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Abstract

We propose a functional principal components method that accounts for strati-

fied random sample weighting and time dependence in the observations to under-

stand the evolution of distributions of monthly micro-level consumer prices for the

United Kingdom (UK). We apply the method to publicly available monthly data

on individual-good prices collected in retail stores by the UK Office for National

Statistics for the construction of the UK Consumer Price Index from March 1996

to September 2015. In addition, we conduct Monte Carlo simulations to demon-

strate the effectiveness of our methodology. Our method allows us to visualize the

dynamics of the price distribution and uncovers interest patterns during the sample

period. Further, we demonstrate the efficacy of our methodology with an out-of-

sample forecasting algorithm which exploits the time dependence of distributions.

Our out-of-sample forecasts compares favorably with the random walk forecast.
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1 Introduction

This paper investigates the evolution of the underlying distribution of price quotes col-

lected to construct the Consumer Price Index (CPI) for the United Kingdom. In all

countries, the CPI is the most commonly used measure of the average price that house-

holds pay for their consumption, and it is also widely used as a measure of the changes

in the cost of living or inflation. The ubiquity of the CPI in the everyday lives of con-

sumers and firms makes it one of the most watched, reported, and discussed statistic in

a modern economy. Statistical agencies such as the Bureau of Labour Statistics (BLS)

in the United States, the Office for National Statistics (ONS) in the United Kingdom,

Statistics Canada, and Eurostat devote considerable resources to the efficient collection

and dissemination of these data. Central banks all over the world rely on the CPI to

analyze and formulate economic policies, especially countries with an explicit inflation

target such as the United States (US), United Kingdom (UK), and Canada.

The population of prices underlying the CPI exhibits much more complex dynamics

than can be captured by an aggregated index. These dynamics manifest themselves along

two key dimensions: (1) prices do not move in a synchronous manner across goods and

services; for example, food and energy prices tend to be more volatile than other prices;

and (2) relative expenditures for goods and services are also time-varying, as households

shift their consumption in response to price changes, discounts, seasons and holidays,

stockouts, changes in quality, or over the business cycle (see Klenow and Malin, 2010 and

Nakamura and Steinsson, 2013 for comprehensive reviews of microeconomic evidence on

price dynamics).

While in practice different measures of the CPI have been advocated for capturing

some of these dynamics, such measures shed little light on the evolution of price dis-

tributions that underlie the CPI (see Diewert, 2012 for a detailed discussion of various

CPI measures in the UK). For example, little is known about which part of the distribu-

tion drives the changes in the means or whether higher order moments such as skewness

or kurtosis play a role in changes in distributions. For example, early empirical work

using evidence for sector-level price indexes and for micro prices for selected products

focused on documenting the extent of price or price change dispersion, including con-

tributions by Lach and Tsiddon (1992), Ball and Mankiw (1995), Debelle and Lamont

(1997). Recent studies of the moments of price and price change distributions focused on

price dispersion (Peterson and Shi (2004), Kaplan and Menzio (2015), and Sheremirov

(2016)), price-change dispersion (Vavra, 2013 and Berger and Vavra, 2018), skewness of

price distribution (Chen et al., 2008 and Sheremirov, 2016), kurtosis of price changes

(Midrigan, 2011 and Alvarez et al., 2016).

Understanding these complex movements of relative prices and expenditure weights

requires information about micro-level prices and their respective weights in the CPI. A

limited availability of such data, however, hinders the advancement of tools and methods

that could be used by economists who study price dynamics. This paper utilizes monthly

data on individual-good prices collected in retail stores by the ONS for the construction of

the UK CPI from February 1996 to September 2015. These are the first publicly available

2

http://www.ons.gov.uk


monthly data on individual-good prices collected by a national statistical agency, and can

be download directly from the ONS website: http://www.ons.gov.uk/ons/datasets-and-

tables/index.html. We utilize this data set to estimate the evolution of monthly consumer

price distributions for the UK.

The main challenge for this estimation stems from the complexity of the relative price

and weight movements. We tackle this challenge by developing functional principal com-

ponent analysis (FPCA) with complex survey design methodology. Let f1, . . . , fT denote

the super-population distributions of price (or price changes) in the UK that can be

recovered from this micro-level consumer price data. We build over Kneip and Utikal’s

(2001) model. This model uses the well-known Karhunen–Loève decomposition to rep-

resent each super-population density at time t, ft, in terms of the principal functional

components:

ft = fµ +
J∑

j=1

θt,jgj. (1)

Here the mean density, fµ = T−1
∑T

t=1 ft, captures the underlying common intertemporal

distribution, while the J dynamic strength coefficients, θt,j, capture the dynamics of the

underlying distributions, and the common functional components, or basis functions, gj,

provide information about the part of the distribution that changes. FPCA tracks how a

density evolves over time by providing a dynamic structure as opposed to standard static

visualization of estimated cross-section distributions.

Although Kneip and Utikal (2001) and Huynh et al. (2011) already proposed a way

to estimate the model in (1) with repeated independent samples, the problem we con-

sider here involves adapting the original methodology to complex survey data that is

longitudinal in nature, i.e., recorded prices from the same strata that are potentially

correlated over time. These data features require a modification of Kneip and Utikal’s

(2001) original estimators to include survey weights so that the dynamics of the super-

population densities is described by FPCA, and not the dynamics of the densities induced

by the sampling scheme. We also introduce an additional bias correction to account for

temporal dependence which extends Kneip and Utikal’s (2001) original results to handle

temporally correlated samples. The paper demonstrates the consistency of the result-

ing estimators of the score coefficients and the pointwise asymptotic normality of the

functional components. A data-driven procedure is then proposed to choose the optimal

number (J∗) of principal components based on a density forecast exercise.

This methodology allows for a simple representation and visualization of the tempo-

ral dynamics of price distributions. According to (1), the distributions of the detrended

prices or the month-to-month price changes can be decomposed into functional principal

components. The time-variation of the corresponding θt,j’s can be used to visualize the

evolution of the principal components over time. We find that the first three components

account for about 10 and 8 percent of the variation in the price and price-change distri-

butions in the UK CPI data, respectively. The dynamics of the first three components,

as described by the θt,j’s, are correlated with the key macroeconomic variables, and also
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autocorrelated. In the second part of the paper, we explore these properties of the func-

tional principal components in two applications that study the comovement of the UK

price distributions with macroeconomic variables and forecasting of the UK consumer

prices.

In the first application, we explore how the functional principal components comove

with the unemployment and inflation rates—two key macroeconomic variables. Here, an

advantage of FPCA naturally stems from its decomposition of price (or price change) dis-

tributions into the time-varying dynamic strength coefficients and time-invariant common

functional components, given by θt,j’s and gj’s respectively. Namely, the first deforma-

tion, θt,1g1, is closely related to the evolution of the first moment of the distribution, and

higher order components, {θt,jgj}j>1, summarize contributions of higher order moments,

such as the dispersion, skewness, and kurtosis of the distribution. We find that the

dynamics of the higher order moments are as important as the first moment in driving

temporal changes in price and price-change distributions. For example, price dispersion

decreases and the tails thin out in the wake of the 2009 recession, but these effects are

reversed over the ensuing 2011 recession. At the same time price changes become more

dispersed suggesting that the time of economic turmoil trigger across-the-board price ad-

justments. In all, the facts unraveled with the help of FPCA can be influential for sorting

out models of inflation and business cycles used in academia and central banks, because

their predictions are inherently linked to assumptions about individual price adjustments

in response to economic shocks.

In the second application, we demonstrate the efficacy of our methodology by apply-

ing it to an out-of-sample density forecasting exercise for the price-level and price-change

distributions. We conduct this exercise for one and three-month forecast horizons as they

are the standard time horizons between the release of official price data. We find that

our FPCA model-based forecasts compare favourably with the benchmark random-walk

or the ‘no-change’ forecast.

Section 2 provides a description of the UK price data used in the paper. Section 3

discusses the FPCA with complex survey design methodology. Section 4 conducts the

analysis of the distribution dynamics and provides numerical evidence of the proposed

estimators in a simulation study. Section 5 discusses the results of the simulations and

studies the comovement of the UK price distributions with macroeconomic variables.

This section also suggests how to perform model validation through a density forecasting

exercise and offers some sensitivity analysis. Finally, Section 6 concludes.

2 UK Consumer Price Index Data

To construct the CPI, the ONS surveys prices for goods and services that are included in

the household final monetary consumption expenditure component of the UK National

Accounts. The survey excludes housing portion of consumer prices, such as mortgage

interest payments, house depreciation, insurance and other house purchase fees. Detailed

description of the data underlying the CPI, the statistical methodology used, collection
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and validation of prices, calculation of weights, can be found in the ONS (2014) or

Clews et al. (2014). In total, the survey includes prices for over 1,100 representative

items (e.g., onions, men’s suit, single bed), which are collected locally or centrally, for

more than 14,000 retail stores across 12 geographical regions (London, South East, South

West, Eastern, East Midlands, West Midlands, Yorkshire and The Humber, North West,

North East, Scotland, Wales, and Northern Ireland). Each item is assigned a weight

that reflects its relative importance in households’ consumption expenditures. Weights

are calculated based on the Household Final Monetary Consumption Expenditure and

ONS Living Cost and Food Survey. Changes in expenditure weights over time reflect

gradual shifts in expenditure composition of households’ consumption baskets. The data

published on ONS website includes only locally collected prices, covering about 57% of

the UK CPI basket.

Observations are stratified by shop type, by region, and by region and shop type.

Two types of shops are identified: retailers with fewer than 10 outlets are classified as

independents, while retailers with 10 or more outlets are classified as multiples. This

study only utilizes the samples stratified by region and shop type yielding a total of 24

strata (L) to better capture price heterogeneity in the population. The sample period

includes 235 months (T ), from March 1996 till September 2015. The total number of

observations is over 26 million, or about 110,000 per month.

Figure 1 displays the UK CPI and annualized monthly inflation rate. The light

yellow areas highlight the UK’s late 2000s (2008–04/2009–09) and the double-dip (2011–

10/2012–06) recessions. The red solid line represents zero. The figure shows that the

CPI level in the UK displays significant trend and cyclical variations across time. The

price level grew by an average of 2.0% per year between 1996 and 2015, and the standard

deviation of their changes was 0.4 percentage points per month; in particular, inflation

fell by 2 to 3 percentage points in annualized terms during each of the two recessions in

2000’s. These changes are due to a combined effect of micro-level time co-variations of

prices across different products, stores, and locations. As we will show below, much of

information on such complex micro-level price co-variations is contained in the dynamics

of the distribution of prices.
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Figure 1: UK Monthly CPI and Inflation. Top graph plots the monthly CPI (source:

http://www.ons.gov.uk), and the bottom graph plots the implied annualized seasonally

adjusted monthly inflation in percentages. The base year is 2015. The light yellow areas

highlight the UK’s late 2000s (2008–04/2009–09), and the double-dip (2011–10/2012–06)

recessions.

To study these dynamics, we construct the following variables. Let t denote a month,

k denote an item-stratum bin and i denote an individual product, so that p̆k,i(t) represents

the natural logarithm of the price of a product or service i (in nominal British pounds)

in month t, for item-stratum bin k; and ∆p̆k,i(t) = p̆k,i(t) − p̆k,i(t − 1) is the change of

the natural logarithm of price for that product from month t − 1 to t. We also define

the de-trended price levels, p̆∗k,i(t) = p̆k,i(t) − p̆k(t), where p̆k(t) is the across-time linear

trend of p̆k,i(t) estimated for each item-stratum bin k. As a point of comparison, Figure

1 in the supplemental material (Chu et al., 2018) displays estimates of the population

mean, median and inter-quartile range of p̆k,i(t) for each of the 235 months.

Considerable variations of prices at store and product levels suggest that the observed

dynamics of distributions of p̆k,i(t) or ∆p̆k,i(t) could be driven by a subset of stores or

goods with particularly volatile prices, creating numerical difficulties when recovering the

6

http://www.ons.gov.uk/ons/index.html


overall movement of the super-population distribution of prices. Furthermore, in a given

month roughly 84% of prices do not change from the previous month. To address these

issues, we proceed by standardizing price levels and price changes as suggested in Klenow

and Kryvtsov (2008) and defined as follows:

x∗k,i(t) = (p̆∗k,i(t)− p̆∗k)/σ̂p̆∗k and ∆xk,i(t) = (∆p̆k,i(t)−∆p̆k)/σ̂∆p̆k,i , (2)

where p̆∗k and ∆p̆k are across-time sample means of p̆∗k,i(t) and non-zero ∆p̆k,i(t) computed

for each item-stratum k, and σ̂p̆∗k,i and σ̂∆p̆k,i for the standard deviations. Hereafter, we

refer to x∗k,i(t) and ∆xk,i(t) as the ‘log(Price)’ and ‘∆log(Price)’ respectively. Their

underlying super-population distributions in each month, generally denoted by ft, are

the focus of our analysis.

3 Functional Principal Component Analysis (FPCA)

of Densities

Kneip and Utikal (2001) provide a method to identify {gj}Jj=1 and {{θt,j}Jj=1}Tt=1 on the

right-hand side of (1). Let M be the variance-covariance matrix with the elements

Mt,s = 〈ft − fµ, fs − fµ〉 = Mt,s −
1

T

T∑

i=1

(Mt,i +Mi,s) +
1

T 2

T∑

t=1

T∑

s=1

Mt,s, (3)

where Mt,s = 〈ft, fs〉 =
∫
X ft(x)fs(x)w(x)dx, w(x) > 0 is some continuous, uniformly

bounded weighting function ∀x ∈ X , and X represents a compact support. Kneip and

Utikal (2001) show that θt,j and gj can be written as:

θt,j = λ
1/2
j pt,j, gj =

∑T
t=1 θt,jft∑T
t=1 θ

2
t,j

, (4)

where p1 = (p1,1, . . . , pT,1)>; . . .; pj = (p1,J , . . . , pT,J)> are the eigenvectors of M and

λ1 ≥ λ2 ≥ · · · are the eigenvalues ofM. Thus, in view of (1) and (4) from classical PCA

one has:

T∑

t=1

θt,j = 0,
T∑

t=1

θt,jθt,l = 0 if j 6= l,
T∑

t=1

θ2
t,j = λj, j = 1, . . . , J, (5)

∫

X
gr(x)dx = 0. (6)

3.1 FPCA with Complex Survey Data

Equations (3) and (4) are the basis to construct feasible estimators of each component in

the right-hand side of the model (1). However, we face two data features that need to be
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addressed when constructing these estimators, namely, having a stratified random sample

each month, and the fact that prices are recorded from the same strata units through

time. In this section we describe how Kneip and Utikal’s (2001) original estimators can

be adapted to these situations, and we also investigate their asymptotic behavior when

accounting for these new data features.

Let ‖v‖ be the Euclidean norm of v = (v1, . . . , vdim(v))
>; v∧ = min(v1, . . . , vdim(v));

v∨ = max(v1, . . . , vdim(v)); Uk,i(t, x) = Khk(x−Xk,i(t)); 〈Uk,i(t), U`,j(s)〉 =
∫
Uk,i(t, x)U`,j

(s, x)w(x)dx, where w(x) is the norm weight and Kh(·) = h−1K (·/h) is some kernel

function defined below, hk denotes a smoothing parameter, K(·) satisfies Assumption

2 below; K∗(z) =
∫
K(y)K (z + y) dy; Op(·), Oa.s.(·), op(·), and oa.s.(·) are symbols for

stochastic orders of magnitude (‘in probability’ and ‘almost surely’ respectively) taken

with respect to the distributional law of the actual data;
d−→ denotes convergence in

distribution (under the distributional law of the actual data); w.p.1 stands for ‘with

probability (w.r.t. the survey sampling scheme) approaching 1.’ Finally, all the expecta-

tions are taken with respect to the distributional law of the actual data, so that we just

write E[·] ≡ EX [·] to simplify notation.

3.1.1 Stratified Random Sampling, Dependence and Estimation

Further notation is now introduced in order to describe the estimators and their asymp-

totic properties. Let N1, . . . , NL denote the sizes of L sub-populations, U1(t), . . . , UL(t),

available at time t, and let N =
∑L

k=1Nk be the size of the entire super-population.

Here we make the assumption that the population sizes are invariant over time so as

to keep all calculations involving multiple summations tractable. This assumption does

not invalidate the theoretical results obtained in this paper, and can be relaxed at the

expense of more cumbersome notations and algebra.

We assume that the elements in each Uk(t) are realizations of the i.i.d. random

variables, Xk,1(t), . . . , Xk,Nk(t), distributed according to a density, ft,k; also, Xk,i(t) and

X`,j(t), where i = 1, . . . , Nk and j = 1, . . . , N`, are pairwise independent for all k 6= `.

The stochastic process Xk,i(t) is strongly mixing in the sense of Rosenblatt (1956) for

each k ∈ [1, L] and i ∈ [1, Nk]; this process is generally non-stationary as its density, ft,k,

will not vary over time in case Xk,i(t) is a strictly stationary process.

The stratum (sub-population) weights are defined by Wk = Nk/N . The super-

population density, ft, then becomes a mixture of the sub-population densities:

ft(x) =
L∑

k=1

Wkft,k(x). (7)

It is assumed that random samples of nk observations are taken without replacement

from each stratum, Uk(t), - denoted by Sk(t); then S(t) =
⋃L
k=1 Sk(t) is a stratified

random sample of size n =
∑L

k=1 nk from the super-population, U(t) =
⋃L
k=1 Uk(t). This

survey sampling design can be represented by random indicators, Ik,i(t) = 1 if unit i of

the stratum k belongs to Sk at time t, and zero otherwise. Because a part of the super-
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population can be sampled, Buskirk (1998, 1999), Bellhouse and Stafford (1999), and

Buskirk and Lohr (2005) propose to estimate ft(x) by a sample weighted kernel density

(SWKD):

f̂n,t(x) =
1

N

L∑

k=1

Nk

nk

Nk∑

i=1

Ik,i(t)Khk (x−Xk,i(t)) =
L∑

k=1

Wkf̂t,k(x), (8)

where the strata-specific bandwidth, hk, goes to zero as the sample size becomes large,

and f̂t,k(x) = n−1
k

∑Nk
i=1 Ik,i(t)Khk (x−Xk,i(t)). Note that a single overall bandwidth h,

i.e. h1 = · · · , hL = h, can be used instead (as in our simulation study and empirical

application) but this flexibility might be needed in other settings where sparseness and

small samples are practical problems. Below, we assume that nk = O(Nk) for k =

1, . . . , L.

The SWKD estimator in (8) is the building block of the proposed estimators of θt,r
and gr for r = 1, 2, . . . , . It is used to estimateM by a survey sample variance-covariance

matrix, i.e., a natural candidate seems to be M̃t,s = 〈f̂n,t − f̂n,µ, f̂n,s − f̂n,µ〉 with f̂n,µ =

T−1
∑T

t=1 f̂n,t. One has that

M̃t,s = M̃t,s −
1

T

T∑

i=1

(M̃t,i + M̃i,s) +
1

T 2

T∑

t=1

T∑

s=1

M̃t,s, (9)

where M̃t,s = 〈f̂n,t, f̂n,s〉.
We have observed that, for t 6= s, the candidate estimator M̃t,s has some bias caused

by serial correlation of Xk,i(t). After removing this bias, we obtain a bias-corrected

representation for M̃t,s:

M̂t,s = 〈f̂n,t, f̂n,s〉 −
L∑

k=1

W 2
k

1

n2
k

Nk∑

i=1

Ik,i(t)Ik,i(s)〈Uk,i(t), Uk,i(s)〉

+
L∑

k=1

W 2
k

1

n2
k(nk − 1)

Nk∑

i=1

Nk∑

j 6=i

Ik,i(t)Ik,j(t)〈Uk,i(t), Uk,j(s)〉, (10)

where the last term is needed so to ensure the same convergence rates for the bias and

the asymptotic variances as in Kneip and Utikal (2001). When t = s, the bias-corrected

representation for M̃t,t is given by

M̂t,t = 〈f̂n,t, f̂n,t〉 −
L∑

k=1

W 2
k

1

n2
k

Nk∑

i=1

Ik,i(t)〈Uk,i(t), Uk,i(t)〉

+
L∑

k=1

W 2
k

1

n2
k(nk − 1)

Nk∑

i=1

Nk∑

j 6=i

Ik,i(t)Ik,j(t)〈Uk,i(t), Uk,j(t)〉. (11)
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Thus the bias-corrected estimate of Mts is given by

M̂t,s = M̂t,s −
1

T

T∑

i=1

(M̂t,i + M̂i,s) +
1

T 2

T∑

t=1

T∑

s=1

M̂t,s. (12)

After calculating the eigenvalues λ̂r, and eigenvectors p̂r of M̂ for r = 1, . . . , J , one

can then estimate (4) by the analogy principle, i.e.

θ̂t,r = λ̂1/2
r p̂t,r, ĝr =

∑T
t=1 θ̂t,rf̂

∗
n,t∑T

t=1 θ̂
2
t,r

, (13)

where f̂ ∗n,t is defined as in (8) but with bandwidths b1,. . . ,bL instead.

3.1.2 Computational Considerations

The calculation of M̂ can be performed in an embarrassingly parallel fashion. Since M̂
is symmetric, its T (T − 1)/2 elements (12) only requires samples S(t) and S(s) for their

calculation. Furthermore, if a new sample, i.e. S(T + 1) is available at time T + 1, a new

M̂ can be readily obtained by appending a new column of T + 1 new elements (and its

transpose as a row vector) without recalculating its other elements. This is the basis of

our density forecast exercise in Section 5.4.

Although the next section will provide the theoretical requirements on bandwidths,

hk and bk, for the consistency of θ̂t,r and pointwise asymptotic normality of ĝr defined in

(13) to hold, we can provide a valid way to compute them in practice here. As explained

earlier, in the absence of sparseness or small sample within strata, at each time period

t, one can set h1 = · · · = hL = h and b1 = · · · = bL = b and then set h = ĥ5/4

and b = ĥ × T−1/5, where ĥ corresponds to Duin’s (1976) likelihood cross-validation

bandwidth. These choices will be consistent with our theoretical developments below

when the serial dependence is not very strong, and as shown in the simulation study and

application they seem to work very well in practice. The supplemental material, (Chu

et al., 2018), provides a sensitivity analysis when ĥ is calculated by Silverman’s (1986)

rule of thumb instead.

3.2 Inference

We investigate the asymptotic behavior of the eigenvalues λ̂r and eigenvectors p̂r of M̂
for r = 1, . . . , J, as well as of estimators (13). To make the derivation of the asymptotics

more tractable, we fix J and L and the asymptotics is based on assuming that N∧ =

min(N1, . . . , NL) and N∨ = max(N1, . . . , NL) go to infinity such that N∧/N∨ = O(1),

Wk = O(1) and max1≤k≤L nk/Nk = O(1). We need the following standing assumptions

for asymptotic analysis:

Assumption 1. The true sub-population densities, ft,k, have partial derivatives up to

order k∗, satisfying a Lipschitz condition uniformly on a compact subset, X ⊂ R for

10



t = 1, . . . , T and k = 1, . . . , L.

Assumption 2. 1) The kernel weight K(u) used in the estimation procedure is a bounded

probability density function with support, {u : |u| ≤ 1}, such that K(u) = K(−u), and∫
K2(u)du <∞. 2) The weighting function w(·) in the inner product 〈·, ·〉 is a bounded

continuous non-negative function supported on an open convex set of the real line.

Assumption 3. There exist constants, 0 < C3,r < ∞ and 0 < C4,r ≤ C5,r < ∞ such

that mins=1,...,T ;s 6=r |λr−λs| ≥ C3,rT and C4,rT ≤ λr ≤ C5,rT for any T , N , and any fixed

r ∈ {1, . . . , L}.
Assumption 4. For each k ∈ [1, L] and i ∈ [1, Nk], the random variables Xk,i(t) are

strongly mixing in the sense of Rosenblatt (1956) with the strong-mixing coefficient α(τ)

verifying
∑∞

τ=1 τα(τ) <∞.
Assumption 1 is a stronger version of Assumption A1 in Kneip and Utikal (2001)

in that it requires all sub-population densities and their partial derivatives to satisfy an

uniform Lipschitz condition. Assumption 2 is standard in the kernel smoothing literature,

while Assumption 3 is the same as A2 in Kneip and Utikal (2001). Assumption 4 is

introduced here to account for possible serial dependence among elements in the sub-

populations in the form of a strongly mixing process. Note that a natural implication of

this assumption is that the random probability densities of the random variableXk,i(t) are

also serially correlated. However, as pointed out by Kneip and Utikal (2001) and Benko

et al. (2009) the proposed method still work for dependent random densities as long as

〈ft − fµ, ξ〉(ft − fµ) where ξ ∈ L2(D) with D ⊂ R forms a stationary ergodic process.

In our application, a simple visual inspection of the estimated principal components in

Figure 5 confirms the latter.

The following theorem effectively adapts Theorem 1 in Kneip and Utikal (2001) to

allow for sampling weights and weak dependence across samples S(1), . . . , S(T ):

Theorem 1. Let hk = O(N−δkk ) for some δk ∈ [1/4, 1), k = 1, . . . , L, such that (T 1−4ε/h2
k)

α
(
T 1/2+ε

)
↓ 0 and (

√
N∧T/hk)α

(
T 1/2−ε) ↓ 0 for some ε ∈ (0, 1/2). Suppose that T/N∧ ↓

0. Then,

1. For a fixed r ∈ {1, . . . , T},

λ̂r − λr = p>r (M̂ −M)pr +Op (T/N∧) = Op(
√
T/N∧). (14)

2. Write qr = (q1,r, . . . , qT,r) with

qt,r =
T∑

s=1

ps,r(〈f̂n,s − fs, ft − fµ〉+ 〈f̂n,t − ft, fs〉 − 〈f̂n,µ − fµ, fs〉)

and Sr =
∑T

s=1
s 6=r

1
λs−λr psp

>
s . One has that

E
[∣∣∣p̂r − pr − Sr(M̂ −M)pr

∣∣∣
]

= Oa.s.

(
1

N∧

)
(15)

11



and

E [|p̂r − pr − Srqt,r|] = Oa.s.

(
1

N∧
+

1

N∧
√
Th∧

+
(h∨)2

√
TN∧

)
. (16)

Moreover, we also have |θ̂t;r − θt;r| = Op

(
N∧−1/2

)
and ‖p̂r − pr‖2 = Op

(
N∧−1/2

)
.

The asymptotic normality of the normalized partial summation of eigenvalues
√
N∧/T∑T

r=J+1 λ̂r is provided in Section B in the supplemental material (Chu et al., 2018). The-

orem 1 shows that the speed of convergence of the estimated eigenvalues and strength

components to their true values is governed by how quickly the number of observations

in the smallest strata increases. Our proposed bias correction that adjusts for possible

serial dependence in the raw data enables one to obtain the same convergence rates for

the biases of λ̂r, p̂r, and θ̂t;r, r ∈ {1, . . . , T}, (see, i.e., (14)–(16) above) as in Kneip and

Utikal (2001, Theorem 1).

Since the right-hand side of (13) is just a weighted sum of T SWKD estimators,

the following theorem characterizes the pointwise asymptotic normality of the functional

principal components:

Theorem 2. Define θ∗t;r = θt;r/
∑T

t=1 θ
2
t;r and suppose that bandwidths bk ↓ 0 such that

n
1/2
k b

5/2
k → const., bk = O(b`) for every k 6= `, and nkbk ↑ ∞. Moreover, let bk satisfy

N∨

b∧T 4εα
(
T 1/2+ε

)
↓ 0 and

√
N∨

b∧
α
(
T 1/2−ε) ↓ 0 for some ε ∈ (0, 1/2). Under the assumptions

of Theorem 1, it then holds that

√
N∨b∨(ĝr − gr) d−→ N

(
lim
N↑∞

√
N∨b∨

1

2

{∫
x2K(x)dx

} L∑

k=1

Wkb
2
k

T∑

t=1

θ∗t;rf
′′

t,k(x),

lim
N↑∞

N∨b∨
L∑

k=1

W 2
k

1

n2
kbk

ft,k(x)
T∑

t=1

Nk∑

i=1

Ik,i(t)θ
∗2
t;r

∫
K2(x)dx

)
. (17)

As in traditional density estimation, this theorem highlights that the functional com-

ponents will display less variability in the tails of the distribution of the data than in its

interior, and that larger biases are associated with more curvature. Note that the band-

width sequences are allowed to differ across clusters as well as across different estimated

eigenfunctions. Furthermore, our simulation study below shows that the asymptotic ap-

proximation can be quite accurate even with effective samples of just a few hundreds from

stratas with just a couple of thousands observations to draw from. Since the functional

principal components estimators are asymptotically normal, one can calculate pointwise

confidence intervals using the bootstrap procedure described in Section 5.3.

For our data set, it can be argued that, at each point in time, prices set by nearby

stores tend to be correlated. This spatial dependence in the prices can effectively be

modelled by a strongly mixing random field. The strong-mixing condition quantifies the

notion of weak dependence in random fields. In the simplest case, one can assume that

prices in each stratum and at each point in time are generated by a m-dependent random

field while maintaining that prices in different strata are cross-sectionally independent.

12



In particular, let i represent the ‘site’ (or location) of a store, i, and Vk is the col-

lections of all sites in a stratum, k. A close inspection of the term τ̂ts (defined in the

supplemental material (Chu et al., 2018)) reveals that the source of biases in the cross-

sectional dimension lies in the summands close to the diagonal in the double summations

of type
∑

i∈Vk

∑
j∈Vk . Therefore, a bias-corrected estimate of Mt,s would involve the

truncated double summations of type
∑

i∈Vk

∑
j∈Vk: ‖j−i‖>m, where ‖ · ‖ is the Euclidean

norm, that appear in τ̂ts.

Moreover, Tran (1990) showed that the kernel density f̂n,t remains asymptotically

normal with the same asymptotic variance as in the independence case if the spatial de-

pendence is sufficiently weak and the bandwidth tends to zero at some rate depending on

the decay rate of the strong-mixing coefficient. Therefore, we conjecture that the asymp-

totic properties of the estimates of the principal components and the score functions

(calculated from the aforementioned bias-corrected estimate of the variance-covariance

matrix M̂) still remain valid. However, the formal proof of this conjecture would involve

many lengthy and non-trivial arguments and therefore left for future research.

Finally, we can see in view of Theorems 1 and 2 above and Proposition 1 in the

supplemental material (Chu et al., 2018), that if the serial dependence is sufficiently

weak, the sequence of bandwidths in each cluster can be chosen as originally suggested

by Kneip and Utikal (2001). This is illustrated both in our simulation study and in the

empirical applications in the next sections.

4 Simulation Study

In this section we conduct simulations to assess the performance of the proposed estima-

tors of {{θt,j}Jj=1}Tt=1 and {gj}Jj=1 with stratified random samples using various scenarios,

sample and population sizes, and weighting schemes.

We consider the case when J = 1 and T = 30, where the super-populations {ft}30
t=1

are generated by a mixture of two normal distributions, i.e. ft = fµ + θt,1g1 where

g1 = φ−1/2,1/2 − φ1/2,1/2, with φµ,σ representing a Normal density function with mean µ

and variance σ2. The sequence θt,1 = ϑt− ϑ̄ and function fµ = ϑ̄φ−1/2,1/2 +(1− ϑ̄)φ1/2,1/2,

where ϑ̄ = (1/30)
∑30

t=1 ϑt, are generated using three scenarios as follows:

Scenario 1: ϑt = t
30

+ 1
4π

sin
(
πt
30

)
− 3

8π
sin
(

2πt
30

)
,

Scenario 2: ϑt = 1
2

+ 1
2

sin
(

30
t

)
,

Scenario 3: ϑt = 1
2
Beta3/2,3/2( t

30
),

where Betaα,β represents the Beta probability density function with shape parameters α

and β. The implied dynamics of these super-populations densities are shown in Figure

2. Note that these three scenarios provide rich dynamic settings in which to assess the

numerical performance of the proposed estimators in this paper. Scenario 1 provides a

setting in which densities are diverging systematically from each other, while Scenario

2 depicts a situation where densities seems to be shuffling around at first and then a

pattern of convergence emerges. Finally, Scenario 3 portrays a case in which densities

differ very little before and after a period of large changes in the dynamics of these
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super-populations.

At each period, t, we then randomly draw (without replacement) a total sample of

n =
∑6

k=1 nk from N =
∑6

k=1Nk observations distributed over L = 6 strata as described

in Table 1.

Table 1: Simulation Design
n1/N1 n2/N2 n3/N3 n4/N4 n5/N5 n6/N6 n/N

667/2,223 223/4,445 1067/6,666 555/2,219 334/2,223 201/2,224 3,047/20,000
1,501/3,334 501/6,667 2,400/9,999 1,250/3,331 751/3,334 451/3,335 6,854/30,000
2,667/4,445 889/8,889 4,267/13,333 2,221/4,442 1,334/4,445 801/4,446 12,179/40,000

To simplify calculations and computational time we set ft,1 = . . . = ft,6 = ft in (7).

For the same reasons bandwidths are also set as h1 = . . . = h6 = h, b1 = . . . = b6 = b,

h = ĥ5/4 and b = ĥ × T−1/5, where ĥ corresponds to Duin’s (1976) likelihood cross-

validation bandwidth. These are done in each period t = 1, . . . , 30 and along with

a Gaussian kernel, the SWKD estimators are also estimated, i.e. f̂n,1, . . . , f̂n,30 and

f̂ ∗n,1, . . . , f̂
∗
n,30. We then proceed to calculate {θ̂t,1}30

t=1 and ĝ1 on an equally spaced grid on

[−2.7, 2.7] using three different weighting functions (see Figure E.1 in the supplemental

material (Chu et al., 2018)):

w1(u) = 1, w2(u) =
10

π[exp(u) + exp(−u)]
, w3(u) =

16|u|
π[exp(u) + exp(−u)]

. (18)

In (18), w1 provides equal weights to all points in the integral, while w2 downweights

extreme points in favor of points near zero, and w3 downweights most points in the center

of the distribution, while giving higher weights to points in the tails.
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Figure 2: Super-populations used in the Simulation Study. Top row panels display

sequences {θt,1}30
t=1 that along with the common g1 function displayed in the bottom row

panels generate the set of 30 super-populations, f1,. . . , f30 displayed in the middle row

panels. The dashed horizontal lines mark zero.

The experiment is repeated 1,000 times and Figure 3 summarizes our results (the

supplemental material (Chu et al., 2018) shows the results when using Silverman’s (1986)

rule-of-thumb bandwidths instead). Figure 3 displays the simulated Root Mean Squared

Error (RMSE) of estimators of θ10,1, . . . , θ20,1 in each scenario when using weighting

functions w1, w2, and w3 in (18). These simulations show that the precision of the

proposed estimators for the dynamic strengths components increases with sample and

population sizes when accounting for the complex survey design. The performance of the

estimators is however sensible to the weighting functions being used. In particular, the

performance in terms of RMSE using weighting schemes w1 or w2 is strictly dominated by

the weighting function w3 in Scenarios 1 and 2. On the other hand, although weighting

scheme w3 displays smaller RMSE than when using w2, no weighting scheme w1 gives

the smallest simulated RMSE in scenario 3. Interestingly, as seen in Figure 2, weighting

function w3 seems to work best when the inter-temporal dynamics concentrates in the

tails, and these are given larger weights as can be seen in Scenarios 1 and 2.
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Figure 3: Simulated Root Mean Squared Error of the Dynamic Strength Components.

Simulated Root Mean Squared Error of estimators of θ10,1, . . . , θ20,1 in various sampling

designs for all three Scenarios using all three weighting functions.

Similarly, Figure 2 in the supplemental material for this paper (Chu et al., 2018)

shows the Q-Q plots of the standardized simulated ĝ1 evaluated at x = 0.5. These plots

show that the pointwise asymptotic normal approximation is good across all scenarios

and sample/population sizes. Again, the performance of the weighting function in w3

seems to dominate throughout in terms of tail behavior. These results along with those

in Figure 3 are in line with our theoretical predictions in Section 3.2. They also highlight

the fact that the weighting function w3 seems to provide better estimates of the strengths

components and basis functions. Furthermore, as shown in the supplemental material

(Chu et al., 2018), these findings are robust to bandwidth choice.

5 Applications to the UK CPI data

In this section, we demonstrate that the FPCA methodology can be used to visualize in a

structured manner the evolution of micro price distributions, see, e.g., Huynh and Jacho-
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Chávez (2010) and Huynh et al. (2016) for similar applications. We apply the FPCA

methodology to the UK price data to analyze the time evolution of the distribution of

the standardized and de-trended natural-logarithm prices (log(Price)) and their changes

(∆ log(Price)). We utilize the R packages npRmpi (cross-validation) and snow (numerical

integration). All computations were performed on EDITH, the Bank of Canada High

Performance Cluster, which consists of 664 cores on 36 nodes. All jobs utilize about 250

cores; bandwidth cross-validation takes about 24 hours while numerical integration takes

about an hour.

5.1 Data Visualization

Measurement of the dynamics of economy-wide price distributions offers important im-

plications for economists and central bankers, who are interested in understanding fluc-

tuations in inflation and other economic variables. Understanding the evolution of the

joint dynamics of micro-level prices is of a first-order importance for economists. A vo-

luminous literature in this area is represented by papers including inter alia Bils and

Klenow (2004), Dhyne et al. (2006), Klenow and Kryvtsov (2008), Nakamura and Steins-

son (2008), Gagnon (2009), Klenow and Malin (2010), Kryvtsov (2016), and Kryvtsov

and Vincent (2017). Since inflation measures a change in the price level for goods and

services sold by retailers across the country, inflation dynamics depends on how individ-

ual retailers set and change their prices across time, and on how price behaviour across

retailers balance out at the economy-wide scale. Information about these two sources of

aggregate price movements is handily embedded in price distributions and their move-

ments across time. Micro price data can be used to estimate price distributions, and

therefore, provide valuable evidence on the nature of aggregate inflation fluctuations and

the effects of monetary policy.

Figure 4 utilizes Hyndman et al.’s (1996) highest density regions, stacked density

plots, and its smoothed version in Castro Camilo and de Carvalho (2017) to display

the resulting SWKD estimators for both variables using a second-order Gaussian kernel

in each month. Given the large number of observations and the absence of sparseness

within strata, we use a common bandwidth across stratas that are chosen by Duin’s

(1976) likelihood cross-validation. This cross-validation is completed for each month in

our sample and the resulting bandwidths can be found in the top graph in Figure E.4 in

the supplemental material (Chu et al., 2018). We observe several empirical regularities

for the distributions of the demeaned price levels (log(Price), left panel) and price changes

(∆ log(Price), right panel).

First, from month to month, distributions shift their mass across different density

regions, captured by shaded areas on the right-hand side plots. Second, the relative

sizes of density regions change across time, reflecting fluctuations in the degree of price

dispersion. Third, changes in relative density regions are asymmetric from month to

month, resulting in varying skewness of the distribution (top and middle left panels).

Fourth, the densities at the peak and at the tails vary extensively (middle and bottom

right panels). Finally, fluctuations in density regions stand out during recessions. For
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example, the peak of price-level distributions is markedly higher during mid-2000’s, and

the 50% density is smaller for price changes during both recessions.
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Figure 4: Estimated Distributions of log(Price) and ∆ log(Price). Top and bottom graphs

utilize Hyndman et al.’s (1996) stacked density plots device and their highest density

regions per month with 50% (dark gray), 95% (gray), 99% (light gray) probability cover-

age, and the mode (•). Middle plots display the Castro Camilo and de Carvalho’s (2017)

smooth stacked density plots.

These descriptive statistics are visually appealing. However, it is difficult to quantify

how these distributions are evolving over time especially with complex survey weights.

In the next section, we operationalize the estimators described in Section 3.1.1 by using

weighting function (w1) in (18) over the observed support of the entire sample (as per-

mitted in Assumption 2). This weighting function was found to outperform no weighting

in the simulation study in Section 4. The required bandwidths in each month are chosen

as described in Section 3.1.1. A total of T × (T − 1)/2 = 27, 495 univariate numerical

integrals were calculated in parallel using an adaptive quadrature algorithm in Piessens

et al. (1983). Results are shown in Figure 5.
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5.2 Dynamic Scree Plots and Strength Coefficients

The left-hand side plots in Figure 5 display the dynamic scree plots – the contribution

of the respective eigenvalues to total variation of distributions. Visual inspection of the

dynamic scree plot for the log(Price) reveals that the first four components account for

about 5% of the log(Price) distributions variation after which the dynamic scree plot

is relatively flat. For the ∆log(Price) the first four components account for 7% of the

variation. Hence, a bulk of the time-variation in price distributions is characterized

by just a few principal components. Furthermore, the scree plots demonstrate that the

second, third and fourth components together are about as important as the first common

component in accounting for the variance of these distributions. This is an important

result for understanding the drivers of inflation fluctuations as it highlights the key role

of higher order components.
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Figure 5: Estimated Dynamic Scree Plots and Strength Components: log(Price) and

∆ log(Price). Each plotted estimated strength components are normalized to start at

zero on 1996–03, i.e., θ̂†t,j − θ̂†1996−03,j, where θ̂†t,j = θ̂t,j/mint θ̂t,j, for j = 1, 2, 3.

The right-hand side of Figure 5 provides a normalized version of the estimated first
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three dynamic strength coefficients, i.e. θ̂†t,r − θ̂†1996−03,r, where θ̂†t,r = θ̂t,r/mint θ̂t,r, and

θ̂t,r is defined in (13), for r = 1, . . . , 3. These plots describe how each component evolves

over time. Note that these location/scale normalizations are useful in describing the

movements in terms of a common initial value of zero, and in terms of order-of-magnitudes

larger than the lowest temporal deviation, i.e., scale free. They also better highlight the

correlation between them and other key economic variables. The dynamics for the first

three estimated dynamic strength coefficients deviations for the log(Price) resemble an

AR(1) process with the AR estimated coefficients of 0.19, 0.61, and 0.64, respectively. For

the ∆log(Price) the process has AR(1) coefficients of 0.37, 0.22, and -0.36, respectively.
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Figure 6: Estimated Strength Components, UK Unemployment, and Inflation. Top plot:

Left hand side axis is the scale for the normalized estimated strength components, i.e.,

θ̂†t,j = θ̂t,j/mint θ̂t,j, j = 1, 2, 3, for log(Price) (red solid line represents its zero), while

the right hand side axis is the scale for the UK monthly unemployment rate measured in

percentages. Bottom plot: Left hand side axis is the scale for the normalized estimated

strength components (defined before) for ∆ log(Price), while the right hand side axis is

the scale for the UK monthly inflation as measured by the CPI measured in percentages.
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We find that some of these components are correlated with economic variables. Fig-

ure 6 illustrates that the first three estimated strength coefficients for log(Price) and

∆log(Price) comove with the UK monthly unemployment rate and the inflation rate.

For log(Price), the correlations of the first three estimated dynamic strength coefficients

and the unemployment rate are 0.66, -0.20 and 0.12, respectively; and for ∆log(Price),

the correlations of the first three estimated dynamic strength coefficients and the inflation

rate are 0.20, -0.11, and -0.06, respectively.

While we are able to estimate the correlations consistently, their standard errors

remain unknown so we are unable to test their statistical significance. Nonetheless, since

by construction the dynamic strength coefficients are statistical ‘model-free’ concepts,

correlation of the coefficients with economic variables suggests that FPCA methodology

has potential value for price measurement and macroeconomic analysis. Note that these

correlations already take into account the information contained in the sampling design

through the estimated coefficients as described in Theorem 2 above.

5.3 Basis Functions and their Deformations

The estimated dynamic strength coefficients summarize the dynamics of the distributions

through time, but they do not provide information about the parts of the distributions

that are evolving. This information is captured by the estimated time-invariant basis

functions, or functional principal components, ĝj. Black solid lines in Figures 7 and 8

plot the first four bootstrap bias-corrected estimated common functional components, ĝj,

j = 1, . . . , 4, for log(Price) and ∆log(Price), respectively.

The shape of the common functional components outlines the density regions that

are deformed over time; and the extent of the temporal deformation is given by the

corresponding estimated dynamic strength coefficients, θ̂t,j. For example, ĝ1 on Figures

7 and 8 is positive for prices and price changes that are roughly below zero and negative

for prices and price changes that are above zero, respectively. This means that time

variation in the estimated dynamic strength coefficient θ̂t,1 will be shifting the mass in

the distribution of prices (price changes) back and forth from low to high prices. The

mass that is distributed is given by the total estimated component deformation, θ̂t,1ĝ1.

Likewise, estimated higher order basis functions represent mass shifts away from the

middle (ĝ2), between the tails (ĝ3), and between the middle and the tails (ĝ4). These

inherent features of the first four common functional components can therefore be related

to the temporal variations in the first four central moments of the distributions: the mean,

variance, skewness and kurtosis.

To illustrate the usefulness of FPCA, Figures 7 and 8 plot the estimated common

component deformations, θ̂t,j ĝj, for three important periods of the British economy in

the past 19 years: for April 2001, representing an expansionary period of economic

activity (θ̂2001−04,j ĝj for j = 1, 2, 3, 4), and the beginning of two recessions in August

2009 (θ̂2009−08,j ĝj), and December 2011 (θ̂2011−12,j ĝj). The unemployment rate was 5% in

April 2001, and 8% (8.5%) in August 2009 (December 2011).
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Figure 7: Estimated First Four Basis Functions and their Deformations for log(Price).

Each plot displays bootstrap bias-corrected estimates of the first four basis functions,

ĝj(·), for j = 1, . . . , 4 (black solid line), as well as three deformations corresponding to

the beginnings of two recessions, i.e. 2009–08 (blue dashed line) and 2011–11 (blue dotted

line), as well as the beginning a period of normal economic activity, i.e. 2001–04 (blue

solid line). The red solid line represents zero.

Based on the point-wise asymptotic normality result in Theorem 2, a 95% bootstrap

point-wise confidence intervals based on 999 replications are also shown in these plots, as

gray areas. To mimic the original stratified sampling design in each month, the following

bootstrap procedure was implemented:

1. For each month, t = 1, . . . , 235, 999 bootstrap samples within strata are taken and

bootstrap replication weights are constructed as suggested in Canty and Davison

(1999, Section 3.4, pp. 383-384).

2. Based on the 999 bootstrap samples and replication weights generated in the first

step, bootstrap analogues of the original estimator of (13) are then constructed

using bandwidths and kernel functions used for the original sample.
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Hence, components with basis functions for which gray areas are above or below zero

make a statistically significant impact on the underlying distributions.

j = 1

-2 -1 0 1 2

-4

-2

0

2

4

6

-0.2

-0.1

0

0.1

0.2

j = 2

-2 -1 0 1 2

-4

-2

0

2

4

6

-0.2

-0.1

0

0.1

0.2

ĝj
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Figure 8: Estimated First Four Basis Functions and their Deformations for ∆ log(Price).

Each plot displays bootstrap bias-corrected estimates of the first four basis functions,

ĝj(·), for j = 1, . . . , 4 (black solid line), as well as three deformations corresponding to

the beginnings of two recessions, i.e. 2009–08 (blue dashed line) and 2011–11 (blue dotted

line), as well as the beginning a period of normal economic activity, i.e. 2001–04 (blue

solid line). The red solid line represents zero.

The first estimated common component deformation shows that in 2011 the underly-

ing baseline distribution of prices shifts the weight from the left part of the distribution

(less than zero) toward the right part of the distribution, which is indicative of an increase

in the mean. Note that the 2001 and 2009 estimated common component deformations

are not discernible in the figure. The second component deformation for 2009 (top right

panel in Figure 7) indicates that the weight is moving toward the center of the distribu-

tion which is indicative of decrease in price distribution variance in the wake of the Great

Recession in the UK. The shape of the corresponding estimated basis function (bottom
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left panel in Figure 7) implies that during slumps there is less weight assigned to the

left of the distribution so that positive skewness is lower, which is the case for the 2009

and 2011 recessions and is virtually not discernible on the figure. The fourth estimated

basis function (bottom right panel) complements this interpretation by showing that the

middle part of the distribution is gaining at the expense of the tails.

Similarly, for ∆log(Price) in Figure 8, the first, second, and third components’ confi-

dence intervals contain zero for some of the range, but are nonetheless informative. For

example, the first component reveals a positive mean-effect in 2001 while in 2009 there

is a negative mean effect, which is consistent with predictions of standard sticky price

models that economic expansions (contractions) are associated with higher (lower) in-

flation rates. The second estimated common component deformations (top right panel

in Figure 8) suggest that 2009 and 2011 recessions are associated with larger dispersion

than 2001 expansion. The third estimated common component deformations shows an

increase in the left tail at the expense of the middle and right tail in 2001 expansion,

which is indicative of higher positive skewness. The fourth estimated common compo-

nent deformation shows that during the 2009 and 2011 recessions the mass in both tails

and the middle of the distribution was lower which is indicative of higher kurtosis.

5.4 Density Forecasting

In this section, we propose a density forecast exercise based on (1) to forecast price

distributions and track the underlying price dynamics. This exercise also serves as a

data-driven mechanism for choosing J , the number of principal components. First, recall

we can estimate nonparametrically T super-populations, namely f1, . . . , fT based on a

sample {{Xit, wit}nti=1}Tt=1 as in (8), i.e. {f̂t}Tt=1. By choosing T ∗ < T , one can implement

the following procedure to select the number of components, J , and the best (in the

Integrated Squared Error sense) forecast, ˆ̂fT ∗+`|T ∗ for ` = 1, 2, . . .:

Step 1. Using the first T ∗ estimated densities, {f̂t}T ∗t=1, calculate {{θ̂∗t,r}L
∗

r=1}T
∗

t=1, and

{ĝ∗r}L
∗

r=1 where L∗ ≤ T ∗ represents the number of the first non-zero eigenvalues

of the T ∗ × T ∗-matrix M̂∗ as in Section 3.1.1. Also set f̂ ∗µ = (1/T ∗)
∑T ∗

t=1 f̂t.

Step 2. In view of the orthogonality conditions in (5), we utilize the algorithm in Hyn-

dman and Khandakar (2008, Section 3.2, pp. 10–11) to automatically identify the

best fitted ARMA model for each generated series, {θ̂∗t,r}T
∗

t=1, r = 1, . . . , L∗, and

then proceed to obtain an automatic forecast for period T ∗ + ` as described in

Hyndman and Khandakar (2008, Section 2.6, pp. 8), i.e. { ˆ̂θT ∗+`|T ∗,r}L∗r=1.

Step 3. Set

Ĵ = arg min
l∈{1,...,L∗}

∫ (
f̂T ∗+`(x)− f̂ ∗µ(x)−

l∑

r=1

ˆ̂θT ∗+`|T ∗,rĝ
∗
r(x)

)2

dx, (19)
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ˆ̂fT ∗+`|T ∗ = f̂ ∗µ +
Ĵ∑

r=1

ˆ̂θT ∗+`|T ∗,rĝ
∗
r . (20)

Results are displayed in Figure 9. We set T ∗ = 232 (or 2015–06) and calculate Ĵ = 231

and Ĵ = 4 for log(Price) and ∆log(Price) respectively. Using these calculated Ĵs we then

proceed to repeat Steps 1 and 2 above in each of the 999 bootstrap replications described

in Section 5.3. The latter is done using the original calculated bandwidths, Gaussian

kernel functions, and weighting function (w1) in (18) in each replication. 95% point-wise

confidence intervals and bias-corrected versions of f̂233, f̂235, ˆ̂f233|232, and ˆ̂f235|232 are then

constructed using these bootstrap samples.

As shown in Figure 9, the one-month (` = 1) and three-month (` = 3) popula-

tion density forecasts for log(Price) and ∆log(Price) are spot on in terms of overall

shape, although the point-wise variability is larger for the 1-month forecast density for

∆log(Price). The pointwise bootstrapped confidence intervals are in general tighter for

the forecasts than for the actual bias-corrected SWKD estimators. Figure 3 in the sup-

plementary material provides the resulting Q-Q plots for these forecasts as well. The

results are discussed there. Alternatively, one can implement various formal quantitative

methods for density forecast evaluation as suggested in Thorarinsdottir et al. (2013).

An interesting feature of this density forecast algorithm is that as time passes, it

can be re-run to update the chosen Ĵ and the estimated parameters of the automated

ARMA model for each generated series {θ̂∗t,r}T
∗

t=1, r = 1, . . . , L∗. However, the theoretical

justification of this proposed density forecast algorithm is beyond the scope of the paper

and therefore left for future research.
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Figure 9: Feasible 1-Month and 3-Months Density Forecasts. The light gray and light blue

areas represent 95% point-wise bootstrap confidence intervals based on 999 replications.

5.5 Sensitivity Analysis

As a sensitivity analysis the entire empirical analysis in this paper was performed us-

ing naive Silverman’s (1986) rule-of-thumb bandwidths instead of Duin’s (1976) cross-

validated bandwidths, see Section F.5 in the supplemental material (Chu et al., 2018).

Similarly, the sensitivity of the results were also analyzed when using the remaining

weighting functions in (18) instead; see Section F.4 in the supplemental material (Chu

et al., 2018). A simple visual inspection of these results confirms that the empirical

findings in this paper are qualitatively the same when using different bandwidths and

weighting functions. General functional components’ shapes and components’ dynamics

remain the same and tell the same story. The density forecasting exercise also seems to

be robust to the choice of bandwidths and weighting functions, but the resulting values

of Ĵ in (19) tend to be lower for ∆log(Price) when using rule-of-thumb bandwidths or

the remaining weighting functions in (18) with cross-validated bandwidths instead.

Finally, we also check the sensitivity of the proposed algorithm in Section 5.4 when

26



Ĵ in (19) is chosen as Ĵ = arg minl∈{1,...,L∗} |λ̂l/
∑L∗

j=1 λ̂j − 1/T ∗|, where we set T ∗ = 232

, and L∗ ≤ T ∗. Results are displayed in Section F.6 in the supplemental material (Chu

et al., 2018). We find that this alternative way to choose J provides more parsimonious

models when rule-of-thumb bandwidths are used for log(Price). Otherwise, no other

clear ranking can be found. Nevertheless, we note that general shapes remain the same

indicating that, at least for this application, the choice of J does not seem to play an

important role for density forecasting.

6 Discussion

In this paper, we adapt the conventional FPCA method of Kneip and Utikal (2001) to

allow for survey weights and temporal dependence. This methodology is useful since

most micro data comes with survey weights, and it allows to understand the joint evo-

lution of these distributions. This method is superior to simple inspection of descriptive

statistics tools such as median and quantiles of distribution because we jointly model the

cross-sectional and temporal dependence of survey data. In addition, the paper provides

asymptotic evidence that our estimator can be adapted to allow for survey weights while

correcting for temporal-dependency induced biases. We conduct an extensive simulation

exercise with different scenarios that contain different sample and population sizes, and

with different tuning parameters such as weighting functions. The simulation demon-

strates the efficacy of our methodology and robustness of our results to the choice of

bandwidths and weighting functions. Further, it allows us to decompose how the distri-

bution changes with the respective components.

We highlight the effectiveness of our method by applying it to a large scale dataset

that consists of 26 million unique price quotes used for constructing the UK consumer

price index for the period from March 1996 to September 2015. We focus our analysis

on the distribution of detrended logarithm of prices, log(Price), and the month-to-month

change in the logarithm of prices, ∆log(Price). We find that in our application the dy-

namics of higher order moments of price and price-change distributions are as important

as the first moment in driving these changes over time. For example, price dispersion

decreases and the tails thin out in the wake of the 2009 recession, but these effects

are reversed over the ensuing 2011 recession. At the same time price changes become

more dispersed suggesting that the times of economic turmoil trigger across-the-board

price adjustments. These facts gleaned from this visualization method can be used by

economists to sort out models of inflation and business cycles because their predictions

are inherently linked to assumptions about individual price adjustments in response to

economic shocks.

Finally, we use the FPCA components to conduct an out-of-sample forecasting exer-

cise. We exploit the persistence of the dynamic strength components to compute one-

month and three-month out-of-sample forecasts of log(Price) and ∆log(Price). We com-

pare our forecasts with the random walk model and find that log(Price) is observationally

equivalent while the ∆log(Price) is superior. This exercise illustrates the usefulness of

27



FPCA for visualization, to decompose the evolution of a distribution, and then to exploit

this evolution for forecasting purposes.

7 Supplemental Material

In the supplemental appendix, we provide detailed mathematical proofs of the main the-

oretical results of the paper. It also contains specific details regarding the numerical

methods used in the application such as bandwidths calculation and numerical integra-

tion. Moreover, it includes all figures presented in the simulation study and application

here, but redrawn using different bandwidths and weighting schemes as discussed in

Section 5.5 above.

References

Alvarez, F., Le Bihan, H., and Lippi, F. (2016), “The Real Effects of Monetary Shocks

in Sticky Price Models: A Sufficient Statistic Approach,” American Economic Review,

106, 2817–51.

Ball, L. and Mankiw, N. G. (1995), “Relative-Price Changes as Aggregate Supply

Shocks,” The Quarterly Journal of Economics, 110, 161.

Bellhouse, D. R. and Stafford, J. E. (1999), “Density Estimation from Complex Surveys,”

Statistica Sinica, 9, 407–424.
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