender, respectively, i.e., u = 0 and v =

1/3. The sender’s

payoff vNO from the receiver’s ex ante optimal action is 0, as the receiver prefers a = 0 at the prior

belief.

O
vNO

Receiver’s Eµ[u]

Sender’s Eµ[v]

1/3

1/3

2/3

�1/3

�1/3

�2/3

u

v

Figure 1: Implementable Payoff Vectors when A1 6= ;
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A1 is the dashed triangular area including all edges except the one connecting (0, 1/3) and

(0, 2/3). A2 is the thick dashed line connecting (u, vNO) = (0, 0) and (0, 2/3). Note that A1 [ A2 is

not convex. However, if the designer can publicly randomize signals, it can achieve any expected

payoff vectors in the triangle connecting (0, 0), (1/3, 1/3), and (0, 2/3). Thus, in this example, the de-

signer (with public randomization) can implement any payoff vectors that give the receiver weakly

greater payoffs than the payoff under no information.

Figure 1 tells us two more things. First, if the sender can choose any signal as in a standard

Bayesian persuasion, payoff vector (0, 2/3) is realized, because it maximizes the sender’s payoff

among all implementable payoff vectors. Second, the designer can move the equilibrium outcome

from (0, 2/3) to the receiver’s best outcome (1/3, 1/3) by restricting the sender’s information. Specif-

ically, the designer chooses a signal that only discloses whether the state is !1. In this case, the

designer can strictly increase the receiver’s payoff by limiting the sender’s information. The next

example shows that this is not necessarily the case.

Example 2. I modify the payoffs of the sender as in Table 2: The sender strictly prefers a = 1 in

all states of the world.

!1 !2 !3

the receiver 1 �1 �1

the sender 1 1 1

Table 2: Payoffs from a = 1

In Figure 2, the rectangle delineated by the thick black line is the set F of feasible payoff

vectors. The blue vertical line and red horizontal line correspond to the payoffs from ex ante

optimal actions for the receiver and the sender, respectively, i.e., u = 0 and v = 1.

Note that A1 = ; because for any (u, v) 2 F with u > u, v < v holds. Thus, the designer

can only achieve payoff vectors in A2, which is the dashed line connecting (u, vNO) = (0, 0) and

(0, 2/3). Thus, in this example, limiting the sender’s information has no impact on the receiver and

may reduce the sender’s payoff.

The last observation in Example 2 is general: Whenever the sender prefers one action in all

states of the world, restricting the sender’s information has no impact on the receiver’s payoffs.
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O vNO
Receiver’s Eµ[u]

Sender’s Eµ[v]

1/3

1/3

2/3

�1/3�2/3

1

u

v

Figure 2: Implementable Payoff Vectors when A1 = ;

Corollary 1. Suppose that the sender prefers one action in all states of the world, i.e., either

v(!) > 0 for all ! 2 ⌦ or v(!) < 0 for all ! 2 ⌦ holds. Then, restricting the sender’s information

does not affect the receiver’s payoff. Namely, A1 = ;, and thus the receiver’s equilibrium payoff is

u regardless of the designer’s strategy.

Proof. Without loss of generality, suppose v(!) > 0 for all ! 2 ⌦. Take any (u, v) 2 F and let µ

be (Eµ[u],Eµ[v]) = (u, v). u > u implies that the receiver takes different actions at different states

if she follows µ. This implies v < v, because the sender can achieve v only when the receiver

chooses a = 1 in all states. Thus, A1 = ;.

3.1 Proof of Theorem 1

The proof of Theorem 1 consists of several steps. First, I define the incentive compatibility of

straightforward signals for the receiver and the sender.
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Definition 1. A straightforward signal µ is incentive-compatible for the receiver (sender) if the

receiver (sender) weakly prefers action a after observing each possible realization a 2 {0, 1}

drawn by µ.

The following lemma reduces the incentive compatibility to a single inequality: A straightfor-

ward signal µ is incentive-compatible for the receiver (sender) if and only if her (his) expected

payoff from following µ is weakly greater than the payoff under no information.6 The result relies

on the assumption of binary action choice. The proof is in Appendix A.

Lemma 1. A straightforward signal µ is incentive-compatible for the receiver if and only if

Eµ[u] � u. µ is incentive-compatible for the sender if and only if Eµ[v] � v.

The “only if” part is straightforward. To see why the “if” part holds, suppose that the receiver’s

ex ante optimal action is a = 0. As Eµ[u] � u, it must be the case that the receiver weakly prefers

a = 1 at realization 1. Indeed, if the receiver strictly prefers a = 0, then following µ gives the

receiver a strictly lower payoff than u. Moreover, whenever the receiver prefers a = 1 at realization

1, she also prefers a = 0 at realization 0, because her ex ante optimal action is a = 0. This implies

that µ is incentive-compatible for the receiver.

The next lemma ensures that the designer can without loss of generality focus on incentive-

compatible straightforward signals that the sender has no incentive to garble. As the proof suggests,

the result does not rely on the assumption of binary action.

Lemma 2. A payoff vector (u, v) is implementable if and only if the designer can implement it

using a straightforward signal µ with the following properties:

1. µ is incentive-compatible for the receiver.

2. If the designer chooses µ, the sender prefers to choose µ given the receiver’s optimal behav-

ior.

Proof. I show the “only if” part. Let µ be the designer’s choice of a signal to implement (u, v).

Consider an equilibrium of the subgame following µ, and let µ⇤
(a|!) denote the probability with

which the receiver takes action a in each state !. Note that we can view µ⇤
: ! 7! (µ⇤

(0|!), µ⇤
(1|!))

6A similar calculation appears in Alonso and Câmara (2016).
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as an incentive-compatible straightforward signal, which draws realization a with probability µ⇤
(a|!)

at each state !.7 Now, the set of signals available to the sender is smaller when the designer chooses

µ⇤, which is less informative than µ; however, the sender can achieve the same payoff as before

(i.e., the payoff under µ) by choosing µ⇤. Thus, the sender has no incentive to garble µ⇤.

The next lemma connects the incentive compatibility for the receiver with that for the sender.

Lemma 3. If (u, v) is implementable and u > u, then v � v.

Proof. Suppose (u, v) is implementable and let µ 2 S be a straightforward signal satisfying

(Eµ[u],Eµ[v]) = (u, v) and Points 1 and 2 of Lemma 2. Suppose to the contrary that u > u

but v < v. First, v < v implies that there is a realization s 2 {0, 1}, say s = 0, at which the

receiver strictly prefers a = 0 but the sender strictly prefers a = 1. Second, u > u implies that the

receiver strictly prefers a = 1 at realization 1. These observations imply that the sender can garble

µ to strictly increase his payoff: He can choose signal µ0 that sends realization 1 with probability

" > 0 when µ is supposed to send 0. For a small ", the receiver prefers to follow realizations,

which strictly increases the sender’s payoff. This contradicts Point 2 of Lemma 2.

Proof of Theorem 1. I prove that any (u, v) 2 A1[A2 is implementable. Take any (u, v) 2 A1[A2

and let µ 2 S be an incentive-compatible straightforward signal satisfying (Eµ[u],Eµ[v]) = (u, v).

Such µ exists because of u � u and Lemma 1.

First, suppose (u, v) 2 A1. Because u > u and v � v, by Lemma 1, both the receiver and

the sender prefer action s after observing realization s 2 {0, 1}. That is, if the designer chooses

µ, the sender prefers to choose µ and the receiver prefers to follow realizations. Thus, (u, v) is

implementable.

Second, suppose (u, v) 2 A2. If (u, v) = (u, vNO), the designer can implement (u, v) by

choosing µ0 that discloses no information (i.e., µ0
(!) is independent of ! 2 ⌦).

Suppose (u, v) 2 A2, where u = u and v > vNO. I consider two cases. One is when the

receiver is indifferent between two actions at both signal realizations drawn by µ. In this case,

the designer can implement (u, v) by choosing µ: the sender has no incentive to garble µ because

the receiver chooses the best action for the sender at each realized posterior, as a result of her

tie-breaking rule.
7Proposition 1 of Kamenica and Gentzkow (2011) implies that µ⇤ is incentive-compatible for the receiver.
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The other case is when the receiver strictly prefers to follow one signal realization and is in-

different between two actions at the other realization. Without loss of generality, suppose that the

receiver strictly prefers a = 1 at realization 1 and she takes a = 0 at realization 0 being indifferent

between a = 0 and a = 1. Note that the only case we have to consider is when the sender strictly

prefers a = 0 at realization 1. Consider whether the sender has an incentive to garble µ. Take any

µ0 that is a straightforward signal and a garbling of µ. If µ0 induces the receiver to take a = 1 when

she is supposed to take a = 0 at µ, then µ0 does not increase the sender’s payoff. If µ0 induces the

receiver to take a = 0 when she is supposed to take a = 1 at µ, then the receiver’s payoff from

µ0 is strictly less than u. This implies that µ0 cannot be incentive-compatible for the receiver, who

can always ignore information and obtain u. To sum up, the sender never benefits from garbling

µ. Thus, the designer can implement (u, v) by choosing µ. Finally, we do not need to consider

the case in which the receiver’s incentive is strict at both signal realizations, because it contradicts

Eµ[u] = u.

Next, I prove that if (u, v) is implementable, then (u, v) 2 A1 [ A2. Take any implementable

(u, v) 2 F and let µ be (Eµ[u],Eµ[v]) = (u, v). By Lemma 2, assume that µ is an incentive-

compatible straightforward signal for the receiver and that the sender has no incentive to garble

µ.

First, u � u holds because the receiver can always ignore information. Second, v � vNO must

hold, because the sender can always choose to disclose no information regardless of the designer’s

choice. If u = u, then (u, v) 2 A2 holds; if u > u, then Lemma 3 implies v � v and thus

(u, v) 2 A2.

Finally, if the designer can publicly randomize signals and the receiver observes which signal

is realized, the designer can implement any point in conv(A1 [ A2) by the definition of convex

hull. ⇤

4 Implementable Outcomes on the Pareto Frontier

In this section, I characterize the designer’s optimal strategy more explicitly, assuming that the

designer’s payoff is increasing in the payoffs of the sender and the receiver. For instance, the

designer might care about the receiver’s payoff alone, or the sum of the sender’s and the receiver’s
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payoffs. Given such objectives, how should the designer restrict the sender’s information?

The analysis here consists of three steps. First, I characterize the set of implementable out-

comes on the “Pareto frontier” P of feasible outcomes F . Second, I show that whenever the

designer’s payoff is nondecreasing in each player’s payoffs, the designer implements an outcome

in the set P \ (A1 [ A2) derived in the first step. As corollaries, I obtain the designer’s strategy

when it maximizes the receiver’s welfare or social welfare.

Define the Pareto frontier P of F as follows.8

P := {(u, v) 2 F : @(u0, v0) 2 F s.t. u0 � u, v0 � v, and (u, v) 6= (u0, v0)} .

Next, define the set U of the receiver’s feasible payoffs by

U := {u 2 R : 9v, (u, v) 2 F}

and function f : U ! R by

f(u) := max {v 2 R : (u, v) 2 F} . (4)

f(u) is the maximum payoff of the sender consistent with the receiver’s payoff u. Note that

(u, v) 2 P implies v = f(u). f(·) is concave because F is a convex set.

The following result characterizes P \ (A1 [A2)—the set of implementable payoff vectors on

the Pareto frontier. To state the result concisely, I define two types of Bayesian persuasion: the

original game and the flipped game. In the original game, the sender can choose any signal and the

receiver chooses an action. In the flipped game, the receiver of the original game, who has payoff

function u(·), chooses a signal. Then, the sender of the original game, who has payoff function

v(·), chooses an action to maximize his own payoff. In order to pin down equilibrium payoffs in

these games, I assume that, in the original game, the receiver breaks ties in favor of the sender, who

breaks ties in favor of the receiver given her best responses. I impose the analogous tie-breaking

rule for the flipped game with “the receiver” and “the sender” flipped.

Theorem 2. Let uO and uF be the receiver’s equilibrium payoffs in the original and flipped games,
8P can be different from the Pareto frontier of implementable outcomes.
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respectively. Then, the set of implementable outcomes on the Pareto frontier is as follows.

P \ (A1 [ A2) =

8
><

>:

{(u, f(u)) : uO  u  uF} if uO < uF

{(uO, f(uO))} if uO � uF ,

where A1 [ A2 is defined in Theorem 1, and f(u) is the maximum payoff of the sender consistent

with u as defined by (4).

Proof. First, suppose that uO � uF and that the designer can implement (u⇤, v⇤) 2 P . u⇤ > uO

cannot hold because it implies u⇤ > u and thus v⇤ � v for (u⇤, v⇤) to be in A1. However, this

means that the receiver could attain u⇤ > uO � uF in the flipped game, which is a contradiction.9

Also, u⇤ < uO cannot hold because it implies that v⇤ > f(uO) as (u⇤, v⇤) 2 P , but f(uO), which is

the sender’s equilibrium payoff in the original game, gives the sender the maximum payoff among

implementable payoff vectors. Thus, u⇤
= uO holds; moreover, because f(uO) gives the sender the

maximum payoff among all (u, v) 2 F with u = uO, (u⇤, v⇤) = (uO, f(uO)). Finally, the designer

can implement (uO, f(uO)) by not limiting the sender’s information, because (uO, f(uO)) is the

equilibrium payoff profile of the original game. This shows P \ (A1 [ A2) = {(uO, f(uO))}.

Second, suppose that uO < uF and that the designer can implement (u⇤, v⇤) 2 P . u⇤ < uO

cannot hold for the same reason as above. Also, u⇤ > uF cannot hold: It implies u⇤ > uO � u and

thus v⇤ � v by Lemma 3. This implies (u⇤, v⇤) 2 A1. However, uF maximizes u among all payoff

vectors (u, v) in A1, because uF is a solution of max(u,v)2F u subject to the sender’s incentive

constraint v � v (recall Lemma 1). This is a contradiction. Thus, u⇤ 2 [uO, uF ]. v⇤ = f(u⇤
) holds

from (u⇤, v⇤) 2 P .

Next, suppose (u⇤, v⇤) = (u⇤, f(u⇤
)) and u⇤ 2 [uO, uF ]. I prove (u⇤, v⇤) 2 P . Note that

f(·) is strictly decreasing on u � uO: If there is some (�1, �2) ⇢ [uO,maxU ] on which f is

nondecreasing, then f(u) must be nondecreasing on [uO, �2] because f is concave. However, this

implies that there is some (u, v) 2 F such that u > uO and v � vO. This contradicts that (uO, vO)

is a solution of the original game with tie-breaking. Now, if f(·) is strictly decreasing on u � uO,

then for any (u, v) 2 F , u > u⇤ implies v  f(u) < f(u⇤
) = v⇤. Thus, (u⇤, v⇤) 2 P .

9Namely, if the receiver were to persuade the sender, the receiver could attain u

⇤ with a straightforward signal that
is incentive-compatible for the sender. Such a signal exists because v

⇤ � v.
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It remains to show that the designer can implement (u⇤, v⇤) = (u⇤, f(u⇤
)) and u⇤ 2 [uO, uF ],

i.e., (u⇤, v⇤) 2 A1 [A2. If u⇤
= uO, then v⇤ = f(uO), which is implementable by not limiting the

sender’s information. If u⇤ 2 (uO, uF ], then u⇤ > u holds. Also, v⇤ � f(uF ) holds because f(·)

is decreasing on u � uO as shown above. Because f(uF ) is the sender’s equilibrium payoff in the

flipped game, f(uF ) � v holds. By Theorem 1, (u⇤, v⇤) 2 A1.

Figures 1 and 2 correspond to the first and second cases of Theorem 2, respectively. First,

consider Figure 1. If the sender persuades the receiver, the sender chooses a signal to maximize

his payoff Eµ[v] subject to the constraint Eµ[u] � u. From the figure, we can derive (uO, vO) =

(0, 2/3). In the flipped game where the receiver persuades the sender, the receiver chooses a signal

to maximize her payoff Eµ[u] subject to the constraint Eµ[v] � v. This implies (uF , f(uF )) =

(

1/3, 1/3), which establishes uF > uO. Thus, the set of implementable outcomes on the Pareto

frontier is the nondegenerate segment connecting these two points. In contrast, in Figure 2, we

can conclude (uO, vO) = (0, 2/3) and (uF , f(uF )) = (�1/3, 1) by the same argument as above. As

uO � uF , the only implementable outcome on the Pareto frontier is (uO, vO), which arises in the

absence of the designer.

Note that Theorem 2 alone may be insufficient to characterize the designer’s equilibrium strat-

egy. For instance, if the designer aims to maximize u+v but the first-best outcome (argmax(u,v)2F u+

v) is outside of P \ (A1 [ A2), the designer might instead implement an inefficient outcome. The

next lemma shows that this never happens.

Lemma 4. Suppose that the designer’s payoff is nondecreasing in the expected payoffs of the

sender and the receiver. Then, there is an equilibrium in which the designer implements an outcome

in P \ (A1 [ A2).

Proof. I derive a contradiction by assuming that no points in P\(A1[A2) maximize the designer’s

payoff. Suppose that the designer implements (u⇤, v⇤) 62 P , which is Pareto-dominated by some

(uD, vD) 2 P . If (u⇤, v⇤) 2 A1, then (uD, vD) 2 A1 as uD � u⇤ > u and vD � v⇤ � v. By

Theorem 1, (uD, vD) 2 A1 is implementable and gives the designer a weakly greater payoff, which

is a contradiction.

Next, suppose (u⇤, v⇤) 2 A2, which implies u⇤
= u. There are three cases to consider. First,

suppose v⇤ = maxu2U f(u). In other words, v⇤ gives the sender the maximum payoff among all
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feasible payoffs. This implies vD = v⇤ � v. As (uD, vD) Pareto-dominates (u⇤, v⇤), uD > u⇤
= u

must hold. This implies (uD, vD) 2 A1, which is a contradiction.

Second, suppose that v⇤ < maxu2U f(u) and that all elements of convex set argmaxu2U f(u)

are strictly smaller than u⇤. Note that for any (u, v) 2 F such that u > u⇤, v < f(u⇤
) holds

because f(·) is decreasing for u � max(argmaxu2U f(u)). Thus, (u⇤, f(u⇤
)) 2 P . Also, because

u⇤
= u, (u⇤, f(u⇤

)) corresponds to the equilibrium of the original game. Thus, the designer can

implement (u⇤, f(u⇤
)) 2 P by not limiting the sender’s information. However, (u⇤, f(u⇤

)) gives

the sender a weakly greater payoff than (u⇤, v⇤). This is a contradiction.

Finally, suppose that v⇤ < maxu2U f(u) and that all elements of convex set argmaxu2U f(u)

are strictly greater than u⇤. Define u⇤⇤
:= max(argmaxu2U f(u)) and v⇤⇤ = f(u⇤⇤

). Then,

u⇤⇤ > u⇤ � u and v⇤⇤ � max(v, v⇤) hold. This implies that (u⇤⇤, v⇤⇤) 2 P \ A1 is implementable

and gives the sender a weakly greater payoff, which is a contradiction.

I consider two objectives of the designer: maximizing the receiver’s payoff or maximizing the

sum of the sender’s and the receiver’s payoffs. Recall that uO and uF are the receiver’s equilibrium

payoffs in the original and flipped games, respectively.

Corollary 2. Suppose that the designer’s objective is to maximize the receiver’s payoff. Then, an

equilibrium outcome is on the Pareto frontier and the receiver obtains a payoff of max(uO, uF ).

If uO � uF , then the designer can maximize the receiver’s payoff by not limiting the sender’s

information. If uO < uF , then the designer’s choice is equal to an equilibrium strategy of the

receiver in the flipped game.

Proof. The only part that does not directly follow from Theorem 2 is the last sentence. Let µF

denote a straightforward signal that is an equilibrium strategy of the receiver in the flipped game.

vF := EµF
[v] � v holds because the sender chooses an action in the flipped game. Also, uF � u

holds because uF > uO � u. By Lemma 1, if the designer chooses µF , then the sender prefers

to choose µF and the receiver prefers to follow its signal realizations. Thus, the designer can

implement (uF , vF ) by µF .

Corollary 2 states that limiting the sender’s information to maximize the receiver’s payoff

causes no efficiency loss, and thus the receiver-optimal information restriction moves an equi-

librium outcome along the Pareto frontier. Also, the result shows that we can solve a two-stage
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disclosure game among the designer, the sender, and the receiver using a pair of Bayesian per-

suasion games between two players. In particular, whenever restricting the sender’s information

can benefit the receiver, the receiver-optimal way is as if the receiver discloses information and

delegates the sender to choose an action.

To state the next result, let ASW := argmax(u,v)2F u + v denote the set of all payoff vectors

that maximize “social welfare” defined by the sum of payoffs of the sender and the receiver. Define

ūSW := max {u : 9v, (u, v) 2 ASW} and uSW := min {u : 9v, (u, v) 2 ASW}.

Corollary 3. Suppose that the designer’s objective is to maximize social welfare. If uO � uF , then

it is optimal for the designer not to limit the sender’s information. If uO < uF , then there are three

cases:

1. If uF < uSW , then it is optimal for the designer to choose the receiver’s equilibrium signal

of the flipped game, which yields social welfare uF + f(uF ).

2. If ūSW < uO, then it is optimal for the designer not to limit the sender’s information, which

yields social welfare uO + f(uO).

3. Otherwise, the designer attains social welfare max(u,v)2F u+ v.

Proof. The case of uO � uF and Point 3 directly follow from Theorem 2. As Points 1 and 2 are

symmetric, I prove Point 1. If uF < uSW , then uF + f(vF ) < uSW + f(uSW ), or equivalently,

f(uF )� f(uSW ) < uSW � uF . As f(·) is concave, for any (u, f(u)) 2 P such that u 2 [uO, uF ],

we get f(u) � f(uF )  uF � u, which implies u + f(u)  uF + f(uF ). Thus, (uF , f(uF ))

maximizes social welfare among all implementable payoff profiles.

Corollaries 2 and 3 are useful only if the original and flipped games are easy to solve. I show

that it is the case so long as there is a unique welfare-maximizing outcome. Let µ↵ 2 S denote a

straightforward signal that maximizes Eµ[↵u+ (1� ↵)v] among all signals. Assume that such µ↵

is unique. Note that µ↵(1|!), the probability that µ↵ recommends action 1 at state !, is 1 whenever

↵u(!)+(1�↵)v(!) > 0 and 0 whenever ↵u(!)+(1�↵)v(!) < 0. The receiver’s payoff Eµ↵ [u]

and the sender’s payoff Eµ↵ [v] are increasing and decreasing in ↵, respectively. Define ↵O and ↵F
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as follows.

↵O := min {↵ 2 [0, 1] : Eµ↵ [u] � u} ,

↵F := max {↵ 2 [0, 1] : Eµ↵ [v] � v} .

µ↵O
and µ↵F

are equilibrium signals in the original and flipped games, respectively. The reason is

as follows. For example, the sender in the original game maximizes Eµ[v] subject to the receiver’s

incentive compatibility Eµ[u] � u. This enables the sender to focus on outcomes on the Pareto

frontier. Given the receiver’s incentive, µ↵O
maximizes the sender’s payoff among the signals

whose outcomes are on the Pareto frontier. Thus, µ↵O
is the sender’s equilibrium signal in the

original game.

The next example applies this observation to a simple linear environment.

Example 3. Suppose that ! is uniformly distributed on [�3, 2], u(!) = !, and v(!) = 2 + !.10

Note that µ maximizes Eµ[↵u+ (1�↵)v] = Eµ[!+2(1�↵)] for some ↵ 2 [0, 1] if and only if µ

has the following cutoff structure: There is a unique c 2 [�2, 0] such that the receiver takes a = 1

and a = 0 if ! > c and ! < c, respectively. Let µ(c) denote such a straightforward signal given

cutoff c. Each player’s payoff from µ(c) is as follows.

Eµ(c)[u] =
2� c

5

· 2 + c

2

=

4� c2

10

,

Eµ(c)[v] = 2 · 2� c

5

+

4� c2

10

=

12� 4c� c2

10

.

Thus, in (u, v)-space, the Pareto frontier P is the arc connecting (Eµ(0)[u],Eµ(0)[v]) = (

2/5, 6/5) and

(Eµ(�2)[u],Eµ(�2)[v]) = (0, 8/5). In the original game, the sender chooses the lowest ↵ 2 [0, 1], or

equivalently, the lowest cutoff c = �2(1 � ↵) 2 [�2, 0] such that Eµ(c)[u] � u = 0. This implies

c = �2. Thus, (Eµ(�2)[u],Eµ(�2)[v]) = (0, 8/5) is the equilibrium outcome of the original game. In

the flipped game, the receiver (who discloses information) chooses as high c 2 [�2, 0] as possible

subject to the constraint that µ(c) is incentive-compatible for the sender. This leads to c = �1,

10To motivate the example, imagine that ! is the product value for a consumer relative to the consumer’s outside
option. The seller’s payoff from purchase, 2 + !, partly reflects the consumer’s welfare (say, because the seller has a
reputational concern), but the seller obtains the payment of 2 from the purchase.
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which is the highest cutoff such that the sender prefers a = 0 after knowing ! < c. Thus, the

equilibrium payoff vector of the flipped game is (Eµ(�1)[u],Eµ(�1)[v]) = (

3/10, 3/2).

Figure 3 presents the Pareto frontier, the implementable efficient outcomes, and the relevant

payoff vectors. By Corollary 2, if the payoff of the designer is equal to that of the receiver, the

designer chooses µ(�1) to achieve a payoff of 3/10. Thus, information restriction strictly benefits

the receiver though it does not achieve the receiver-optimal outcome (

2/5, 6/5). Finally, signal

µ(�1) also maximizes the social welfare Eµ[2 + 2!]. Thus, in this example, the designer can

globally maximize social welfare by restricting the sender’s information.

O
Receiver’s Eµ[u]

Sender’s Eµ[v]

Original
Flipped

6
5

2
5

8
5

3
2

3
10

Figure 3: P (union of black and red lines) and P \ (A1 [ A2) (red line)

5 Discussion: General Action Space

Theorem 1 does not extend to the case in which the receiver has more than two actions, and it

is beyond the scope of this paper to consider such a case. (Appendix B provides a three-action

example in which the results fail.) To the best of my knowledge, a tractable solution technique

for general Bayesian persuasion problems has yet to be developed, which makes it challenging to

analyze how the payoffs of each player depend on the sender’s information.

One exception is when the state is binary. In this case, regardless of the action space, the

designer cannot increase the receiver’s payoff by limiting the sender’s information. Thus, the
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designer, who puts a nonnegative weight on each player’s payoff, chooses not to limit the sender’s

information.

Proposition 1. Take any Bayesian persuasion such that the state is binary and the sender has a

unique equilibrium strategy. The designer can maximize the receiver’s payoff by not restricting the

sender’s information.

See Appendix C for the proof. A key step is to show that if the sender has no incentive to

garble signal µ, then µ must be less informative than the equilibrium signal of the original game.

Thus, restricting the sender’s information simply reduces the amount of information revealed to

the receiver.

6 Conclusion

In this paper, I study the problem of restricting the sender’s information in Bayesian persuasion.

Assuming that the receiver has a binary choice, I consider arbitrary restrictions and characterize

the set of all outcomes that can arise in equilibrium. Thus, the paper gives a comprehensive answer

to the question of how the sender’s information affects the outcome of Bayesian persuasion with

binary action. In particular, the result enables us to characterize an information restriction that

maximizes the receiver’s welfare or social welfare. I show that we can determine whether limit-

ing the sender’s information can improve these welfare criteria by solving the original Bayesian

persuasion and the flipped version of it, in which the receiver discloses information and the sender

chooses an action.
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Appendix

A Proof of Lemma 1

Proof. Take any straightforward signal µ. If the receiver follows µ, her ex ante expected payoff is

Eµ[u] := Pµ(1) ·
R
⌦ u(!)dµ(!|1). Here, given s 2 {0, 1}, Pµ(s) is the ex ante probability that

µ sends signal realization s, and µ(!|s) is the conditional probability of state ! after observing

signal realization s. The receiver’s payoff from a = 1 conditional on signal realization 1 is

Z

⌦

u(!)dµ(!|1) = Eµ[u]

Pµ(1)
, (5)

and the payoff from a = 1 conditional on observing 0 is

Z

⌦

u(!)dµ(!|0) =
Z

⌦

u(!)d
⇣b0(!)�Pµ(1)µ(!|1)

Pµ(0)

⌘
=

1

Pµ(0)

⇣Z

⌦

u(!)db0(!)� Eµ[u]
⌘
.

The first equality follows from the law of total probability Pµ(1)µ(·|1)+Pµ(0)µ(·|0) = b0(·), and

the second equality is from (5).

Given these expressions, the receiver prefers to follow straightforward signal µ if and only if

Eµ[u]

Pµ(1)
� 0 � 1

Pµ(0)

⇣Z

⌦

u(!)db0(!)� Eµ[u]
⌘
,

which reduces to

Eµ[u] � u := max

⇣Z

⌦

u(!)db0(!), 0
⌘
. (6)

Note that (6) is the receiver’s IC even if µ sends only one signal realization. In this case, as long

as (6) holds, the receiver weakly prefers to follow the realization.

B Example for |A| = 3

Suppose that the receiver has three actions A = {a1, a2, a3}, and there are two equally likely states

⌦ = {!1,!2}. Table 3 summarizes the payoffs (u(a,!), v(a,!))(a,!)2A⇥⌦.

Note that both the receiver and the sender (weakly) prefer a2 at the prior belief. Thus, each

player obtains a payoff of 1 if he or she chooses an action under no information. Now, consider
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a1 a2 a3
!1 2, 2 1, 1 0,�2

!2 �2,�2 1, 1 2,�2

Table 3: Payoffs (The first coordinate is the receiver’s payoff)

the state-contingent action plan (say µ⇤) of taking a1 and a2 at !1 and !2, respectively. This leads

to the payoffs of 3/2 to the receiver and the sender, which Pareto-dominates (u, v) = (1, 1). I show

that the designer cannot implement (3/2, 3/2). Indeed, for the receiver to follow µ⇤, she has to be

fully informed of the state. However, if the receiver has full information, she would take a1 and a3

at !1 and !2, respectively. This gives the sender a payoff of 0, which is lower than the payoff he can

secure by disclosing no information. Thus, although (

3/2, 3/2) is feasible and satisfies 3/2 > 1 = u

and 3/2 > 1 = v, it is not implementable. This shows that Theorem 1 does not extend to the case

of |A| > 2. Also, other results such as Corollary 2 do not extend either: The efficient payoff vector

(

3/2, 3/2) arises in the equilibrium of the flipped game; however, this does not imply the designer

can improve the receiver’s payoff by restricting the sender’s information.

C Proof of Proposition 1

Suppose ⌦ = {0, 1}. We can identify �(⌦) with the unit interval [0, 1], where each b 2 [0, 1]

represents the probability of ! = 1. Let b0 2 [0, 1] denote the prior belief. Also, let a(b) 2 A

denote the receiver’s best response given a belief b. Then, define v(b) := bv(a(b), 1) + (1 �

b)v(a(b), 0) as the sender’s expected payoff given b. As the state is binary, it is convenient to

write a signal in terms of its distribution over posteriors ⌧ 2 �(�(⌦)) = �([0, 1]) that is Bayes’

plausible, i.e.,
R 1

0 bd⌧(b) = b0. For any ⌧ , let Supp(⌧) denote the set of all posteriors that can arise

with a positive probability under ⌧ .

Proof of Proposition 1. Suppose to the contrary that the designer can restrict the sender’s infor-

mation and give the receiver a strictly greater payoff than under the original game. Let ⌧BP 2

�(�(⌦)) denote the sender’s equilibrium strategy in the original game. Note that |Supp(⌧BP )| 

2.11 Supp(⌧BP ) = {b0} cannot hold, because the sender would then disclose no information re-

11This relies on the following general result: For any A ⇢ Rd, if x is in the boundary of the convex hull of A,
then x is a convex combination of at most d points of the boundary of A. Furthermore, even if the sender has multiple
optimal signals, he can find one that generates two posteriors and maximizes the receiver’s payoff. Thus, we can
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gardless of the designer’s choice. Thus, suppose that Supp(⌧BP ) = {b1, b2} with b1 < b0 < b2.

Suppose that there is some ⌧ ⇤ such that the sender chooses ⌧ ⇤ when the designer chooses ⌧ ⇤, and the

receiver’s payoff is strictly greater under ⌧ ⇤ than ⌧BP . Let Supp(⌧ ⇤) = {b⇤1, b⇤2} with b⇤1 < b0 < b⇤2.

Because ⌧ ⇤ cannot be weakly less informative than ⌧BP , either b⇤1 < b1 or b⇤2 > b2 holds; otherwise,

each element of Supp(⌧ ⇤) can be expressed as a convex combination of b1 and b2, and this implies

that ⌧ ⇤ is less informative than ⌧BP . Without loss of generality, suppose that b⇤1 < b1. In this case,

b1 can be expressed as a convex combination of b⇤1 and b⇤2. Thus, under the information restriction

⌧ ⇤, the sender can choose a signal ⌧ 0 such that Supp(⌧ 0) = {b1, b⇤2}.

Now, I show that the sender strictly prefers ⌧ 0 to ⌧ ⇤. Since v(b1) is on the boundary of the

convex hull of the graph of v, it satisfies

v(b1) >
b⇤2 � b1
b⇤2 � b⇤1

v(b⇤1) +
b1 � b⇤1
b⇤2 � b⇤1

v(b⇤2).

This inequality is strict since ⌧BP is a unique equilibrium strategy. Then, we obtain

b⇤2 � b0
b⇤2 � b⇤1

v(b⇤1) +
b0 � b⇤1
b⇤2 � b⇤1

v(b⇤2) =
b⇤2 � b0
b⇤2 � b1

·
⇣b⇤2 � b1
b⇤2 � b⇤1

v(b⇤1) +
b1 � b⇤1
b⇤2 � b⇤1

v(b⇤2)
⌘
+

b0 � b1
b⇤2 � b1

v(b⇤2)

<
b⇤2 � b0
b⇤2 � b1

v(b1) +
b0 � b1
b⇤2 � b1

v(b⇤2).

Thus, the sender strictly prefers to garble ⌧ ⇤ to obtain ⌧ 0, which is a contradiction.

assume |Supp(⌧BP )|  2 even with our tie-breaking rule.
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