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Abstract 

This paper relaxes the Bayesian Nash equilibrium (BNE) assumption commonly imposed 
in empirical discrete choice games with incomplete information. Instead of assuming that 
players have unbiased/correct expectations, my model treats a player’s belief about the 
behavior of other players as an unrestricted unknown function. I study the joint 
identification of belief and payoff functions. I show that in games where one player has 
more actions than the other player, the payoff function is partially identified with neither 
equilibrium restrictions nor the usual exclusion restrictions. Furthermore, if the cardinality 
of players’ action sets varies across games, then the payoff and belief functions are point 
identified up to scale normalizations and the restriction of equilibrium beliefs is testable. 
For games where action sets are constant across players and observations, I obtain very 
similar identification results without imposing restrictions on beliefs, as long as the payoff 
function satisfies a condition of multiplicative separability. I apply this model and its 
identification results to study the store hours competition between McDonald’s and 
Kentucky Fried Chicken (KFC) in China. The null hypothesis that KFC has unbiased 
beliefs is rejected. Failing to account for KFC’s biased beliefs generates an attenuation bias 
on estimated strategic effects. Finally, the estimation results of the payoff functions 
indicate that the decision about store hours is a type of vertical differentiation. By operating 
through the night, a firm not only attracts night-time consumers but also can steal 
competitors’ day-time customers. This result has implications on the optimal regulation of 
stores’ opening hours. 

 

Bank topics: Econometric and statistical methods; Market structure and pricing  
JEL codes: C57, L13, L85 

Résumé 

Cette étude lève le postulat d’équilibre de Nash bayésien habituellement imposé dans les 
jeux empiriques avec choix discrets en information incomplète. Au lieu de supposer que 
les joueurs ont des attentes non biaisées (parfaites), mon modèle traite les croyances d’un 
joueur à l’égard du comportement des autres joueurs comme une fonction inconnue sans 
contrainte. Je cherche à identifier conjointement les fonctions de croyances et de gains. Je 
montre que les jeux dans lesquels un joueur a davantage de possibilités d’action que l’autre, 
la fonction de gains est partiellement identifiée sans introduire d’hypothèses d’équilibre ou 
les restrictions habituelles d’exclusion. De plus, si la cardinalité des ensembles d’actions 
des joueurs varie d’un jeu à l’autre, les fonctions de gains et de croyances sont alors 
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identifiées ponctuellement jusqu’à une normalisation scalaire et l’hypothèse des équilibres 
des croyances est vérifiable par des tests. Pour les jeux dans lesquels les ensembles 
d’actions sont constants d’un joueur et d’une observation à l’autre, j’obtiens des résultats 
d’identification très semblables sans imposer de restrictions aux croyances tant que la 
fonction de gains satisfait à la condition de séparabilité multiplicative. J’applique ce 
modèle et les résultats d’identification obtenus à l’étude de la concurrence au chapitre des 
heures d’ouverture entre McDonald’s et Kentucky Fried Chicken (KFC) en Chine. 
L’hypothèse nulle selon laquelle les croyances de KFC ne sont pas biaisées est rejetée. La 
non-prise en compte des croyances biaisées de KFC génère un biais d’atténuation des effets 
stratégiques estimés. Enfin, les résultats de l’estimation des fonctions de gains montrent 
que le choix des heures d’ouverture des établissements constitue une forme de 
différenciation verticale. En restant ouverte la nuit, une entreprise peut non seulement 
attirer une clientèle nocturne, mais aussi ravir aux entreprises concurrentes des clients qui 
fréquentent leurs établissements le jour. Ce résultat a des conséquences pour l’adoption 
d’une réglementation optimale des heures d’ouverture des commerces. 

 
Sujets : Méthodes économétriques et statistiques; Structure de marché et fixation des prix 
Codes JEL : C57, L13, L85 



Non-Technical Summary 

Game theory is one of the central topics in economics. It studies the situation where an individual’s 

payoff depends not only on his/her own actions but also on other individuals’ choices. This 

dependence is very common in the real world. Competition among firms, social behaviors of 

people and interactions of financial intermediations are all examples of game theory. In studies of 

game theory, researchers normally rely on the concept of Nash equilibrium. It assumes that each 

player of the game has a correct belief about other players’ behaviors and chooses an optimal 

action accordingly. However, the game is often complex and changing. This makes it substantially 

difficult to prove that players can correctly predict the behaviors of other players. If players have 

incorrect beliefs, relying on Nash equilibrium would lead to incorrect conclusions. For instance, 

researchers will falsely quantify how a player’s decision depends on other players’ choices. This 

mistake could lead to an incorrect prediction on players’ choices after a policy intervention. 

In this paper, I develop a method to address the potential failure of Nash equilibrium. First, I show 

that the assumption of correct beliefs is testable. Second, when such an assumption is rejected, I 

further show that researchers can still correctly infer players’ payoffs. The implementation of 

above test and inference can be done using standard estimation techniques. 

Applying the above method, I study the competition between McDonald’s and Kentucky Fried 

Chicken (KFC) restaurants in China. Specifically, I focus on their competition for business hours. 

My results show that KFC under-predicts McDonald’s business hours in areas where consumers 

have high income. It therefore rejects the null hypothesis that KFC has correct beliefs. Moreover, 

KFC tends to expand its business hours when it expects McDonald’s to do so. Such a dependence 

becomes insignificant when researchers incorrectly assume Nash equilibrium. These results 

highlight the importance of relaxing Nash equilibrium in many empirical applications. 



1 Introduction

Over the past decade, game theoretic models with incomplete information have been actively applied to

study oligopolistic competition and individuals’ social interactive behaviors.1 In this stream of literature,

researchers commonly assume that players’ observed choices are consistent with Bayesian Nash Equi-

librium (BNE). Under this powerful solution concept, researchers then estimate players’ utility/payoff

functions and predict their behaviors in counterfactual environments.

Despite its power and usefulness in applied empirical work, BNE places a strong restriction on play-

ers’ expectations such that each player has equilibrium/unbiased beliefs about other players’ behaviors

(i.e. a player’s beliefs are other players’ actual choice probabilities given the available information).

In reality, economic agents could have limited ability to process information and predict other players’

strategies. In addition, many empirical games have multiple equilibria, which further complicates the con-

struction of unbiased belief. In these games, a player could be uncertain about which equilibrium strategy

is chosen by other players.2 Furthermore, market conditions and government policies often vary dramat-

ically. This poses difficulties in learning other players’ behaviors through past experience. Finally, recent

empirical work has shown the failure of Nash Equilibrium in different types of games using both field and

experimental data. A partial list includes Goeree and Holt (2001), Goldfarb and Xiao (2011), Asker et al.

(2016), Doraszelski et al. (2018), Kashaev (2016), Aguirregabiria and Magesan (2017), Aguirregabiria

and Xie (2017), and Jeon (2018).

If players have biased beliefs in games, falsely imposing the equilibrium condition would bias the

estimates of payoff functions and counterfactual predictions. To address this issue, this paper relaxes the

unbiased belief assumption. Specifically, each player maximizes her expected utility given her subjective

belief, which can be any probability distribution over the other player’s action set. This nests BNE as a

special case when each player forms an equilibrium belief. It also allows players’ behaviors to be off-

1A partial list of work includes firm entry studied by Gowrisankaran and Krainer (2011) and Aradillas-Lopez and Gandhi
(2016); product differentiation studied by Seim (2006), Augereau et al. (2006), and Sweeting (2009); social interactive effect
analyzed by Brock and Durlauf (2001, 2007) and Bajari et al. (2010); network structure by Vitorino (2009) and methodological
contributions by Aradillas-Lopez (2010, 2012).

2This type of strategic uncertainty is defined by Van Huyck et al. (1990) and Crawford and Haller (1990), and studied by
Morris and Shin (2002, 2004), and Heinemann et al. (2009), among others. As argued by Besanko et al. (2010), it could be
very common in oligopolistic competition. Moreover, the existence of multiple equilibria can facilitate the identification of
players’ payoffs as shown by Sweeting (2009), De Paula and Tang (2012), and Aradillas-Lopez and Gandhi (2016); also see
Aguirregabiria and Mira (2018) and Xiao (2018).
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equilibrium due to biased beliefs. In the estimation of the model, both utility/payoff and belief are treated

as unknown unrestricted non-parametric functions, in contrast to the standard approach in the literature

of imposing equilibrium restrictions.

The principle of revealed preference implies that, under general conditions, researchers can infer the

expected utility function using data on players’ choices. However, since expected utility is a composite

function of the utility and belief, it is challenging to separately identify these two functions. In this

paper, I show that if the cardinality of the action set (i.e. the number of choices a player has) varies

across players, the payoff function is partially identified without imposing equilibrium restrictions. I then

characterize the identified set. There are many examples and applications of games where players have a

different number of possible choices. For instance, in models of competition in multi-product or multi-

store markets (e.g. in price, quantity or quality choice), firms with different numbers of products or stores

face a different number of actions when choice is at the product or store level.

Suppose further that the cardinality of each player’s action set has variation across games (e.g. a

retailer has a different number of stores in different markets). Then, the base return (e.g. monopoly

profit in an entry game) is identified, and each player’s interactive effect is identified up to her belief

at only one realization of the state variable. It consequently identifies the sign and a lower bound of the

interactive effect. These results shed light on the nature of the game (e.g. strategic substitutes and strategic

complements). Furthermore, researchers can infer how a player adjusts her beliefs across different games.

It naturally yields a testable restriction of unbiased beliefs and provides information on how players form

expectations in games.

In some empirical applications, a player’s choice set is endogenously determined, causing the standard

selection problem. I show how to apply recent techniques in finite mixture literature to deal with such a

problem. Moreover, in many other empirical applications, each player has the same number of actions

and the cardinality of the action set remains constant across observations. In these applications, I show

that when the payoff function satisfies a condition of multiplicative separability, researchers can establish

a similar asymmetric feature as in the games with asymmetric action sets. As a result, the payoff function

is also partially identified. Additionally, I show that usual exclusion restrictions can further shrink the

identified set of payoff functions. Therefore, the identification results studied in this paper apply to a
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broad class of games. Finally, all proofs are constructive and naturally imply a two-step estimator.

I apply these identification and estimation results to study the decisions about operating hours of

Kentucky Fried Chicken (KFC) and McDonald’s (McD) in China. Their competition is modeled as an in-

complete information game such that each chain simultaneously chooses how many of its existing outlets

to open at night. Consequently, different numbers of outlets owned by the two chains in various markets

naturally construct the asymmetry and variation of action sets required to identify both payoff and belief

functions. Without imposing the BNE assumption, I find that KFC tends to extend its store hours when

it expects McD to do so. This provides the first empirical evidence that suggests store hours are strategic

complements. This result also contributes to the theoretical literature by Ferris (1990) and Klemperer and

Padilla (1997), who view store hours as strategic complements, and Inderst and Irmen (2005), Shy and

Stenbacka (2006, 2008), and Wenzel (2010, 2011), who treat them as strategic substitutes. As described

in Section 4, distinguishing such a strategic nature is the key to evaluating the deregulation policy that

lifts restrictions on store hours in many industries. Finally, the estimation results reject the null hypothesis

that KFC has unbiased beliefs. Incorrectly imposing the equilibrium condition generates an attenuation

bias on the strategic effects.

In literature that studies empirical games, the identification of players’ payoff functions typically relies

on an exclusion restriction that affects one player’s payoff without affecting other players. This paper

shows that, even in the absence of this usual exclusion restriction, the variation of players’ action sets

also provides identification power.3 This result is similar to Orhun (2013), who shows that the variation

of potential entrants can identify an entry game under equilibrium assumption. In this paper, I further

investigate the identification results without equilibrium constraint. Consequently, it also contributes

to recent literature on players’ non-equilibrium behaviors in games. Some important contributions are

Aradillas-Lopez and Tamer (2008), Goldfarb and Xiao (2011), Fershtman and Pakes (2012), Kline and

Tamer (2012), Uetake and Watanabe (2013), An (2017), Gillen (2010), Asker et al. (2016), Doraszelski

et al. (2018), and Kashaev (2016). In this literature, my paper is closely related to Aguirregabiria and

Magesan (2017) and Aguirregabiria and Xie (2017), who show that the equilibrium assumption is testable

with the usual exclusion restriction. However, to identify the payoff, they need to assume that players

3Admittedly, the cardinality of a player’s action set is also an exclusion restriction. It affects each player’s belief with-
out affecting any player’s payoff. However, to compare with existing literature and avoid confusion, the action set and its
cardinality are not referred to as exclusion restrictions in this paper.
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form equilibrium beliefs at several realizations of the exclusion restriction. In contrast, this paper exploits

the asymmetry between the cardinality of players’ action sets and potential variation in cardinality across

observations. Through this, the identification of payoff and belief is achieved without any restrictions

on players’ beliefs. Importantly, such a result does not rely on the existence of the usual exclusion

restrictions.

The rest of this paper is organized as follows. Section 2 describes the model, and Section 3 presents

the identification results. The empirical application is shown in Section 4. I conclude in Section 5. Some

generalizations of the model and identification results are left to the Appendix.

2 Model

Consider a two-player static game. Players are indexed by i ∈ {1,2}, and −i represents the other player.

Appendix A.4 shows how to generalize the identification results to a game with multiple players. Each

player i simultaneously chooses an action denoted by ai from her action set Ai = {0,1, · · · ,Ji}. Players are

allowed to have different action sets and different numbers of actions. The Cartesian product A = A1×A2

represents the space of action profiles in this game. Let a = (a1,a2) ∈ A be an action profile or realized

outcome of this game. Player i’s payoff for the action profile a is

Πi(x,εi,a) = Π̃i(x,ai,a−i)+ εi(ai),

where x ∈ RLx denotes a vector of state variables that affect players’ payoffs and is public information.

The term εi(ai) represents a variable that affects player i’s payoff of action ai. It is private information

observed only by player i and unobserved by player−i. Therefore, it is a game of incomplete information.

The payoffs Π̃i(x,ai,a−i) are non-parametrically specified.

Define πi(x,ai) = Π̃i(x,ai,a−i = 0) and δi(x,ai,a−i) = Π̃i(x,ai,a−i)− Π̃i(x,ai,a−i = 0). By con-

struction, δi(x,ai,a−i = 0) = 0. Without loss of generality, the payoff function can be written as

Πi(x,εi,a) = πi(x,ai)+δi(x,ai,a−i) ·1(a−i 6= 0)+ εi(ai). (1)
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Throughout the paper, I consider the payoff function specified by equation (1) for exposition purposes.

Note that it is non-parametrically specified. Following the language of De Paula and Tang (2012), πi(·) is

referred to as the base return, and it represents player i’s payoff when the other player chooses action 0.

Term δi(·) is referred to as the interactive effect/payoff, and it measures how player i’s payoff is affected

by player −i’s behavior.

Assumption 1 states an independence restriction imposed on each player’s private information.

Assumption 1. (a) For each i = 1,2, εi = (εi(0),εi(1), · · · ,εi(Ji))
′ follows a CDF Gi(·) that is absolutely

continuous with respect to Lebesgue measure in RJi+1.

(b) εi is independent across players and independent of public information x.

Unlike existing literature in games with incomplete information, Assumption 1 does not require Gi(·)

to be common information among players. Suppose a player does not know the true distribution of

other players’ preference shocks: she would form a biased belief about the distribution of other players’

behaviors even though she can correctly solve other players’ optimal strategies. Such a source of biased

belief is allowed in Assumption 1. Moreover, the model and identification results are generalizable to the

case that Gi(·) depends on a vector of finite-dimensional unknown parameters. This extended model and

its identification results are presented in Appendix A.2.4

Assumption 2. (a) Each player’s belief about the other player’s behavior depends only on public infor-

mation x.

(b) Each player chooses an action that maximizes her expected payoff given her belief.

Assumption 2 (a) assumes that player i’s belief about the other player’s behavior does not depend

on her private information. Given Assumption 1 (b) such that players have independent private infor-

mation, εi has no predictive power about player −i’s payoff and behavior; consequently, εi does not

affect player i’s belief. Specifically, define b j
i (x) as player i’s belief about the probability that player −i

will choose action j. Moreover, let bi(x) = (b0
i (x), · · · ,b

J−i
i (x))′ be a vector of belief functions that are

4Aradillas-Lopez (2010), Wan and Xu (2014), and Xu (2014) extend the independence assumption of εi and allow it to be
correlated across players even conditional on observed state variables. Despite their power, their applicability is very limited in
my framework. Note that player i’s belief will depend on εi if it is correlated with ε−i. From an econometrician’s perspective,
the belief is an unknown function that depends on an unknown variable εi. With the BNE assumption, we can solve for this
belief using a fixed-point algorithm; however, it will not work if BNE fails, as is allowed in my framework.
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non-parametrically specified. The only assumption I impose is that the belief functions must be valid

probability distributions over the other player’s action set (i.e. 0≤ b j
i (x)≤ 1 ∀ j and ∑

J−i
j=0 b j

i (x) = 1).

Given payoff and belief functions, player i’s expected payoff of action ai is

E
[
Πi(x,εi,ai)

]
= πi(x,ai)+

J−i

∑
j=1

δi(x,ai,a−i = j) ·b j
i (x)+ εi(ai). (2)

Assumption 2 (b) states that player i chooses an action that maximizes this expected payoff. Define

a∗i (x,εi) as player i’s strategy function, which can be characterized as

a∗i (x,εi) = argmax
ai∈Ai

{
πi(x,ai)+

J−i

∑
j=1

δi(x,ai,a−i = j) ·b j
i (x)+ εi(ai)

}
. (3)

As player −i does not observe εi, her unbiased expectation of player i’s behavior is player i’s best

response probability function or conditional choice probability (CCP). Let pi(x) =
(

p0
i (x), · · · , pJi

i (x)
)′

denote a vector of player i’s CCPs, where p j
i (x) is her choice probability of action j conditional on state

variable x. Given the best response function a∗i (x,εi) defined above, the conditional choice probability

takes the following form:

p j
i (x) =

∫
1

{
a∗i (x,εi) = j

}
dGi(εi). (4)

For instance, if εi(ai) is type 1 extreme value distributed and independent across actions, the condi-

tional choice probability pk
i (x) is

pk
i (x) =

exp
{

πi(x,ai = k)+∑
J−i
j=1 δi(x,ai = k,a−i = j) ·b j

i (x)
}

∑
Ji
l=0 exp

{
πi(x,ai = l)+∑

J−i
j=1 δi(x,ai = l,a−i = j) ·b j

i (x)
} .

The conditional choice probability defined by equation (4) only assumes that a player maximizes

expected payoff given her belief. Such a belief is allowed to be any probability distribution over the other

player’s action set. In contrast, Bayesian Nash Equilibrium restricts players to be perfectly rational in

the sense that a player’s belief is the other player’s true choice probability conditional on the available

information. My framework therefore nests BNE as a special case and is summarized by Definition 1.

Definition 1. Players’ behaviors are consistent with Bayesian Nash Equilibrium if each player’s belief is

7



the other player’s actual conditional choice probability, i.e. b j
i (x) = p j

−i(x) ∀ 0≤ j ≤ Ji and i = 1,2.

Remark. Some identification results in this paper exploit variation in players’ action sets across obser-

vations. To understand those results, it is important to keep in mind that player i’s choice probabilities

and beliefs depend on J1 and J2 as they affect the dimensions of vectors pi and bi. A notation for choice

probabilities and beliefs that emphasizes this dependence is pi(x,Ji,J−i) and bi(x,Ji,J−i). For the sake

of notation simplicity, I maintain the expression of pi(x) and bi(x) and only include Ji and J−i as explicit

arguments when necessary.

Example 1. Operating hours game in the empirical application in Section 4.

There are two fast food chains, KFC and McD, competing through decisions on business hours.

Suppose chain i owns Ji number of outlets in a given market and chooses some number of its existing stores

to operate during the night. Therefore, the competition in business hours can be seen as an entry game

such that each chain simultaneously chooses how many stores to enter into the night market. Moreover,

two chains could own different numbers of outlets and consequently have heterogeneous action sets. Term

πi(x,ai = k) represents chain i’s profit of opening k non-stop service stores if the other chain closes all

stores at night: for instance, monopoly profit in the night market. Vector x represents variables that

affect each chain’s profit, such as income per capita and population at the local market. When chain −i

decides to operate j stores at night, it will have some impact on chain i’s night profit; this is captured by

δi(x,ai = k,a−i = j). Finally, εi(ai) represents chain i’s private information of its own profitability, such

as managerial skill and staff’s coordination efficiency.

3 Identification

In this section, I first present conditions on the data generating process. In Subsection 3.2, I show how to

exploit the asymmetry and variation of action sets to identify each player’s payoff and belief functions,

without requiring the usual exclusion restrictions. Subsection 3.3 considers another type of game in which

players have the same action set that remains constant across observations, but the payoff function satisfies

a multiplicative separability condition. I show that a similar asymmetric feature can be constructed in this

type of game such that the payoff function is partially identified. Furthermore, the introduction of usual
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exclusion restrictions provides additional identification power and sharpens the identified set. Therefore,

my identification results hold in a broad class of games. Finally, Subsection 3.4 illustrates how to apply

recent techniques in finite mixture literature to deal with the endogeneity of players’ action sets. All

proofs are left to the Appendix.

3.1 Conditions on the Data Generating Process

Suppose researchers have access to a data set about the same two players that play M independent games

(e.g. one game in each of M isolated markets). In each game/observation indexed by m, both players and

the econometrician observe realizations of the state variables xm. Moreover, each player i observes her

own payoff shock εi,m. Researchers cannot observe player i’s private information but know its probability

distribution Gi(·). Given the observed state variables, each player forms a belief and chooses her optimal

action.

Assumption 3. A player forms the same beliefs for any two observations with the same public informa-

tion. That is, for m 6= m′ but xm = xm′ = x, we have bi,m(x) = bi,m′(x) = bi(x).

Assumption 3 states that each player has a unique belief conditional on public information. In models

that impose equilibrium restrictions, an analogous assumption would be that each player employs the

same equilibrium strategy when multiple equilibria exist. Therefore, even though the model allows for

multiple equilibria, there is a unique equilibrium observed in the data. Such an assumption is commonly

imposed in the literature.5 As discussed in the Conclusion, the identification results by Aguirregabiria

and Mira (2018) can be applied to relax this assumption of belief uniqueness.

The asymptotic consistency comes from M going to infinity. In this situation, p̂i(xm) is consistently

estimated.6 Consequently, for identification results, pi(x) is assumed to be known by researchers for

every realization of x. Researchers’ objective is to identify player i’s base return πi(x,ai), interactive

effect δi(x,ai,a−i) and belief function bi(x) using the data described above.

5A partial list includes Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al. (2007), Pesendorfer and Schmidt-
Dengler (2008), Bajari et al. (2010), and Aradillas-Lopez (2012).

6If x were discrete variables with finite support, or continuous variables with a smooth choice probability function, then
the choice probability can be consistently estimated by the standard kernel estimator. If x were continuous variables and pi(x)
had some points of discontinuity that are not known by researchers ex ante, then some variants of the standard kernel method
developed by Müller (1992) and Delgado and Hidalgo (2000) can still establish the consistency and asymptotic normality for
the choice probability estimator.
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It is known in the discrete choice literature that only differences in payoffs are identified. Therefore,

a normalization is required to achieve identification, as summarized in Assumption 4.

Assumption 4. For player i = 1,2, the payoff for action 0 is normalized to zero. That is, πi(x,ai = 0) = 0

and δi(x,ai = 0,a−i) = 0 ∀ x,a−i.

Even though normalizing the payoff of one action to zero is an innocuous assumption in single-agent

discrete choice models, it imposes some restrictions on a player’s payoff when players interact with each

other. Specifically, this normalization restricts player i’s payoff of action 0 to be unaffected by the other

player’s action. Such normalization is plausible if action 0 is modeled as an outside option. For instance,

it represents that firm i does not enter a particular market in a standard entry game. Consequently, its

profit is independent of other firms’ behaviors in such a market.7

I investigate identification conditional on any x ∈ RLx , though it is suppressed for notation simplicity

throughout this section. Following Hotz and Miller (1993), Assumptions 1 and 4 imply that there is a

one-to-one mapping Fi(·) : RJi+1→ RJi+1 from player i’s conditional choice probability to her expected

payoff. Specifically, let Fi(·) be the inverse of the integral function defined by equation (4), so we then

have

πi(ai = k)+
J−i

∑
j=1

δi(ai = k,a−i = j) ·b j
i = Fk

i (pi) ∀ 0≤ k ≤ Ji, (5)

where Fk
i (·) denotes the kth element of the inverse function. Note that F0

i (pi) = 0 based on the normaliza-

tion stated in Assumption 4. Given that Gi(·) is known by researchers, Fi(·) is also known. For instance,

if εi(ai) is independently type 1 extreme value distributed, we have the mapping Fk
i (pi) = log

( pk
i

p0
i

)
.

In empirical games with incomplete information, researchers commonly assume that players play an

equilibrium strategy and the conditions described in Definition 1 hold. Consequently, we can replace b j
i

with its counterpart p j
−i in equation (5). As p j

−i can be consistently estimated, this equilibrium assumption

provides identification power.8

For the rest of this paper, I drop the BNE conditions as described in Definition 1. In the econometric

model, each player is an expected utility maximizer, and her belief is allowed to be any probability

7In situations where it is implausible to assume player i’s payoff of ai = 0 is invariant to the other player’s choices, all the
identification results still hold if researchers’ interest is the difference of payoff rather than payoff. For instance, the interested
parameters are π̃i(x,ai) = πi(x,ai)−πi(x,ai = 0) and δ̃i(x,ai,a−i) = δi(x,ai,a−i)−δ (x,ai = 0,a−i).

8For estimation techniques, see Su (2014) for an excellent discussion and comparison of different methods.
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distribution over the other player’s action set. Under this framework, I investigate the identification of

payoffs and beliefs.

3.2 Identification with Asymmetric Action Spaces

This subsection exploits the asymmetry and variation in players’ action sets to identify each player’s

payoffs and beliefs. Let J = {0,1, · · · J̄} denote the support of Ji for each player i. In Example 1, each

chain could have a different number of actions that varies across markets.

Intuitively, observational data reveal player i’s expected payoff of every action since p j
i is consistently

estimated. These Ji restrictions depend on J−i unknown belief parameters (i.e. the number of player −i’s

actions minus one). When Ji > J−i, I show that it is possible to obtain a transformation of equation (5)

such that beliefs are differenced out and what remains is a relationship between unknown payoffs and

known choice probabilities. Such a relationship then characterizes the identified set for payoff functions.

Furthermore, if J−i varies across the M markets and takes on a value of zero with positive probability,

then we would have a player i’s single agent problem and her base return πi(·) would be point identified.

Finally, comparing markets with J−i = 0 with ones where J−i > 0 provides information on player i’s

interactive payoffs and beliefs.

Proposition 1. (a) Suppose Assumptions 1 to 4 hold and the data contain observations with Ji > J−i = 1,

then for any two choice alternatives j and k, the identified set of player i’s payoff parameters πi(·) and

δi(·) is given by the set of values that satisfies the following restriction:

F j
i (pi)−πi(ai = j)

Fk
i (pi)−πi(ai = k)

=
δi(ai = j,a−i = 1)
δi(ai = k,a−i = 1)

.

(b) Further, suppose that the data also contain observations with J−i = 0, then player i’s base return

πi(ai = k) is point identified as Fk
i [pi(J−i = 0)] ∀ k. Furthermore, the identified set of player i’s interactive

effect and belief is given by the set of values that satisfies the following restriction:

δi(ai = k,a−i = 1)b1
i = Fk

i [pi(J−i = 1)]−Fk
i [pi(J−i = 0)] ∀ 0≤ k ≤ Ji.
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Proposition 1 (a) characterizes the identified set of payoff functions when player i has more actions

than the other player. This result holds true even when each player’s action set is fixed across observations.

Furthermore, Proposition 1 (b) states that the base return πi(ai) is point identified when players’ action

spaces vary across games. In Example 1, this term represents chain i’s monopoly profit in the night

market because day-time profits are normalized to zero. This paper also characterizes the identified set of

player i’s interactive effect and beliefs. In this subsection, I focus on the case where J−i takes on values

of zero or one. The results for J−i > 1 are very similar and presented in appendix A.3.

Since 0≤ b1
i ≤ 1, the sign and lower bound of player i’s interactive payoff are identified. Furthermore,

researchers can infer how player i adjusts her beliefs across different observations; it naturally implies a

testable restriction of unbiased belief.

Proposition 2. Under the conditions met in Proposition 1 such that δi(ai,a−i = 1)b1
i is point identified,

if such a term is non-zero, it follows that

(a) The interactive effect ratio δi(ai= j,a−i=1)
δi(ai=k,a−i=1) is point identified for every two actions j and k.

(b) The sign of δi(ai,a−i = 1) and lower bound of
∣∣δi(ai,a−i = 1)

∣∣ are identified for every ai.

(c) Suppose the data contain observations with J
′
i , J

′′
i ≥ 1, then b1

i (J
′
i )

b1
i (J
′′
i )

is identified and naturally

implies a testable restriction of unbiased belief: b1
i (J
′
i )

b1
i (J
′′
i )

=
p1
−i(J

′
i )

p1
−i(J

′′
i )

.

The interactive effect ratio δi(ai= j,a−i=1)
δi(ai=k,a−i=1) sheds light on a player’s choice incentive. It concludes which

of player i’s action is more sensitive to the other player’s behavior. In competitive games, a player

has the incentive to choose an action that is insensitive to the other player’s action. For instance, in

an entry/expansion game, an incentive for a firm to open an additional store is to alleviate the negative

impact of other firms; such an incentive can be measured by the interactive effect ratio, as it represents

how the negative impact is attenuated when a firm opens one additional store. Similarly, an incentive for

cooperation is also quantified by the interactive effect ratio in coordination games. For instance, a player

has an incentive to choose a sensitive action to exploit positive spillover effects. Finally, in the context of

a product choice game, the interactive effect ratio provides information about which product offered by

firm i is a close substitute for the other firm’s product.

The sign and ratio of the interactive effect also determine the strategic nature of the game. Suppose we

have estimated that δi(ai= j,a−i=1)
δi(ai=k,a−i=1) > 1 for all j > k, players’ actions are strategic substitutes if the sign of
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the interactive effect is negative and are strategic complements if it is positive.9 Determining the strategic

nature is one of the central questions in my empirical application; if firms’ competition in operating hours

shows strategic complementarity, this would imply that this strategic choice is related to vertical product

differentiation and would have implications on the optimal (de)regulation of opening hours. Furthermore,

inferring the sign of this interactive component is the main empirical question in many papers, such as

Sweeting (2009) and De Paula and Tang (2012).

Table 1 summarizes the identification results in this section and compares them with existing litera-

ture. The first row presents the result in Aguirregabiria and Magesan (2017). With the usual exclusion

restriction that affects only one player’s payoff without effect on other players’ preferences, they prove

that a function of belief is identified. Such a function can be used to test the hypothesis of unbiased

belief. However, there is no identification results for payoff functions except that researchers are willing

to assume equilibrium behaviors at several realizations. In contrast, this paper shows that the asymmetry

between players’ action sets provides additional identification power. Without the usual exclusion re-

strictions, it partially identifies the payoff function. Additionally, variation of players’ action sets across

observations would allow researchers to almost point identify each player’s payoff and belief. It naturally

implies a testable restriction of unbiased belief. Finally, as footnote 3 states, a player’s action set can be

seen as another type of exclusion restriction. It affects each player’s belief without affecting anyone’s

payoff. To avoid possible confusion, the action set is not referred to as exclusion restriction in this paper.

Table 1: Summary of Identification Results

Model Restrictions
Identified Set

δi(ai= j,a−i=1)
δi(ai=k,a−i=1) πi(ai,a−i)

Sign, L.B. Identified Set Unbiased
Payoff of δi(ai,a−i) Belief Belief Test

Exclusion Restriction:
X XExisting Literature

Asymmetric Action Sets X

Variation in Action Sets X X X X X X

9To see this clearly, recall that δi(ai = k,a−i = 1) = Πi(ai = k,a−i = 1)−Πi(ai = k,a−i = 0), where Πi(ai,a−i) represents
player i’s payoff of outcome (ai,a−i). Consequently, δi(ai= j,a−i=1)

δi(ai=k,a−i=1) > 1 ∀ j > k is equivalent to
∣∣Πi(ai = k,a−i = 1)−Πi(ai =

k,a−i = 0)
∣∣< ∣∣Πi(ai = j,a−i = 1)−Πi(ai = j,a−i = 0)

∣∣, for all j > k. With δi(ai,a−i = 1)< 0, it is precisely the condition
of strategic substitutes since player i’s incentive to choose a higher action decreases as player −i increases her action.
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3.3 Identification with Multiplicative Separability

In many empirical applications, players have the same number of possible choices; moreover, the action

space may remain constant across observations. In those cases, the identification results from previous

subsections cannot be directly applied. However, in this subsection, I show that a similar asymmetric

feature can be constructed through a conventional restriction on a player’s payoff function. For instance,

suppose the interactive effect δi(ai,a−i) is multiplicative separable between a player’s own action and her

opponent’s action; then each player’s belief is summarized by a sufficient statistic that is interpreted as the

player’s subjective expectation. This result implies a reduction in the dimension of player i’s beliefs from

J−i to one (i.e. the dimension of the sufficient statistic). As a result, each player’s identification problem

mimics the structure of the asymmetric game described in Subsection 3.2 regardless of the number of

actions available to the opponent. Therefore, the payoff function is partially identified. Moreover, when

researchers can observe usual exclusion restrictions, we can sharpen the identified set and achieve similar

results as when there is variation in players’ action sets.

In this subsection, suppose J1 = J2 = J̄ > 1. Assumption 5 states a conventional payoff function such

that the interactive effect is multiplicative separable between the two players’ actions.

Assumption 5. δi(ai,a−i) = δi(ai,a−i = 1) ·ηi(a−i) with ηi(a−i = 1) = 1.

In the empirical application described by Example 1, δi(ai = j,a−i = 1) measures the impact of

player −i’s first 24-hour store on player i’s profit of opening j non-stop service stores. Consequently,

ηi(a−i = k) captures the proportional change of the interactive effect when player −i opens k stores at

night. Assumption 5 restricts this proportional rate of change to be constant across player i’s different

actions.10 This restriction is commonly imposed in the estimation of games with multiple players and

multiple actions. For instance, Aradillas-Lopez and Gandhi (2016) exploit the same restriction; they

refer to ηi(·) as the strategic index and to δi(·) as the overall scale of the strategic effect.11 Note that I

allow ηi(a−i) to depend on public information x even though it is suppressed for notational simplicity.

Moreover, most current literature restricts ηi(a−i) to be a particular functional form that only depends on

10For instance, δi(ai=k,a−i= j)
δi(ai=k,a−i= j′) =

δi(ai=k′,a−i= j)
δi(ai=k′,a−i= j′) ∀ j′ 6= j, k′ 6= k.

11Aradillas-Lopez and Gandhi (2016) allow εi to enter δi(ai,a−i = 1) in a non-linear fashion, while it is additive separable
in my framework. However, their interest is in the strategic index ηi(a−i) and needs to assume that δi(ai,a−i = 1) is non-
decreasing in ai to establish the identification result. In contrast, my interest is δi(ai,a−i = 1) and so does not require any more
restrictions on payoff functions.
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the other player’s action; some examples include ηi(a−i) = log(1+a−i), i.e. each additional store opened

by player −i affects player i’s profit at a diminishing rate as specified in Nishida (2014) or ηi(a−i) = a−i,

i.e. each additional store opened by player −i affects player i’s profit at a constant rate as specified in

Augereau et al. (2006). In contrast, this paper allows ηi(·) to be a non-parametric function in both a−i

and x. Under Assumption 5, player i’s expected payoff for action ai defined in equation (2) becomes

E
[
Πi(εi,ai)

]
= πi(ai)+

J−i

∑
j=1

δi(ai,a−i = 1) ·ηi(a−i = j) ·b j
i + εi(ai)

= πi(ai)+δi(ai,a−i = 1) ·
[ J−i

∑
j=1

ηi(a−i = j) ·b j
i
]
+ εi(ai) (6)

= πi(ai)+δi(ai,a−i = 1) ·gi + εi(ai),

where gi = ∑
J−i
j=1 ηi(a−i = j) ·b j

i represents player i’s subjective expectation of the value ηi(a−i = j). In

the previous subsection, if J−i = 1, then player i’s expected payoff of action ai is

E
[
Πi(εi,ai)

]
= πi(ai)+δi(ai,a−i = 1) ·b1

i + εi(ai).

It is easy to see that if we treat gi in equation (6) as being analogous to b1
i in the above equation, then

these two equations would share the same structure. As a result, the identification result in Proposition 1

(a) holds trivially. This is summarized in the following corollary.

Corollary 1. Under Assumptions 1 to 5, for any two actions j and k, player i’s payoff parameters πi(·)

and δi(·) are given by the set of values that satisfies the following restriction:

F j
i (pi)−πi(ai = j)

Fk
i (pi)−πi(ai = k)

=
δi(ai = j,a−i = 1)
δi(ai = k,a−i = 1)

.

Existing literature on the estimation of empirical games assumes the existence of an exclusion restric-

tion, a variable that affects one player’s payoff but not that of other player(s). Without such a restriction,

the payoff function is non-identified, even with the BNE assumption (Bajari et al. (2010) and Aradillas-

Lopez (2010)). In this subsection, I show that with the usual exclusion restrictions, researchers can

sharpen the identified set in Proposition 1 and achieve similar results as games with variation in action
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spaces. Assumption 6 states the conditions on exclusion restrictions.

Assumption 6. (a) For each player i, there exists a variable zi ∈ R that affects only player i’s payoff;

moreover, zi has exogenous variation over its support.

(b) There exists a variable s ∈ R that affects each player’s interactive effect δi(·) but not the base

return πi(·); moreover, s has exogenous variation over its support.

As explained above, the existence of zi is commonly assumed in literature. In the empirical application

described in Example 1, a plausible candidate for zi would be the market’s distance to chain i’s nearest

distribution center. While this distance could substantially affect chain i’s delivery costs and profit, it has

no direct impact on chain −i, though it may indirectly affect chain −i through its impact on chain i.

Assumption 6 (b) requires that s does not affect player i’s payoff if the other player chooses action 0.

Even though such an exclusion restriction is ignored in literature on identification of games, it is usually

specified in many existing empirical applications. For instance, in Example 1, a plausible candidate for

s could be the distance between KFC and McD in a single market. If McD does not operate through

the night, such a distance would have no impact on KFC’s night profit. In contrast, the interactive effect

would be affected by this distance, since an opponent of closer proximity may have a larger impact than

one that is further away. This type of horizontal differentiation created by distance has been studied in

empirical games by Seim (2006), Zhu and Singh (2009), and Rennhoff and Owens (2012). Moreover,

consider another context of entry game in the airline industry studied by Ciliberto and Tamer (2009).

When airline i’s competitor enters into a single market (e.g. city-to-city pair), company i’s profit depends

on its competitor’s characteristics in surrounding markets because consumers would prefer a convenient

connecting flight. In contrast, these characteristics have no impact on airline i if its competitor is absent.

This type of network effect is very prevalent in many industries, such as retail, fast food and banking. All

previous papers introduce variable s as a plausible model specification instead of an instrument/exclusion

restriction to facilitate identification and estimation. In contrast, this paper formally discusses the role of

such a variable in identification without imposing the equilibrium assumption.

Proposition 3. (a) Under Assumptions 1 to 5 and Assumption 6 (a), δi(zi,ai= j,a−i)
δi(zi,ai=k,a−i)

is identified for any

two actions j and k if there exist at least two realizations of z−i, say z1
−i and z2

−i, such that pi(zi,z1
−i) 6=

pi(zi,z2
−i).
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(b) Suppose further Assumption 6 (b) holds and there exist at least two realizations of s, say s1 and

s2, such that δi(zi,s1,ai= j,a−i)
δi(zi,s1,ai=k,a−i)

6= δi(zi,s2,ai= j,a−i)
δi(zi,s2,ai=k,a−i)

, then πi(zi,ai) and δi(zi,s,ai,a−i = 1)gi(zi,z−i,s) are point

identified for every ai ∈ Ai and every zi, z−i, s.

Existing empirical applications usually restrict ηi(·) to be a positive function, and consequently gi(·) is

positive. Under such a restriction, the sign of the interactive payoff is identified given the identification of

δi(·)gi(·).12 Moreover, since the multiplicative separability mimics the feature in games with asymmetric

actions, the exclusion restrictions studied in this subsection can be used to sharpen the identified set in

Proposition 1 (a) when action spaces are asymmetric across players but are constant across observations.

In addition, the method proposed by Aguirregabiria and Magesan (2017) can be used to construct a

testable restriction of unbiased belief. Finally, this result can be generalized to a game with more than

two players as shown in Appendix A.4.

3.4 Endogenous Action Sets

The identification results in Subsection 3.2 assume that players’ action sets are exogenous. However, in

many empirical applications, each player’s possible choices (e.g. number of stores or products in a single

market) are endogenously determined. When both action sets and actual choice depend on some common

variables which are unobserved to researchers, we encounter a selection problem. For instance, firms tend

to open more stores in markets with better unobserved heterogeneity; consequently, comparing outcomes

of markets with a different number of outlets does not only reflect strategic effect and belief but also

the difference of unobserved heterogeneity. Therefore, the results in Subsection 3.2 may not hold. This

subsection addresses the selection problem under a finite mixture assumption. I establish identification

results when the number of support for the unobservable is two and leave the results for more components

in future research.

To facilitate the illustration, I describe the model and identification results based on Example 1. The

competition between KFC and McD can be seen as a two-stage game. In the first stage, denoted by

t1, each player i simultaneously chooses Ji ∈ {0,1, · · · , J̄}. As described above, decision variable Ji

represents the number of stores that chain i builds in a single market. In the second stage t2 and conditional
12Since gi(·) represents subjective expectation instead of belief, it is not a valid probability distribution. Therefore, the

lower bound of the interactive payoff is not identified.
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on market structure (J1,J2) chosen in first stage, player i decides ai ∈ {0,1, · · · ,Ji} where ai represents

how many stores to operate for 24 hours as described in Section 2.

Player i’s payoff function at each stage is defined as

Πi,t1(x, x̃,ω,εi,t1,Ji,J−i) = Π̃i,t1(x, x̃,ω,Ji,J−i)+ εi,t1(Ji), (7)

Πi,t2(x,ω,εi,t2,ai,a−i) = πi,t2(x,ω,ai)+δi,t2(x,ω,ai,a−i) ·1(a−i 6= 0)+ εi,t2(ai). (8)

Term ω represents the variable at market level that affects each player’s payoffs in both stages. It is

observed by both players but unobserved by econometricians. It is the existence of such unobservable that

causes the selection problem. Moreover, the second-stage payoff function Πi,t2(·) defined by equation (8)

is an adjusted version of equation (1) that takes the market-level unobservable into account. In addition,

Π̃i,t1(·,Ji,J−i) represents player i’s first-stage expected payoff when the market structure is (Ji,J−i). Such

a payoff depends on player i’s expectation of her own and the other player’s behaviors conditional on

first-stage choice (Ji,J−i); for instance, decisions on pricing, quality and store hours. If each player has

unbiased belief in both stages, the equilibrium payoff in the second stage or its discounted value would

enter linearly into the first-stage payoff function. As this paper allows players to have off-equilibrium

behaviors, I non-parametrically specify the first-stage payoff function and abstract its relationship with

the second-stage payoff. Finally, public information x is constant between two periods for the sake of

brevity. The model and identification results easily generalize to allow x to vary across time.

The payoff functions defined by equations (7) and (8) place two restrictions. First, there exists a

variable x̃, observed by both players and researchers, that only enters into the first-stage payoff. As the

decision to construct a store or enter a market requires considerable one-time investment, any variable

that affects players’ entry cost could be a plausible candidate for x̃. The second restriction assumes that

the unobservable ω is constant across two stages. Equivalently, there exists no market-level shock on the

unobservable at period t2.13 Such a restriction can be a good approximation if t1 and t2 are sufficiently

close.

The following assumption states the restrictions on unobservable ω and private information εi(·).

Assumption 7. (a) ω is a discrete variable with finite support {ω1,ω2, · · · ,ωL}; in addition, h(ω l|x, x̃)
13In other words, any common knowledge market-level shock at period t2 can be perfectly predicted by ω .
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represents the probability density function conditional on (x, x̃).

(b) εi,t =
(
εi,t(0), · · · ,εi,t(J̄)

)′ follows a CDF Gi,t(·) that is absolutely continuous in Lebesque measure

in RJ̄+1. Moreover, it is independent across players, time and public information (x, x̃).

This paper studies a game with discrete choice. It is impossible to non-parametrically infer how

a continuous unobservable affects each player’s choice probability (e.g. Hu (2017)). Consequently,

as stated in Assumption 7 (a), this paper requires unobservable ω to have finite support. Moreover,

Assumption 7 (b) extends the independence restriction of Assumption 1 to a two-stage game. In addition

to independence across players, it also requires each player’s private information to be independent across

time. As I will describe below, if researchers relax such an assumption and allow private information to

be correlated across time, a function of belief is not identified. Consequently, it is impossible to construct

an unbiased belief test. However, all identification results for payoff function still hold. Moreover, if

researchers observe the exclusion restriction studied in Subsection 3.3, an unbiased belief test can be

constructed using the method developed by Aguirregabiria and Magesan (2017).

Given Independence Assumption 7, player i’s private information εi,t(·) has no predictive power for

player −i’s payoff. Therefore, following Assumption 2, each player’s beliefs in both stages depend

only on public information that is known by both players. Define b j
i,t1(x, x̃,ω) as player i’s first-stage

belief about the probability that player −i builds j stores in a single market. Similarly, b j
i,t2(x,ω,Ji,J−i)

represents the second-stage belief about the probability that player −i operates j stores during the night.

Given these beliefs, each player chooses an action that maximizes her expected payoff in each stage.

Consequently, the optimal strategy takes the following form:

J∗i (x, x̃,ω,εi,t1) = argmax
Ji∈{0,···J̄}

{ J̄

∑
j=0

Π̃i,t1(x, x̃,ω,Ji, j) ·b j
i,t1(x, x̃,ω)+ εi,t1(Ji)

}
,

a∗i (x,ω,εi,t2 ,Ji,J−i) = argmax
ai∈Ai

{
πi,t2(x,ω,ai)+

J−i

∑
j=1

δi,t2(x,ω,ai,a−i = j) ·b j
i,t2(x,ω,Ji,J−i)+ εi,t2(ai)

}
.

It is easy to see the selection problem through optimal strategy a∗i (·). The identification of payoff and

belief replies on the variation of (Ji,J−i), which depends on unobservable ω . This causes an endogeneity

problem. Intuitively, the variable x̃, which enters only in the first-stage payoff, serves as an instrument to

exogenously shift (Ji,J−i) and identifies the model.
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Similar to Section 2, define p j
i,t1(x, x̃,ω) and p j

i,t2(x, x̃,ω,Ji,J−i) as player i’s CCPs in each stage with

the following expression:

p j
i,t1(x, x̃,ω) =

∫
1

{
J∗i (x, x̃,ω,εi,t1) = j

}
dGi,t1(εi,t1),

p j
i,t2(x,ω,Ji,J−i) =

∫
1

{
a∗i (x,ω,εi,t2,Ji,J−i) = j

}
dGi,t2(εi,t2).

Unlike in Section 3, these CCPs cannot be directly estimated from the data since ω is unobserved to

researchers. Instead, for any outcome (J1,J2,a1,a2), the conditional joint distribution is defined as

Pr(J1,J2,a1,a2|x, x̃) =
L

∑
l=1

2

∑
i=1

h(ω l|x, x̃) · pJi
i,t1(x, x̃,ω

l) · pai
i,t2(x, x̃,ω

l,Ji,J−i). (9)

Extending the data generating process described in Subsection 3.1 to a two-stage game, then Pr(J1,J2,a1,a2|x, x̃)

can be consistently estimated from the data. The following proposition states the main result:

Proposition 4. Under Assumption 7, suppose L = 2, J̄ ≥ 1, Pr(J1,J2,a1,a2|x, x̃) is known by researchers

and x̃ has exogenous variation; then each player’s conditional choice probabilities at both stages pi,t1(·),

pi,t2(·) and the probability density function of unobservable h(ω|x, x̃) are non-parametrically identified

up to relabel.

Proposition 4 establishes the identification of conditional choice probability under the assumption that

unobservable ω has two possible values. When J̄ > 1, such a requirement is testable given the identifi-

cation and estimation results proposed by Kasahara and Shimotsu (2014). In addition, the identification

result requires x̃ to have enough variation such that the conditional joint distribution Pr(·) satisfies a rank

condition. As Pr(·) is observed or directly estimated, such a requirement is also testable. Details of the

rank condition are given in Appendix A.1.

Proposition 4 also contributes to finite mixture literature studied by Hall and Zhou (2003), Hall et al.

(2005), Henry et al. (2014), Compiani and Kitamura (2016), Hu (2017), and Aguirregabiria and Mira

(2018). It is commonly known that, to non-parametrically identify the finite mixture model, researchers

need to observe at least three random variables that are independent conditional on unobservable ω . In

this paper, even though researchers can observe four random decision variables (i.e. each player’s choice
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at both stages), they are not conditional independent as a player’s second-stage choice depends on her

first-stage decision. Therefore, the identification results in the finite mixture model do not directly apply.

To see the identification intuition, consider the variation of x̃. It exogenously shifts each player’s decision

in the first stage; consequently, the distribution of ω conditional on the first-stage decision (J1,J2) depends

on x̃.14 Moreover, x̃ does not affect each player’s second-stage conditional choice probability. Therefore,

the identification problem in the second stage mimics the model studied by Henry et al. (2014) in which

an exclusion restriction only affects the mixture weights. They show that with the observation of just one

random variable, such a model is identified up to mixture weights at only two realizations of the exclusion

restriction. In this paper, one important difference from Henry et al. (2014) is that researchers are able

to observe two random decision variables (i.e. each player’s choice) in the second stage; the observation

of this additional random variable ensures the point identification. This result can be particularly useful

in empirical applications of a two-stage game with market-level unobserved heterogeneity, either with or

without equilibrium constraint. At last, it is important to note that the proof of Proposition 4 in Appendix

A.1 does not exploit all restrictions the model imposes; therefore, it seems that we can achieve at least

partial identification with a larger number of support in ω . Moreover, Appendix A.4 generalizes the game

to more than two players; in this situation, Aguirregabiria and Mira (2018) show that each player’s CCPs

with a larger support of ω is point identified.

The identification objective is each player’s payoff and belief in the second stage. As the proof of

Propositions 1 and 2 suggests, under Assumptions 1 to 4, the identification of payoff and belief only

requires that each player’s CCPs can be estimated by researchers. Consequently, given Proposition 4, the

results in Propositions 1 and 2 trivially hold true under the existence of unobservable ω . It is summarized

by following corollary.

Corollary 2. Under conditions met by Proposition 4 and Assumption 3, 4, for each player i and (x, x̃), it

follows that

(a) The base return πi,t2(·) is point identified.

(b) The subjective expectation of other players’ impact ∑
J−i
j=1 δi,t2(x,ω,ai,a−i = j) · b j

i,t2(x,ω,Ji,J−i)

is identified ∀ Ji, J−i ≤ J̄.

14This property holds true regardless of whether h(ω) depends on x̃ or not.
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(c) The interactive effect ratio
δi,t2(x,ω,ai= j,a−i=1)
δi,t2(x,ω,ai=k,a−i=1) is identified for each of two actions j and k.

(d) For any two choices in first stage J′i ,J
′′
i ≥ 1,

b1
i,t2

(·,J′i ,J−i=1)

b1
i,t2

(·,J′′i ,J−i=1)
is identified and naturally implies a

testable restriction of unbiased belief in the second stage:
b1

i,t2
(·,J′i ,J−i=1)

b1
i,t2

(·,J′′i ,J−i=1)
=

p1
−i,t2

(·,J′i ,J−i=1)

p1
−i,t2

(·,J′′i ,J−i=1)
.

Suppose researchers relax Assumption 7 such that private information is correlated across time but

still independent across players, then the distribution of player i’s private information in the second stage

εi,t2 is independent of the other player’s decision J−i. Consequently, the results in Corollary 2 (a), (b) and

(c) also hold true as these results rely on the variation of J−i in the second stage. However, the result in

Corollary 2 (d) no longer holds as such a result relies on the variation of Ji; player i’s decision Ji affects

the conditional distribution of εi,t2 as private information is correlated across time.

4 Empirical Application

4.1 Motivation and Industry Background

China’s Western-style fast food industry is characterized as a duopoly of KFC and McD.15 KFC opened

its first Chinese outlet in Beijing in 1987. Three years later, McD opened its first outlet in Shenzhen,

Guangdong Province. After that, these two Western-style fast food chains expanded their business in

the world’s largest emerging economy. Despite its leading role in the world, McD expanded its business

at a slower rate and its outlet stores are outnumbered by KFC by more than 2:1. Specifically, at the

beginning of 2016, KFC operated 4,952 outlets across China, while McD only owned 2,231. In terms of

geographic distribution, KFC operated in all 31 provinces of mainland China, while McD only entered

into 27 provinces.16 Unlike the case in Western countries, KFC and McD are considered to be close

substitutes in China. For instance, China’s KFC serves hamburger beef together with chicken products,

and McD also sells a variety of fried chicken. Moreover, both chains offer traditional Chinese food

15Other giant Western-style fast food companies have relatively small market shares in China. By 2014, Burger King had
more than 300 stores while Subway owned about 600 stores. Most of these stores were located in the more developed areas
of China. Some consider another brand called Dicos as a third player in the Chinese market. It serves very similar products to
KFC and McD and has a comparable size with McD. By the end of 2016, Dicos operated 2,092 stores, distributed across all
31 provinces in mainland China. However, only 2% of Dicos stores operated at night. Therefore, I do not model Dicos as a
third player in the night market.

16In April 2016, the four provinces that McD had not yet entered were Xinjiang, Ningxia, Tibet, and Qinghai. These four
provinces are excluded from my sample.
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(e.g. congee) to attract Chinese consumers. Another important feature in the operation of these chains

in China, in contrast to Western countries, is that the companies directly own and operate most of their

outlets. At the end of 2014, about 15% of McD’s stores were franchised. Similarly, KFC had less than

10% franchised stores.17 On the logistics side, HAVI Logistics provides distribution services for McD

and has seven distribution centers across China. The holding company of KFC, YumChina, provides

logistic services itself and owns 16 distribution centers. For both chains, the distribution center supplies

key raw materials (e.g. raw meat) to each store. Consequently, a market’s distance to a chain’s nearest

distribution center substantially affects the logistic costs for that chain. In my analysis, this distance is

used as an exclusion restriction on a single player’s payoff. It facilitates the identification and estimation

of players’ payoffs and beliefs.

KFC and McD compete with each other through many dimensions such as entry/expansion, menu

selection, pricing, and location choice. In this paper, I study their strategic interactions through store

hours decisions.18 It aims to answer two empirical questions. First, is the decision of store hours a strate-

gic substitute or strategic complement? Second, do firms have biased expectation of their competitors’

behaviors? If so, what are the features of biased beliefs and how do they affect the estimated payoff

functions?

Many countries have strong regulations on stores’ opening hours in the retail industry and there is

an ongoing debate on the deregulation of such restrictions. The strategic nature of opening hours is then

the key element in the evaluation of these deregulation policies. In the theoretical literature, Inderst and

Irmen (2005), Shy and Stenbacka (2006, 2008), and Wenzel (2010, 2011) view the decision of store hours

as a strategic device that softens price competition. In addition, it is horizontally differentiated because

consumers may prefer to consume at different times of the day. In contrast, my discussions with industry

experts suggest that extending operating hours enables the staff to better prepare for busy breakfast ser-

vice, in addition to building brand value. Specifically, if a chain successfully attracts a consumer at night,

it is more likely to also attract this consumer during the day-time due to lower search costs or switching

costs. Under this view, the choice of store hours has a component of vertical differentiation similar to

17For information on McD, see Sina News, retrieved from http://finance.sina.com.cn/chanjing/gsnews/2016-
05-23/doc-ifxsktkr5912661.shtml. For KFC’s information, see People News, retrieved from
http://finance.people.com.cn/n/2012/0927/c70846-19130602.html.

18At earlier stages of their business in China, neither chain operated at night. As China’s economy grew, McD started to
operate 24-hour stores in 2005 and KFC began in 2009.
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quality choice. This view is taken by Ferris (1990) and Klemperer and Padilla (1997). Failing to consider

this quality aspect would under-evaluate not only consumer welfare gains but also stores’ business hours

from policy deregulation of opening hours. Therefore, it is essential to quantify the extent of the vertical

differentiation component in the choice of store hours. Unfortunately, there is little empirical evidence on

this question. To the best of my knowledge, only Kügler and Weiss (2016) empirically study store hours

competition in the Austrian gasoline market and they find insignificant strategic effect.19

Although KFC and McD have competed in China for almost 30 years and are familiar with each other,

drastic changes in the economic environment and market conditions could preclude perfect prediction

of a competitor’s behaviors. At the macroeconomic level, China maintains its economic growth at a

miracle rate. At the industrial level, several news agencies in China exposed a series of KFC food safety

scandals.20 These scandals not only depreciated KFC’s brand value in China, but also raised concerns

about Western-style fast food restaurants in general. Euromonitor International reported that KFC’s sales

decreased after 2012 while McD’s sales remained constant,21 amid the rapid growth of China’s catering

industry in recent years.22 As reported by China Market Research Group, consumers have started to lose

trust in both chains. These dramatic changes in economic conditions and consumer preferences represent

structural transformations. They pose difficulty on each firm’s strategic reasoning and are sources of

firms’ biased beliefs.

From a practical standpoint, if players have biased beliefs in empirical games, incorrectly imposing

the equilibrium condition will bias the estimated magnitude or even the sign of the interactive effects.

Additionally, investigating whether firms have unbiased expectations and how they form beliefs has its

own interest, especially when the economic environment varies dramatically.

The identification results studied in this paper enable researchers to quantify the extent of store hours’

quality aspect and it is robust to potential biased beliefs. Moreover, we can infer how a chain adjusts its

19Kügler and Weiss (2016) employ a reduced form estimation. In contrast, this paper estimates a structural model and has
several advantages. First, researchers can take potential biased beliefs into account, so the estimates are robust. Second, the
estimates of interactive effects have structural interpretations and can be compared with the base return (e.g. monopoly profit).
Third, the estimates can be used to construct counterfactual predictions.

20See “Chinese Consumers Are Losing Trust in McDonald’s and KFC,” retrieved from http://www.businessinsider.com/r-
food-scares-strip-mcdonalds-kfc-of-treat-status-in-china-2015-8.

21See “China Starts to Loses Its Taste for McDonald’s and KFC,” retrieved from https://www.agweb.com/article/china-
starts-to-loses-its-taste-for-mcdonalds-and-kfc-blmg.

22As reported by the Ministry of Commerce of the P.R.C., the annual growth rate of sales in China’s catering industry was
10.6% over the period from 2010 to 2015.
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expectations and test the hypothesis of unbiased beliefs.

4.2 Data

I gather information on every KFC and McD outlet store in China through their respective official web-

sites.23 The information for each store includes its brand name, address, telephone number and other store

characteristics, such as 24-hour service, breakfast service, and drive-through. Due to consumers’ travel

costs, distances between stores within the same chain and between different chains can have an impact

on the store hours decision. Such a network structure is very challenging to control when the number of

stores is large, especially in Beijing or Shanghai, where there are about 500 stores.24 Therefore, instead

of studying strategic interactions in large cities, I focus on small counties/districts in which the number

of total stores of KFC and McD is considerably smaller.25

Consumers are typically reluctant to travel long distances for fast food, especially at night. Therefore,

I define market at a finer level. For every county where KFC or McD exists, I obtain a list of cinemas

through Baidu Maps. I then derive the centroid of each cluster of cinemas and define a market as an

area that lies within a 5-km radius around the centroid.26 This market definition does not necessarily

assume that night consumers for fast food are customers in cinemas. Typically, cinemas are located in

entertainment districts or densely populated residential areas in China; therefore, the centroid of cinemas

cluster serves as an approximation for the location where night life is present. I believe that people who

reside or go there are potential consumers of fast food. Based on this market definition, 95% of the stores

in the sample are included in one of these local markets. Moreover, 35 out of 1171 counties/districts

encompass multiple markets while the rest of the counties have a unique market.27 In this study, I focus

on markets where the number of KFC stores is less than or equal to 4 and McD has no more than 1 store.

23The websites are http://www.kfc.com.cn/kfccda/storelist for KFC and http://www.mcdonalds.com.cn/top/map for McD.
The data were gathered on 28 April, 2016.

24Specifically, such a network structure is completely characterized by a vector of distances between any two stores in the
market. It then consists of n(n−1)

2 elements in a market with n stores. A complete characterization of large markets would yield
very imprecise estimates due to high dimensionality.

25The political hierarchy in China is Nation→Province→City→County/District→Town. County is the smallest unit at
which demographic data are richly available. Moreover, district is at the same level as county and is typically located in the
central area of a city. Throughout this paper, I refer to districts as counties for the sake of brevity.

26See Appendix A.5 of how I construct the clusters. Since KFC and McD are typically located close to each other, a radius
of 5 km is a very conservative definition; market rarely changes using a radius of 3 km as another definition.

27Given these statistics, observations rarely change when markets are defined at the county level; therefore, the estimation
results are robust to different market definitions.
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These markets comprise almost 90% of the total sample. Including markets with more stores expands

McD’s action spaces and raises KFC’s payoff and belief dimensions. However, given a few additional

observations, the parameters for these extra dimensions and KFC’s impact on McD would be imprecisely

estimated. Therefore, I only study how KFC’s action is affected by McD in this paper. Table 2 presents

the joint distribution of the number of stores per market for these two chains. These numbers vary across

markets; therefore, the identification results in Subsection 3.2 can be applied to identify KFC’s payoff

and belief.

Table 2: Distribution of the Number of Markets by the Number of KFC and McD Stores

McD Stores
KFC Stores 0 1 Total

0 506 20 526
1 390 34 424
2 107 42 149
3 36 32 68
4 23 17 40

Total 1,062 145 1,207
Note: KFC and McD act as potential entrants in
markets without any chain. These markets are se-
lected based on the existence of Dicos. Equiva-
lently, KFC and McD are treated as potential en-
trants when Dicos exists.

Demographic variables such as population and GDP are obtained through China Data Online, pro-

vided by the University of Michigan. I also collect night light data from the NOAA National Geophysical

Data Center, provided by the U.S. Department of Commerce. Night light data measure the development

level and population density of a local market. Furthermore, I collect information on the geographical

location of every distribution center for both McD and KFC and calculate their distances to each market.

I also calculate the average minimum distance of stores of the same chain and of different chains within

the same local market. Table 3 presents summary statistics.

4.3 Reduced Form Estimation

As informed by fast food industry experts, it is the local/regional manager who decides the operating

hours for every outlet in a market. Therefore, I model this situation as a static game, such that each chain

simultaneously chooses how many of its current outlets to keep open at night. Specifically, given the
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Table 3: Summary Statistics on Local Markets

Variable Definition Mean Std. Dev. Min Max

Income GDP per capita, 10,000 RMB 4.13 3.52 0.51 45.94
Pop Population, 100,000 6.52 3.78 0.28 28.5
Center Dummy, =1 if market located at city center 0.11 0.32 0 1
Light Night light density 54.56 7.93 19 63
KFCDist Average distance between KFC Stores, km 0.51 0.86 0 6.10
zKFC Distance to nearest KFC’s distribution center, 100 km 2.12 1.36 0.09 10.16
zMcD Distance to nearest McD’s distribution center, 100 km 2.76 1.75 0.31 9.91
Cinema Number of cinemas 1.65 1.98 0 14
s Distance between two chains’ centroids 0.80 0.75 0.01 3.73
KFCStores Number of KFC stores 0.90 1.04 0 4
McDStores Number of McD stores 0.12 0.33 0 1
KFC24h Number of KFC 24-hour stores 0.56 0.71 0 3
McD24h Number of McD 24-hour stores 0.38 0.49 0 1
GDPGrowth Average annual growth rate of GDP per capita from 2000 to 2014 15.23 3.80 1.22 36.97
South Regional dummy, =1 if in Guangdong or Hainan Prov. 0.05 0.21 0 1
NE Regional dummy, =1 if in Liaoning, Jilin or Heilongjiang Prov. 0.10 0.30 0 1

Observations 1207

Note: Statistics for zKFC and KFC24h are calculated conditional on the existence of KFC. Statistics for zMcD and McD24h are calculated conditional on the
existence of McD. Statistics for s are calculated conditional on the existence of both chains.

market structure shown in Table 2, KFC has three choices when it owns more than one outlet, opening

zero/one or two stores at night.28 In contrast, McD only chooses between opening zero/one 24-hour

store. Moreover, both chains’ action spaces vary across markets. Therefore, the identification results

in Subsection 3.2 can be applied to identify KFC’s profit function and beliefs. In addition to variation

in action space, my data set also contains valid exclusion restrictions that facilitate identification and

estimation. Specifically, these exclusion restrictions are zMCD (i.e. distance to nearest McD’s distribution

center) and s (i.e. distance between the two chains’ centroids).

To address the endogeneity of players’ action sets, I consider the two-stage game described in Subsec-

tion 3.4. I assume that each chain’s decisions at both stages depend on a market-level unobservable. Such

an unobservable has two possible values. Specifically, at the first stage t1, each chain decides whether to

enter into a local market. Such a decision depends on the economic condition at t1. Moreover, as entry

requires dynamic consideration, it is also affected by the firm’s expectation of future profitability. In the

28I treat the operation of two and more than two 24-hour stores as the same action because KFC operates more than two
stores at night in only 1.5% of the markets. Furthermore, when KFC only owns one store in a market, it cannot operate more
than one 24-hour store. In this case, opening more than one 24-hour store is treated as a strictly dominated action and will not
be chosen.
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second stage t2, each chain makes a static decision on opening hours for every store it owns. Such a

choice depends on the market environment at t2 and is independent of past economic condition. In my

sample, GDPGrowth is the geometric average of GDP growth rate during the past 15 years. Conditional

on Income at t2, the growth rate measures the past Income and the firm’s expectation of market expan-

sion speed at stage t1.29 Consequently, it affects each chain’s first-stage decision but has no impact on

the second-stage choice. As described in Subsection 3.4, the existence of such an exclusion restriction

identifies each player’s CCPs at both stages and weighting mixtures.

Table 4 presents a reduced form Multinomial Logit model of KFC’s decision concerning how many

outlets to operate overnight. The reduced form estimates for both chains’ entry decision and McD’s store

hours choice are presented in Appendix A.5. As the first column suggests, demographic variables such

as Income and Population are statistically insignificant while Light explains a large fraction of variation

in KFC’s decisions. Because market is defined as substantially smaller than the unit for which Income

and Population data are gathered, night light data consequently provide additional information at a finer

level and substantially increases in-sample fitness. This is consistent with a growing literature that mea-

sures economic activity using outer-space data (e.g. Henderson et al. (2012)). Moreover, the number of

cinemas is added as proxies for local demand of fast food, and its estimates are significantly positive, as

anticipated.

Given the market structure in Table 2, MCDStores is a dummy that equals one if McD is present in

the market. The estimated coefficient on zMcD×MCDStores suggests a significant negative impact of

zMcD on KFC’s decision in markets where McD owns an outlet. Intuitively, zMcD has a negative effect on

McD’s profit as it increases delivery cost. Moreover, it only affects KFC’s profit indirectly through its

impact on McD’s decision because the distance to McD’s distribution center is irrelevant to KFC’s own

costs or revenues. Table 4 suggests that the negative impact of zMcD on McD is transformed to a negative

influence on KFC, which suggests that these chains’ store hours decisions are strategic complements if

KFC correctly predicts McD’s behaviors.

As Subsection 3.3 describes, if zMcD affects KFC’s decision only through its impact on McD, it

provides additional identification power to infer how KFC adjusts its belief about McD’s choice. With

the help of variation of McD’s action sets, I can formally test whether zMcD is a valid exclusion restriction.

29It is not a perfect measure of Income at t1 since I do not have information on the entry time.
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Table 4: Multinomial Logit Regression: Number of KFC’s 24-Hour Stores

One 24-H Two 24-H One 24-H Two 24-H
Income 0.0118 0.0007 0.0089 0.0015

(0.0420) (0.0895) (0.0420) (0.0908)

Pop -0.0633 -0.1067 −0.0735∗ -0.1194
(0.0387) (0.0701) (0.0400) (0.0750)

zKFC −0.1768∗ −0.7275∗∗∗ -0.1187 −0.7817∗∗∗

(0.0980) (0.2539) (0.1153) (0.3041)

log(1+KFCDist) -0.2906 0.0596 -0.3062 -0.0430
(0.5249) (0.8240) (0.5408) (0.8629)

KFCStores 1.3846∗∗∗ 2.8163∗∗∗ 1.4129∗∗∗ 2.9081∗∗∗

(0.3886) (0.5026) (0.4215) (0.5780)

Center 0.2533 -0.7767 0.3182 -0.8396
(0.4099) (0.7876) (0.4166) (0.8217)

Light 0.0708∗∗∗ 0.1718∗∗∗ 0.0764∗∗∗ 0.1671∗∗

(0.0220) (0.0653) (0.0232) (0.0675)

Cinema 0.2050∗∗ 0.2599∗ 0.2050∗∗ 0.2580∗

(0.0942) (0.1406) (0.0946) (0.1431)

McDStores 4.5179∗ 4.1495 4.2024∗ 4.1104∗

(2.6878) (2.7854) (2.2869) (2.4505)

zMcD ·McDStores −0.3927∗∗ -0.3252 −0.4045∗∗ -0.2834
(0.1805) (0.2909) (0.1915) (0.3160)

log(1+ s) 1.0450 2.5363 1.0495 2.5670
(1.0437) (1.6632) (1.1680) (1.8435)

Center ·McDStores 2.0198 5.1759∗∗∗ 1.6433 5.0406∗∗

(1.4130) (1.9751) (1.5434) (2.1493)

log(1+ s)×Center −3.5737∗ −6.0019∗∗ −4.0362∗ −6.6121∗∗

(2.1388) (2.6768) (2.4003) (3.0238)

zMcD× (1−McDStores) -0.0765 0.0688
(0.0831) (0.2086)

McD24h 1.2410 1.4169
(1.0063) (1.6220)

Pr(LowType) 0.7067∗∗∗ 0.7169∗∗∗

(0.0452) (0.0427)
Regional Dummies (3 Regions) Yes Yes
# of Unobserved Types 2 2
log-likelihood -1399.5 -1398.0
Observations 1207

Note: ∗, ∗∗, ∗∗∗ represent significant at significance level of 10%, 5% and 1% respectively.
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However, such a test would be substantially difficult in other empirical games. As shown in the second

column, coefficients on zMcD× (1−McDStores) indicate that zMcD has a highly insignificant impact on

KFC’s decision when McD is absent in a market. This is consistent with the assumption that zMcD is a

valid exclusion restriction. When McD owns zero outlets in a market, zMcD does not affect McD’s store

hours decision and consequently is independent of KFC’s opening hours.

Unobserved market heterogeneity, if not adequately controlled, will invalidate my identification re-

sults and bias the estimates of payoff and belief functions. In this situation, McD’s actual decision of store

hours would reveal some information about unobserved market heterogeneity. Therefore, the number of

McD’s 24-hour stores should significantly affect KFC’s decision after controlling for all other variables.

However, the coefficients are highly insignificant, as shown in the second column. This indicates that as-

suming market-level unobservable to take two possible values is a good approximation.30 In this section,

these two values of unobserved heterogeneity are referred to as high- and low-type markets, respectively.

High-type markets represents the ones where McD is more likely to open a 24-hour store.

Variable s is another exclusion restriction that facilitates the identification of KFC’s base return and

interactive effects. Its impact on KFC’s opening hours decision differs by the locations of markets. For

more details, recall that Center is a dummy variable that equals 1 if the market is located at the center

of a city (i.e. downtown area).31 It influences KFC’s decision in markets where McD is present but has

limited impact in markets where McD is absent. It is the only demographic variable that has this feature.

One plausible explanation for this result is that McD’s decision has a heterogeneous impact on KFC

that differs across market locations. The econometric model estimated in the next subsection formally

investigates this conjecture.

4.4 Structural Estimation of Empirical Games

Even though the reduced form estimates shed light on KFC’s choice incentive, they quantify neither the

competitive effect nor KFC’s belief. In order to capture these latter two effects, I estimate an econometric

30A model without market-level unobservable is highly rejected.
31In this paper, “city” refers to administrative areas in China. Typically, a city contains a core urban area and satellite

towns. The core area is usually much more developed than the satellite towns, and there is generally rural area between them.
Moreover, the distance between core area and satellite town is quite far, so it is implausible for a consumer to travel such a
distance just for fast food. Center equals 1 if the market lies in a core area.
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model of games. Consider the second stage when each chain makes store hours decisions. KFC’s base

return is given by

πKFC(x,zKFC,ω,aKFC = j) =
(
x′, log(zKFC)

)
α

j +ω. (10)

Recall that aKFC = j represents that KFC operates j stores at night and ω is the market-level unobserved

heterogeneity. Vector x contains control variables in Table 3. The interactive effect is specified as

δKFC(x,s,aKFC = j,aMCD = 1) = θ
j

1 +θ
j

2 log(1+ s)+θ
j

3Center+θ
j

4 log(1+ s)×Center. (11)

Intuitively, the interactive effect depends on s, the distance between the two chains’ centroids. Further-

more, as shown in Table 4, Center has a significant impact on KFC only when McD is present in a market.

Therefore, this factor may influence the interactive effect and is controlled for in equation (11). Other

demographic variables are excluded in this interactive payoff to avoid imprecise estimates. As belief is an

unknown, it multiplies by the interactive payoff. In this non-linear model, adding an additional parameter

substantially affects estimation precision, compared to linear models. Moreover, other demographic vari-

ables are shown to have an insignificant impact on the interactive payoff under the equilibrium condition.

As specified in equations (10) and (11), the econometric models put no restrictions on coefficients

across KFC’s different actions aKFC. This therefore captures economies of scale and cannibalization

effects in a flexible way. Moreover, some cautions should be exercised in the interpretation of payoff

functions. When night-time market and day-time market are independent, equations (10) and (11) are

interpreted as KFC’s profit function in the night market. In contrast, when operating at night has positive

spillover effects on the day-time profit, these payoff functions represent the net increase of KFC’s total

profit (for both night-time and day-time) by operating 24-hour stores.

In this paper, I assume the private information εi(ai) follows type 1 extreme value distribution and is

independent across actions and players. Therefore, I estimate a Logit model. Moreover, as I focus on

KFC, McD’s CCP of opening one 24-hour store is specified to take the following reduced form:

p1
MCD(x,zKFC,zMCD,s,ω) =

exp
[
(x′,zKFC,zMCD,s,x′ · zMCD,ω)γ

]
1+ exp

[
(x′,zKFC,zMCD,s,x′ · zMCD,ω)γ

] . (12)

In the literature that studies empirical games under BNE, p1
MCD(·) would be used to approximate KFC’s
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belief. In contrast, this paper allows KFC to have a biased belief and treats KFC’s belief as an unknown

to be estimated. It also takes a Logit form as equation (12) but does not need to have the same parameters:

b1
KFC(x,zKFC,zMCD,s,ω) =

exp
[
(x′,zKFC,zMCD,s,x′ · zMCD,ω)λ

]
1+ exp

[
(x′,zKFC,zMCD,s,x′ · zMCD,ω)λ

] . (13)

If γ = λ , this implies that KFC has unbiased expectations. In contrast, if γ 6= λ , this suggests KFC has

biased beliefs. Given the identification results in Section 3 and the Logit form of belief, λ is identified.

However, it would be imprecisely estimated due to small sample size. To reduce the estimation burden,

I restrict equations (12) and (13) to share the same coefficients on (x,zKFC,s,ω). Such a restriction is

equivalent to assuming that KFC has unbiased belief if zMCD = 0. Therefore, imposing such a restric-

tion would not over-reject the null hypothesis of KFC’s unbiased beliefs. Finally, each chain’s entry

probabilities at the first stage also take a reduced Logit form.

Given the empirical model described above, a log-likelihood function of both chains’ joint decisions

on entry and store hours is well defined. I estimate the model using the Expectation Maximization Algo-

rithm studied in Arcidiacono and Jones (2003).32 In addition, as described above, my empirical model

nests the restriction that KFC has an unbiased belief about McD’s store hours decision. Therefore, it

naturally yields a likelihood ratio test of KFC’s correct belief.

Table 5 presents the estimated coefficients and marginal effects of the belief function. The column

titled “McD’s Choice” represents equation (12), estimated under equilibrium assumption. With such a

constraint, it serves as an approximation of KFC’s belief. The column titled “KFC’s Belief” represents

equation (13), estimated without unbiased belief constraint. Market characteristics in the interaction

terms are taken as deviations from the sample means or median; therefore, the estimated effect of zMCD

represents its impact on an average market. Finally, a likelihood ratio test is conducted to test the null

hypothesis of KFC’s unbiased belief. This hypothesis is rejected at the 1% significance level, as indicated

in the last row. Specifically, in an average market, KFC slightly under-predicts the probability that McD

will open one 24-hour store (i.e. 0.5556 vs. 0.6325).

32In my empirical model, the parameters of KFC’s payoff depend on McD’s CCPs. Without unobserved heterogeneity,
the log-likelihood function is additive separable between KFC’s and McD’s choice. Such a feature naturally implies a two-
step estimator. However, the existence of unobserved heterogeneity destroys such additive separability. Finding the global
maximum of the log-likelihood function is computationally burdensome. Arcidiacono and Jones (2003) proposes a sequential
version of EM algorithm that is computationally efficient.
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Table 5: Estimates of KFC’s Belief (Logit Formula)

McD’s Choice KFC’s Belief
Coefficient Marginal Effect Coefficient Marginal Effect

zMcD −1.6108∗∗ −0.3744∗∗ -0.1912 -0.0472
(0.6978) (0.1841) (0.8259) (0.2055)

zMcD× (Income− Income) 0.1826∗∗ 0.0425∗ 0.6076∗∗∗ 0.1500∗∗∗

(0.0914) (0.0244) (0.1443) (0.0373)

zMcD× (KFCStores−Med[KFCStores]) 0.3214 0.0747 −1.1334∗ −0.2798∗∗

(0.3236) (0.0796) (0.5876) (0.1317)

Control Variables Yes Yes
# of Unobserved Types 2 2
Choice Probability at Average Market 0.6325 0.5556
log-likelihood -1397.8 -1389.6
Unbiased Belief Test (p-value) p=0.0009

Observations 1207
Note: Med(·) represents the sample median of corresponding variable. Med(KFCStores) = 1. Choice probability is calculated assuming unobserved
heterogeneity is the high-type market. The choice probability is almost zero for the low-type market.

As shown in the column “McD’s Choice”, zMcD significantly decreases McD’s probability of operat-

ing at night. Moreover, such a negative impact is alleviated when a market has higher average income.

A comparison with the “KFC’s Belief” column suggests that KFC over-evaluates the attenuation effect

caused by higher Income as the interaction term exhibits a significantly larger magnitude.

To better understand how KFC’s belief is affected by its network structure in a market, Figure 1 shows

the impact of zMcD on McD’s choice and KFC’s belief for markets with different numbers of KFC stores.

When KFC owns more outlets, higher delivery costs have a lesser impact on McD’s decision as reflected

by the flatter slope of the choice probability lines (i.e. black lines), moving from the top left graph to

the bottom right one. As McD faces more competitive pressure, as measured by the number of KFC’s

outlets, it responds less to its own delivery cost and is likely to remain open at night. In contrast, KFC

is over-optimistic in the sense that it believes a denser network structure is likely to kick McD out of the

night market. This is reflected by the steeper slope of KFC’s belief lines (i.e. blue lines), moving from the

top left graph to the bottom right one. It leads KFC to substantially under-predict McD’s opening hours

when KFC owns more than two outlets.

Table 6 shows the estimates of KFC’s payoff function. Consistent with Aguirregabiria and Magesan
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Figure 1: KFC’s Belief about McD’s Probability of Operation at Night

(2017), these results suggest that incorrectly imposing the equilibrium assumption generates an attenu-

ation bias on the interactive effect. In addition, Figure 2 plots the estimate of the interactive payoff as

a function of s. It is clear that the magnitudes of the estimated interactive payoffs under an unrestricted

belief specification are larger than the ones under the equilibrium specification. Even when such a bias is

insignificant, falsely imposing unbiased expectations can still lead to incorrect conclusions. As shown in

Figure 7 in Appendix A.5, the estimates of the interactive payoffs are insignificant under the equilibrium

condition.33 In contrast, Figure 2 shows that store hours are strategic complements in markets located

in city centers, and they are strategic substitutes in markets belonging to satellite towns. For an average

market located in a city center, the interactive effect is equivalent to a reduction in zKFC from 130 km to

10 km.34 Finally, the strategic complement nature of store hours suggests that extending operations to

overnight service is a quality measure. Intuitively, the best response to a competitor’s quality improve-

ment is to increase one’s own quality.35 In contrast, the decision of store hours will exhibit strategic

33The estimates under unbiased belief suggest that the interactive payoffs differ by the markets’ locations. This is reflected
by the highly significant coefficient on Center. However, it does not provide enough evidence to suggest which location
(satellite town vs. city center) has significant non-zero strategic effect.

34According to the sample distribution, this reduction moves zKFC from 30th percentile to its lowest value.
35In general, quality choice can exhibit either strategic substitute or complement depending on the model primitives. This

can be seen in Brekke et al. (2010), who consider a general class of demand and cost functions to study firms’ decisions on
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substitute if it is horizontally differentiated.36

Figure 2: KFC’s Interactive Payoff of Two 24-H Stores

In a recent analysis, Shen and Xiao (2014) study KFC and McD entry and expansion decisions in

China from 1987 to 2007. They find that a chain’s market presence has a spillover effect on the other

chain’s entry/expansion decision. They offer and quantify two explanations, namely demand expansion

and market learning.37 Though these factors play important roles in entry/expansion, I believe that their

impact on store hours decisions is limited. Suppose KFC and McD have equal market shares. For a pure

demand expansion factor to generate positive interactive payoff, McD’s decision to operate overnight

would need to more than double its market size, and it is very implausible for the night market to have such

a large effect. Moreover, industry expert opinion suggests that chains can gather sufficient knowledge

about market characteristics through their outlets, which suggests that the informational spillover effect

from the other chain’s decision is negligible. Consequently, despite the potential existence of spillover

effect, its limited impact in the decision of store hours is unlikely to drive a positive strategic effect

found in this paper. A more plausible interpretation of such a positive interactive payoff is the indirect

business-stealing effect studied by Klemperer and Padilla (1997). Specifically, longer operation times by

price and quality under spatial competition.
36For an example, see Table 1 and 2 in Shy and Stenbacka (2008) and Figure 3 in Wenzel (2011).
37Demand expansion refers to the effect of a firm’s market presence on boosting the market size. Market learning refers to

the situation where a firm can infer market conditions by observing the other firm’s decision.
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Table 6: Estimates of KFC’s Payoff Function

Unbiased Belief Unknown Belief
One 24-H Two 24-H One 24-H Two 24-H

Interactive Payoff

Constant -2.0460 -4.5548 -0.7736 −5.7075∗

(2.1108) (2.9587) (2.1132) (3.1865)

log(1+ s) 3.4186∗ 0.9755 1.1954 -1.8707
(2.0366) (3.2459) (2.0570) (4.2968)

Center 4.6724∗ 9.8636∗∗∗ 5.7414∗∗ 15.5499∗∗∗

(2.6650) (3.8220) (2.6451) (4.6707)

log(1+ s)×Center −6.2695∗ -5.7532 −5.9877∗ −12.0136∗

(3.3906) (4.7331) (3.5265) (6.4380)

Base Return

log(Income) 0.3631 0.4969 0.3509 0.8213
(0.2693) (0.5099) (0.2687) (0.5826)

log(Pop) -0.0445 -0.0535 -0.0584 0.2009
(0.3257) (0.7757) (0.3014) (0.6394)

log(zKFC) -0.4094 −1.4867∗∗∗ −0.4120∗ −1.5280∗∗∗

(0.2849) (0.4817) (0.2350) (0.4767)

log(1+KFCDist) -0.2890 -0.1616 -0.1961 -0.0123
(0.6523) (1.2631) (0.5654) (0.9570)

Center 0.2491 -0.8952 0.4106 -0.9374
(0.4093) (1.1922) (0.4076) (0.8612)

Light 0.0609∗∗∗ 0.1771∗∗ 0.0624∗∗∗ 0.2254∗∗∗

(0.0223) (0.0726) (0.0225) (0.0646)

Cinema 0.1397 0.2089 0.1287 0.2635
(0.0950) (0.2049) (0.0970) (0.2158)

Regional Dummies (3 Regions) Yes Yes
# of Unobserved Types 2 2
log-likelihood -1397.8 -1389.6

Observations 1207
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McD hurts KFC as it steals KFC’s customers (i.e. both day-time and night-time consumers). However,

this negative impact is alleviated if KFC also operates overnight. As shown by Klemperer and Padilla

(1997), with this indirect business-stealing effect, firms have strong incentives to expand their operation

times upon the deregulation of store hours. This could be harmful, however, for some firms, especially

for small ones that are not able to easily extend their business hours. It is also anticipated to increase

consumer welfare. However, from a social planner’s perspective, the deregulation of store hours could

generate social loss overall.

4.5 Counterfactual Analysis

To better understand how the evaluation of deregulation policy depends on the strategic nature of store

hours, this subsection performs a counterfactual analysis. It also illustrates that incorrectly assuming

unbiased belief would generate considerable bias for the counterfactual prediction. As shown in Table 2,

there are 556 markets with KFC stores but without McD. Given my focus on the operating hours decision,

these markets can be seen to have a regulation policy such that McD is forbidden to enter into the night

market. The counterfactual analysis studies KFC’s response if there were one McD store in those 556

markets. Analogously, it can be seen as a deregulation policy that lifts the restriction on McD’s store

hours.

In these 556 counterfactual markets, I assume that KFC’s managers make the same mistakes as the

markets where McD already exists. Therefore, the counterfactual analysis assumes KFC’s belief function

is equation (13) with estimates shown in Table 5.

Figure 3 shows the counterfactual prediction of the expected number of KFC’s 24-hour stores from the

above deregulation policy. On average, KFC will operate 1.10 non-stop service stores in the city center,

while only 0.35 stores remain open at night in the satellite town. This suggests that the deregulation

policy has considerable heterogeneous effects for different areas. This is because the strategic nature of

store hours differs by the locations of markets. Specifically, store hours are strategic complements in the

city center. Consequently, when McD is present and has some likelihood of operating a 24-hour store,

KFC will have an extra incentive to open at night. In contrast, store hours are strategic substitutes in the

satellite town; therefore, KFC is unwilling to operate longer hours when McD exists. Moreover, when
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Figure 3: Expected Number of KFC’s 24-Hour Stores

a market has higher average income, it increases McD’s operation hours. In the city center where store

hours are strategic complements, it introduces an extra incentive for KFC to operate longer. This explains

why KFC is more sensitive to average income in the city center (i.e. the slope in the right plot is more

than two times the slope in the left plot). Finally, the heterogeneous effects on different locations cannot

be explained by the attractiveness of the city center, as coefficients of Center are highly insignificant in

KFC’s base return shown in Table 6.

Assuming McD has the same CCPs in counterfactual markets, Figure 4 shows the magnitude of

KFC’s belief bias, defined as KFC’s belief minus McD’s CCPs. On average, KFC over-predicts the

probability that McD operates 24 hours by 14 percentage points. Moreover, the bias substantially depends

on the market structure and characteristics. Consistent with Table 5, KFC over-evaluates the impact of

higher income on McD and over-predicts McD’s operation hours when markets are richer (left graph).

In contrast, KFC mistakenly believes that a denser network structure would kick McD out of the night

market; therefore, it underestimates McD’s business hours when KFC owns more than two outlets (right

graph).
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Figure 4: Belief Bias (KFC’s Belief minus McD’s CCP)

Figure 5: Regression of Prediction Bias on log(Income)
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Figure 6: Regression of Prediction Bias on # of KFC Stores

As there is considerable bias in KFC’s belief, assuming it has an unbiased expectation of McD’s be-

haviors would yield an incorrect counterfactual prediction. Figures 5 and 6 present the prediction bias,

defined as the prediction under unrestricted KFC’s belief minus the prediction under unbiased expecta-

tion. As shown in Figure 4, KFC tends to over-predict McD’s opening hours in markets with higher

average income. In the satellite town where store hours are strategic substitutes, it implies that KFC

would overestimate the negative impact caused by McD’s operation at night. Consequently, compared

with the prediction under unbiased belief, KFC would choose shorter business hours when markets are

richer. This is reflected by a negative slope in the left plot of Figure 5. Conversely, as store hours are

strategic complements in city center, KFC tends to operate longer in markets with higher average income,

as reflected by a positive slope in the right graph of Figure 5. In addition, since the strategic effect has a

larger magnitude in the city center, KFC responds to average income more sensitively (i.e. slope is larger

in magnitude in the right graph). Finally, with the same logic, when KFC has more outlets in a market, it

will under-predict McD’s business hours. Consequently, KFC tends to over-operate in the satellite town

and under-operate in the city center, as shown in Figure 6.
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5 Conclusion

This paper studies the identification of an incomplete information game without imposing the Bayesian

Nash Equilibrium. The econometric model imposes only weak assumptions on players’ behaviors in

the sense that each player’s belief can be any probability distribution over the other player’s action sets.

With variation of action sets across players or/and across markets, I show that a player’s payoff function

is identified up to her belief at only one realization of the state variable. Furthermore, we can identify

how a player adjusts her belief across different games; it naturally yields a testable restriction of players’

unbiased beliefs.

This paper assumes that a player forms the same belief in two markets with same observables. It fails

to include BNE when multiple equilibria are observed in the data. However, suppose a player’s belief

depends on a variable that is common to each player but unobserved to researchers. This unobservable

can be seen as a sunspot variable that indexes different equilibria. Therefore, such a modification renders

the nesting of multiple BNEs. In this extended model, my identification results hold trivially if players’

choice probabilities conditional on the sunspot unobservable are identified. This identification result is

established by Aguirregabiria and Mira (2018).38

Applying these identification results, this paper empirically studies the competition between KFC

and McD on business hours. The hypothesis of KFC’s unbiased belief is rejected. Moreover, the decision

of store hours acts as strategic complement in the city center. It implies that the store hours decision

is vertically differentiated and this feature is ignored in many of existing papers. When researchers

aim to evaluate the deregulation policy that lifts restrictions on store hours, the ignorance of vertical

differentiation would lead to at least two consequences. First, it will underestimate consumer welfare

gains. Second, it will under-predict stores’ business hours after the deregulation.

38Aguirregabiria and Mira (2018) require a game with at least three players. Even though the main context of this paper
focuses on a two-player game, Appendix A.4 generalizes the results to multi-player games. Therefore, the conditions required
in Aguirregabiria and Mira (2018) hold.
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A Appendix

A.1 Proofs

Proof of Proposition 1: According to equation (5), we then have the following equations for any two

actions j and k of player i:

πi(ai = j)+δi(ai = j,a−i = 1) ·b1
i = F j

i (pi),

πi(ai = k)+δi(ai = k,a−i = 1) ·b1
i = Fk

i (pi).

It is easy to see that we can cancel b1
i using the previous two equations. It yields Proposition 1 (a).

Now, suppose J−i = 0 (i.e. player −i has only one choice), then b1
i (J−i = 0) = 0 and equation (5)

turns into

πi(ai = k) = Fk
i [pi(J−i = 0)].

It yields identification of πi(ai). Furthermore, for J−i = 1, combining equation (5) and identification

results of πi(ai). It yields

δi(ai = k,a−i = 1)b1
i = Fk

i [pi(J−i = 1)]−Fk
i [pi(J−i = 0)] ∀ 0≤ k ≤ Ji.

Therefore, the perceived interactive effect δi(ai = k,a−i = 1)b1
i is identified. The above equation charac-

terizes the identified set for the interactive effect and each player’s belief.

Proof of Proposition 2: Given Proposition 1, we have the following equations for any two alternatives j

and k:

δi(ai = j,a−i = 1)b1
i = F j

i [pi(J−i = 1)]−F j
i [pi(J−i = 0)],

δi(ai = k,a−i = 1)b1
i = Fk

i [pi(J−i = 1)]−Fk
i [pi(J−i = 0)].
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Assuming δi(ai,a−i = 1)b1
i 6= 0, we can divide above equations and get

δi(ai = j,a−i = 1)
δi(ai = k,a−i = 1)

=
F j

i [pi(J−i = 1)]−F j
i [pi(J−i = 0)]

Fk
i [pi(J−i = 1)]−Fk

i [pi(J−i = 0)]
.

Furthermore, as player i’s belief is a valid probability distribution, we have 0 ≤ b1
i ≤ 1. It consequently

yields

sign{δi(ai = j,a−i = 1)}= sign{F j
i [pi(J−i = 1)]−F j

i [pi(J−i = 0)]},∣∣δi(ai = j,a−i = 1)
∣∣≥ ∣∣F j

i [pi(J−i = 1)]−F j
i [pi(J−i = 0)]

∣∣.
Finally, for any J

′
i J
′′
i ≥ 1, we have

δi(ai = j,a−i = 1)b1
i (J
′
i) = F j

i [pi(J′i ,J−i = 1)]−F j
i [pi(J′i ,J−i = 0)],

δi(ai = j,a−i = 1)b1
i (J
′′
i ) = F j

i [pi(J′′i ,J−i = 1)]−F j
i [pi(J′′i ,J−i = 0)].

Dividing these two equations yields

b1
i (J
′
i)

b1
i (J
′′
i )

=
F j

i [pi(J′i ,J−i = 1)]−F j
i [pi(J′i ,J−i = 0)]

F j
i [pi(J′′i ,J−i = 1)]−F j

i [pi(J′′i ,J−i = 0)]
.

This completes the proof.

Proof of Proposition 3: Given player i’s expected payoff in equation (6), we then have the following:

πi(zi,ai = j)+δi(zi,ai = j,a−i = 1)gi(zi,z−i) = F j
i (pi). (14)

Given Assumption 6 (a), we can find at least two realizations of z−i, say z1
−i and z2

−i. Plug them separately

into the above equation and subtract to cancel πi(zi,ai = k), and it becomes

δi(zi,ai = j,a−i = 1) ·
[
gi(zi,z1

−i)−gi(zi,z2
−i)
]
= F j

i
[
pi(zi,z1

−i)
]
−F j

i
[
pi(zi,z2

−i)
]
∀ 0≤ j ≤ J1.
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Suppose pi(zi,z1
−i) 6= pi(zi,z2

−i): it implies that gi(zi,z1
−i)− gi(zi,z2

−i) 6= 0.39 Note that the difference of

subjective expectations does not depend on which action is taken by player i. Therefore, for any two

actions j and k, we can cancel the term gi(zi,z1
−i)−gi(zi,z2

−i) by division and get

δi(zi,ai = j,a−i = 1)
δi(zi,ai = k,a−i = 1)

=
F j

i
[
pi(zi,z1

−i)
]
−F j

i
[
pi(zi,z2

−i)
]

Fk
i
[
pi(zi,z1

−i)
]
−Fk

i
[
pi(zi,z2

−i)
] .

Since the terms on the right-hand side are known, δi(zi,ai= j,a−i=1)
δi(zi,ai=k,a−i=1) is identified. Furthermore, given mul-

tiplicative separable assumption 5, δi(zi,ai= j,a−i)
δi(zi,ai=k,a−i)

= δi(zi,ai= j,a−i=1)
δi(zi,ai=k,a−i=1) for any a−i. This proves Proposition 3

(a).

Given the results in Proposition 1, we have the following equation for any two actions j and k:

F j
i
[
pi(zi,z−i,s)

]
−πi(zi,ai = j)

Fk
i [pi(zi,z−i,s)

]
−πi(zi,ai = k)

=
δi(zi,s,ai = j,a−i = 1)
δi(zi,s,ai = k,a−i = 1)

.

Under Assumption 6 (b), there must exist s1and s2, such that δi(zi,s1,ai= j,a−i=1)
δi(zi,s1,ai=k,a−i=1) 6=

δi(zi,s2,ai= j,a−i=1)
δi(zi,s2,ai=k,a−i=1) ; there-

fore, the previous equation turns into

πi(zi,ai = j)− δi(zi,s1,ai= j,a−i=1)
δi(zi,s1,ai=k,a−i=1)πi(zi,ai = k) = F j

i
[
pi(zi,z−i,s1)

]
− δi(zi,s1,ai= j,a−i=1)

δi(zi,s1,ai=k,a−i=1)F
k
i [pi(zi,z−i,s1)

]
,

πi(zi,ai = j)− δi(zi,s2,ai= j,a−i=1)
δi(zi,s2,ai=k,a−i=1)πi(zi,ai = k) = F j

i
[
pi(zi,z−i,s2)

]
− δi(zi,s2,ai= j,a−i=1)

δi(zi,s2,ai=k,a−i=1)F
k
i [pi(zi,z−i,s2)

]
.

Since δi(zi,s,ai= j,a−i=1)
δi(zi,s,ai=k,a−i=1) is identified, this is a linear equation system containing two unknowns (i.e. πi(zi,ai =

j) and πi(zi,ai = k)) and two equations. Given δi(zi,s1,ai= j,a−i=1)
δi(zi,s1,ai=k,a−i=1) 6=

δi(zi,s2,ai= j,a−i=1)
δi(zi,s2,ai=k,a−i=1) , πi(zi,ai = j) and

πi(zi,ai = k) are uniquely determined through this system. In addition, according to equation (14),

δi(zi,s,ai = k,a−i = 1) · gi(zi,z−i,s) is identified thereafter. Next, for an action l 6= j, k, it is clear that

δi(zi,s,ai = l,a−i = 1) ·gi(zi,z−i,s) is identified as δi(zi,s,ai = k,a−i = 1) ·gi(zi,z−i,s) · δi(zi,s,ai=l,a−i=1)
δi(zi,s,ai=k,a−i=1) .

Finally, the researcher can uniquely determine the value of πi(zi,s,ai = l) according to equation (14),

given the identification of δi(zi,s,ai = l,a−i = 1) ·gi(zi,z−i,s). This completes the proof.

39Conditional on zi, player i’s payoff functions πi(zi,ai) and δi(zi,ai,a−i = 1) are fixed; therefore, the only reason that player
i’s choice probability varies as z−i varies is because player i’s subjective expectation gi(zi,z−i) varies as z−i varies.
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Proof of Proposition 4: Suppress x for notational simplicity as the identification results hold true for

each x. Define h̃(ω|x̃,J1,J2) as the distribution of ω conditional on market structure (J1,J2). By definition

h̃(ω|x̃,J1,J2) =
h(ω|x̃)pJ1

1,t1(x̃,ω)pJ2
2,t1(x̃,ω)

∑
2
l=1 h(ω l|x̃)pJ1

1,t1(x̃,ω
l)pJ2

2,t1(x̃,ω
l)

=
h(ω|x̃)pJ1

1,t1(x̃,ω)pJ2
2,t1(x̃,ω)

Pr(J1,J2|x̃)
. (15)

First, consider any pair of J1, J2 ≥ 1, and define the following matrices:

Pr(x̃,J1,J2) =

Pr(a1 = 0,a2 = 0|x̃,J1,J2) Pr(a1 = 0,a2 = 1|x̃,J1,J2)

Pr(a1 = 1,a2 = 0|x̃,J1,J2) Pr(a1 = 1,a2 = 1|x̃,J1,J2)

 ,
Pi,t2(J1,J2) =

p0
i,t2(ω

1,J1,J2) p0
i,t2(ω

2,J1,J2)

p1
i,t2(ω

1,J1,J2) p1
i,t2(ω

2,J1,J2)

 ,
Diag

(
h̃(x̃,J1,J2)

)
=

h̃(ω1|x̃,J1,J2) 0

0 h̃(ω2|x̃,J1,J2)

 .
As shown by Kasahara and Shimotsu (2014), the matrix Pr(x̃,J1,J2) has full rank since ω can take on

two possible values. Moreover, such a matrix is observed by econometricians. For any x̃, we have

Pr(x̃,J1,J2) = P1,t2(J1,J2) ·Diag
(
h̃(x̃,J1,J2)

)
·P2,t2(J1,J2)

′. (16)

Consequently, for any two values x̃1 and x̃2, we have the following:

Pr(x̃1,J1,J2) ·Pr(x̃2,J1,J2)
−1 = P1,t2(J1,J2) ·Diag

(
h̃(x̃1,J1,J2)

)
·Diag

(
h̃(x̃2,J1,J2)

)−1 ·P1,t2(J1,J2)
−1.

Therefore, Diag
(
h̃(x̃1,J1,J2)

)
·Diag

(
h̃(x̃1,J1,J2)

)−1 represents a diagonal matrix with each element cor-

responding to an eigenvalue of matrix Pr(x̃1,J1,J2) ·Pr(x̃2,J1,J2)
−1. Moreover, P1,t2(J1,J2) is a matrix

of eigenvector. Under condition that Pr(x̃1,J1,J2) ·Pr(x̃2,J1,J2)
−1 has full rank, it then has two distinct

eigenvalues and each element in P1,t2(J1,J2) is identified up to a scaler.40 In addition, matrixPr(x̃,J1,J2)

40The full rank condition for Pr(x̃1,J1,J2) · Pr(x̃2,J1,J2)
−1 is a weak condition. It requires diagonal elements of
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and Pi,t2(J1,J2) can be defined on any arbitrary pair of player i’s action. It implies p j
1,t2(ω,J1,J2) is iden-

tified up to a scaler for each j ≤ J1. With the restriction that probability sums to unit, p j
1,t2(ω,J1,J2) is

identified for any J1, J2 ≥ 1. By the same argument, we can establish the identification of p j
2,t2(ω,J1,J2).

Given the identification of p j
i,t2(ω,J1,J2), it is easy to see that h̃(ω|x̃,J1,J2) is also identified by equa-

tion (16) for any J1, J2≥ 1. By the definition of h̃(ω|x̃,J1,J2) in equation (15), h(ω|x̃)pJ1
1,t1(x̃,ω)pJ2

2,t1(x̃,ω)

is identified since Pr(J1,J2|x̃) is known by researchers. Consequently, for any J′i , J′′i ≥ 1, pJ′i
i,t1(x̃,ω)/pJ′′i

i,t1(x̃,ω)

is identified. It implies that player i’s first-stage conditional choice probability is identified up to two val-

ues, p0
i,t1(x̃,ω) and p1

i,t1(x̃,ω).

To identify p0
i,t1(x̃,ω) and p1

i,t1(x̃,ω), it suffices to consider four different market structures (J1,J2)

where Ji = 0, 1. It implies the following restrictions:

h(ω1|x̃)p1
1,t1(ω

1, x̃)p1
2,t1(ω

1, x̃) = h̃(ω1|x̃,J1 = 1,J2 = 1)Pr(J1 = 1,J2 = 1|x̃),

h(ω2|x̃)p1
1,t1(ω

2, x̃)p1
2,t1(ω

2, x̃) = h̃(ω2|x̃,J1 = 1,J2 = 1)Pr(J1 = 1,J2 = 1|x̃),
2

∑
l=1

h(ω l|x̃)p1
1,t1(ω

l, x̃)p0
2,t1(ω

l, x̃) = Pr(J1 = 1,J2 = 0|x̃),

2

∑
l=1

h(ω l|x̃)p1
1,t1(ω

l, x̃)p0
2,t1(ω

l, x̃)p1
1,t2(ω

l,J1 = 1,J2 = 0) = Pr(J1 = 1,J2 = 0,a1 = 1|x̃),

2

∑
l=1

h(ω l|x̃)p0
1,t1(ω

l, x̃)p1
2,t1(ω

l, x̃) = Pr(J1 = 0,J2 = 1|x̃),

2

∑
l=1

h(ω l|x̃)p0
1,t1(ω

l, x̃)p1
2,t1(ω

l, x̃)p1
2,t2(ω

l,J1 = 0,J2 = 1) = Pr(J1 = 0,J2 = 1,a2 = 1|x̃). (17)

All terms on the right-hand side of equation system (17) are either observed or identified based on previ-

ous arguments. Denote |x̃| as the number of support for x̃. Therefore, this equation system contains 6|x̃|

restrictions. As shown on Table 7, there are 5|x̃|+4 unknowns. Therefore, when 6|x̃| ≥ 5|x̃|+4⇔|x̃| ≥ 4,

the order condition is satisfied. Moreover, no equation can be written as a linear combination of other

equations. Therefore, all unknowns are identified.

Intuitively, consider the fourth equation in equation system (17). Since x̃ does not enter into p1
1,t2(·),

it mimics the model studied by Henry et al. (2014) in which an exclusion restriction only affects the

Diag
(
h̃(x̃1,J1,J2)

)
·Diag

(
h̃(x̃2,J1,J2)

)−1 to be different. Equivalently, it only requires x̃ to affect the distribution of ω condi-
tional on market structure (J1,J2).

50



Table 7: Number of Unknowns

Unknowns # of Unknowns

h(ω1|x̃) |x̃|
p1

i,t1(ω, x̃) 4|x̃|
p1

i,t2(ω|Ji = 1,J−i = 0) 4
Note: h(ω2|x̃), p0

i,t1
(ω, x̃) and p0

i,t2
(ω|Ji = 1,J−i = 0) do

not count as unknowns since they are perfectly determined
by h(ω1|x̃), p1

i,t1 (ω, x̃) and p1
i,t2 (ω|Ji = 1,J−i = 0).

mixture weights. They have shown that such a model is point identified up to the mixture weights at two

realizations of the exclusion restriction. Applying their results, suppose h(ω1|x̃) · p1
1,t1(ω

1, x̃) · p0
2,t1(ω

1, x̃)

is known at two points of x̃, say x̃1 and x̃2. Then h(ω|x̃) and p j
i,t1(ω, x̃) are identified for each x̃ just using

the first five equations in equation system (17). In addition, instead of considering the fourth equation,

we can start with the last one in equation system (17) and replicate the same procedure. It also yields

the point identification of h(·) and p j
i,t1(·). Finally, the estimated functions starting from two different

equations must be the same for every x̃; these are additional restrictions that identify the weight mixture

and CCPs at points x̃1 and x̃2.

Finally, by a similar argument, p j
i,t2(ω,Ji,J−i = 0) is identified for any Ji ≥ 1. This completes the

proof.

A.2 Relaxation of Known Distribution of Gi(·)

In the main text, player i’s private information is assumed to be independent across players and inde-

pendent of public information x. Moreover, the distribution of this private information is assumed to be

known by researchers. The commonly used distributional assumptions in practice include i.i.d. type 1

extreme value distribution (i.e. Logit Model) and i.i.d. standard normal distribution (i.e. Multinomial

Probit Model). These assumptions are restrictive in the sense that they restrict the private information

among actions to be independent and homoscedastic. However, the distributional assumption of εi can

be relaxed to capture heteroskedasticity and potential correlation among actions in a fairly flexible way.

This subsection formally establishes this point with the help of exclusion restriction zi and variation in

players’ action sets. First, consider an assumption 1’ that is a weaker version of Assumption 1.

Assumption 1′. (a) For each i = 1,2, εi =
(
εi(0),εi(1), · · · ,εi(Ji)

)′ follows a CDF Gi(·;βi,x) that is

51



absolutely continuous with respect to Lebesgue measure in RJi+1. βi,x =
(
β1,i,x, · · · ,βLi,i,x)

′ is a vector of

parameters with Li < ∞ dimensions. Moreover, researchers know the functional form of Gi(·) but not the

parameters βi,x for i = 1,2.

(b) εi is independent of ε−i conditional on (x,z1,z2). Moreover, conditional on x, εi is independent

of (z1,z2) for i = 1,2.

Assumption 1′ parametrizes the distribution of εi by a vector βi,x which is unknown by researchers.

Such a parametrization relaxes Assumption 1 in several directions. First, βi,x can contain the standard

deviation of εi(ai) for different ai and potential correlation between εi( j) and εi(k) for j 6= k. As a conse-

quence, it captures the possible heteroskedasticity and correlation of private information among different

actions in a fairly flexible way. Second, Assumption 1′ allows the distribution of εi to be correlated with

x, and such a correlation is captured by the dependence of βi,x on x.41 Since I investigate identification

conditional on x, I write βi,x as βi for notation simplicity. Note that the identification results do not

require exclusion restriction s.

An implication of Assumption 1′ is that the inverse of best response probability function Fi(·) will

depend on βi. We then have the following equations:

πi(zi,ai = j)+
J−i

∑
k=1

δi(zi,ai = j,a2 = k) ·bk
i (zi,z−i) = F j

i
[
pi(zi,z−i);βi

]
∀ 0≤ j ≤ J1.

Given Assumption 1′, Fi(·,βi) is known by researchers up to the unknown parameters βi. Addition-

41Lewbel and Tang (2015) generalize the special regressor approach considered in Matzkin (1992) and Lewbel (2000) to
a two-player binary choice game with incomplete information. They show that if researchers can observe a variable that
affects a player’s payoff linearly, then the distribution of the error term is non-parametrically identified under the Bayesian
Nash Equilibrium condition. Despite its power, this special regressor approach does not work in my framework because I
non-parametrically specify the payoff function; as a result, I parametrize the function Gi(·).
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ally, Assumption 6 (a) implies that there exist h realizations of z−i, say z1
−i, z2

−i up to zh
−i, such that

F1
i
[
pi,J−i=0(zi,z−i);βi

]
= πi(zi,ai = 1),

...

FJi
i
[
pi,J−i=0(zi,z−i);βi

]
= πi(zi,ai = Ji),

F1
i
[
pi,J−i=1(zi,z1

−i);βi
]
= πi(zi,ai = 1)+δi(zi,ai = 1,a−i = 1) ·b1

i (zi,z1
−i), (18)

F2
i
[
pi,J−i=1(zi,z1

−i);βi
]
= πi(zi,ai = 2)+δi(zi,ai = 2,a−i = 1) ·b1

i (zi,z1
−i),

...

FJi
i
[
pi,J−i=1(zi,zh

−i);βi
]
= πi(zi,ai = Ji)+δi(zi,ai = Ji,a−i = 1) ·b1

i (zi,zh
−i).

Equation system (18) consists of Ji(h+1) equations with 2Ji+h−1+Li unknowns.42 A necessary or-

der condition for identification is Ji(h+1)≥ 2Ji+h−1+Li, which yields (Ji−1)(h−1)≥ Li. Moreover,

denote F(zi,z1:h
−i ,Ji;βi) = (F1

i
[
pi,J−i=0(zi,z−i);βi

]
, · · · ,FJi

i
[
pi,J−i=1(zi,zh

−i);βi
]
)′ as a Ji(h+1)×1 vector

of inversion of choice probability, and the following Assumption 8 establishes a sufficient condition for

the identification of βi.

Assumption 8. Conditional on (x,Ji > 1,zi), there are h≥ 2 realizations of z2 such that (Ji−1)(h−1)≥

Li. Moreover, let ∂F(zi,z1:h
−i ,Ji;βi)

∂βi
be a Jacobian matrix with dimension Ji(h+ 1)× Li; such a matrix has

column rank Li.

Proposition 5. Under Assumption 6 (a), 8 and conditions met in Proposition 1 with Assumption 1 re-

placed by Assumption 1′, βi is identified in a neighborhood of its true value.

Proof. βi does not enter into the right-hand side of equation system (18); as shown in Subsection 3.3,

all unknowns on the right-hand side are identified if researchers know the value of βi. Since there are

2Ji + h− 1 unknowns on the right-hand side, there still remain (Ji− 1)(h− 1) ≥ Li restrictions that can

42There are Ji unknowns for πi(zi,ai = j) ∀ 1≤ j≤ J1, h unknowns for δi(zi,ai = 1,a−i = 1) ·b1
i (zi,z−i), (Ji−1) unknowns

for δi(zi,ai= j,a−i=1)
δi(zi,ai=1,a−i=1) ∀ 1 < j ≤ Ji and Li unknowns for βi. Note that as shown in Subsection 3.3, only δi(zi,ai = 1,a−i =

1) · b1
i (zi,z−i) is identified while δi(zi,ai = 1,a−i = 1) and b1

i (zi,z−i) are not distinguishable from each other, so I treat the
perceived interactive effects as unknowns. In addition, δi(zi,ai = 1,a−i = 1) ·b1

i (zi,z−i) and δi(zi,ai= j,a−i=1)
δi(zi,ai=1,a−i=1) perfectly determine

the value of δi(zi,ai = j,a−i = 1) · b1
i (zi,z−i) and therefore δi(zi,ai = j,a−i = 1) · b1

i (zi,z−i) ∀ j 6= 1 does not count as an
unknown.
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be exploited to identify βi. Under Assumption 8, both the rank and order condition are satisfied and

therefore βi is locally identified.

Assumption 8 is a generic assumption. Suppose βi is identified when researchers perfectly know

player i’s payoff and belief, then the Jacobian matrix ∂F(zi,z1:h
−i ,Ji;βi)

∂βi
will have full column rank with prob-

ability one. This implies that researchers can capture heteroskedasticity and correlation as flexible as in

the standard discrete choice model.

A.3 Identification Results when J−i > 1

In this section, I present the identification result of player i’s payoff function when player −i has more

than two actions. As in the main text, the distribution of private information is assumed to be known by

the researcher in this section.

For some k ≤ Ji− J−i, define a J−i× J−i matrix of interaction effect ∆k:J−i+k−1
i as



δi(ai = k,a−i = 1), δi(a−i = k,a−i = 2), · · · , δi(ai = k,a−i = J−i)

δi(ai = k+1,a−i = 1), δi(a−i = k+1,a−i = 2), · · · , δi(ai = k+1,a−i = J−i)

...
... . . . ...

δi(ai = k+ J−i−1,a−i = 1), δi(ai = k+ J−i−1,a−i = 2) · · · , δi(ai = k+ J−i−1,a−i = J−i)


.

Moreover, letπk:J−i+k−1
i =

(
πi(ai = k), · · · ,πi(ai = k+J−i−1)

)′ and Fk:J−i+k−1
i =

(
Fk

i (pi), · · · ,Fk+J−i−1
i (pi)

)′,
and we then have following proposition.

Proposition 6. (a) Under Assumptions 1 to 4 and suppose ∆k:J−i+k−1 is invertible for any k and data

contain observations with Ji > J−i; then for any k′,k ≤ Ji− J−i, the identified set of player i’s payoff is

given by the set of values that satisfies the following restrictions:

[
∆

k:J−i+k−1
i

]−1[Fk:J−i+k−1
i −πk:J−i+k−1

i ] =
[
∆

k′:J−i+k′−1
i

]−1[Fk′:J−i+k′−1
i −πk′:J−i+k′−1

i ].

(b) Suppose further that data also contain observations with J−i = 0, then πi(ai = k) is identified by

Fk
i [pi(J−i = 0)] ∀ k. Furthermore, the identified set of player i’s interactive effect and belief is given by
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the set of values that satisfies the following restriction:

J−i

∑
j=1

δi(ai = k,a−i = j)b j
i = Fk

i [pi(J−i = 1)]−Fk
i [pi(J−i = 0)].

Proof. By construction, we have

π
k:J−i+k−1
i +∆

k:J−i+k−1
i bi = Fk:J−i+k−1

i .

Under the assumption such that ∆k:J−i+k−1
i is invertible, we then have the vector of belief equals to

bi =
[
∆

k:J−i+k−1
i

]−1[Fk:J−i+k−1
i −πk:J−i+k−1

i ].

Similarly, for another value of k′, we have bi =
[
∆

k′:J−i+k′−1
i

]−1[Fk′:J−i+k′−1
i −πk′:J−i+k′−1

i ]. Conse-

quently, it yields

[
∆

k:J−i+k−1
i

]−1[Fk:J−i+k−1
i −πk:J−i+k−1

i ] =
[
∆

k′:J−i+k′−1
i

]−1[Fk′:J−i+k′−1
i −πk′:J−i+k′−1

i ].

Furthermore, if there exist observations with J−i = 0, then Proposition 6 (b) follows a similar proof

as Proposition 1 (b) and is omitted.

A.4 Identification in Games with Multiple Actions, Multiple Players

Consider a game with N players where N > 2. Player is indexed by i,n ∈ {1,2, · · · ,N}. Each player i

has an action set Ai = {0,1, · · · ,Ji}. Consequently, Cartesian product A = A1×A2 · · ·×AN represents the

space of action profiles in this game. Each player i simultaneously chooses an action ai from her action

set Ai . Let a = (a1,a2, · · · ,aN) ∈ A be a realized outcome or action profile in this game. Player i’s payoff

under a is

Πi(x,εi,a) = πi(x,ai)+
N

∑
n=1,n6=i

δi,n(x,ai,an) ·1(an 6= 0)+ εi(ai). (19)
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The term δi,n(x,ai,an) in equation (19) represents player n’s impact on player i. It allows different

players to have heterogeneous interactive effects on player i but requires they are additive separable.

When there is variation in players’ choice sets, we can identify πi and δi,n by studying the situation that

Ji′ = 0 ∀ i′ 6= i, n. This is essentially the game with two players considered in the main text and all

identification results directly follow.

When players’ action sets are constant across observations, I consider a restriction on the payoff

function that allows for dimension reduction similar to Assumption 5:

δi,n(x,ai,an) = δi,n(x,ai,an = 1) ·ηi,n(x,an) where ηi,n(x,an = 1) = 1.

Consequently, player i’s expected payoff for action ai is

E[Πi(x,εi,ai)] = πi(x,ai)+
N

∑
n=1,n6=i

δi,n(x,ai,an = 1)
[ Jn

∑
j=1

ηi,n(x,an = j)b j
i,n(x)

]
+ εi(ai)

⇒ E[Πi(x,εi,ai)] = πi(x,ai)+
N

∑
n=1,n6=i

δi,n(x,ai,an = 1) ·gi,n(x)+ εi(ai),

where b j
i,n(x) represents player i’s belief about the probability that player n will choose action an = j.

Term gi,n(x) = ∑
Jn
j=1 ηi,n(x,an = j)b j

i,n(x) represents player i’s subjective expected value of ηi,n. Given

the distribution of εi, we can invert player i’s conditional choice probability:

πi(x,ai = j)+
N

∑
n=1,n6=i

δi,n(x,ai,an = 1) ·gi,n(x) = F j
i
[
pi(x)

]
.

Suppose that N ≤min{J1, · · · ,JN} (i.e. the number of players is smaller than the number of actions):

the above equation shares the same structure as the asymmetric game described in Appendix A.3: for

instance, a game with two players where player i has Ji+1 actions while player −i has N actions. There-

fore, the result of Proposition 6 (a) applies. Furthermore, when there exist exclusion restrictions zi and s,

the base return πi(·) and the perceived interactive payoff ∑
N
n=1,n6=i δi,n(·)gi,n(·) are point identified.
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A.5 Data Construction and Supplementary Tables

Construction of Cinema Clusters

I obtain a list of cinemas, including address, for each county. I then construct clusters of cinemas by the

following algorithm:

1. Start with an arbitrary cinema denoted by cinemai which is not assigned into any cluster, and assign

this cinema to a new cluster.

2. Draw a radius of 2 km around such a cinemai. If no other cinema exists in this area, the algorithm

terminates and we start a new unassigned cinema by step 1. If some cinemas exist in this area,

assign those cinemas in the same cluster as cinemai.

3. For each newly assigned cinema, repeat step 2.

Supplementary Tables and Graphs

Figure 7: KFC’s Interactive Payoff of Two 24-H Stores
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Table 8: Reduced Form Logit Regression: Number of McD’s 24-Hour Stores

One 24 H

Income -0.1872
(0.1946)

Pop 0.6420∗∗∗

(0.1949)

zKFC×1(KFCStores > 0) -0.2096
(0.4719)

zMcD×1(KFCStores = 0) 0.1919
(0.4196)

zMcD×1(KFCStores > 0) −1.0361∗∗

(0.4454)

zMcD× (Income− Income) 0.1752∗∗

(0.0785)

log(1+KFCDist) -2.2674
(1.7501)

KFCStores 0.8460
(0.7563)

log(1+ s) 0.5764
(1.1502)

Center 5.2309∗∗∗

(1.8663)

Light 0.2656∗∗

(0.1134)

Cinema 0.2962
(0.2797)

Regional Dummies (3 Regions) Yes
# of Unobserved Types 2

Observations 1207
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Table 9: Reduced Form Logit Regression: Entry Decision

KFC’s Existence McD’s Existence

Income 0.4861∗∗∗ 1.0444∗∗∗

(0.1056) (0.3331)

Income2 −0.0124∗∗∗ −0.0460∗∗∗

(0.0030) (0.0152)

Pop 0.2279∗∗ 0.1699
(0.0974) (0.2097)

Pop2 -0.0053 0.0053
0.0043 0.0091

zKFC 0.6705∗∗∗ 0.8150∗

(0.2098) (0.4686)

z2
KFC 0.0214 0.1322

(0.0402) (0.0948)

zMcD −0.6048∗∗∗ −1.3479∗∗∗

(0.1580) (0.4310)

z2
McD 0.0869∗∗∗ 0.1618∗∗

(0.0270) (0.0694)

Center 5.5938∗∗∗ 2.8541∗∗∗

(1.2496) (0.9293)

Income×Pop 0.0317∗∗ 0.0063
(0.0139) (0.0223)

Pop×Center −0.2945∗∗ -0.0009
(0.1011) (0.0874)

zKFC× zMcD −0.1283∗∗ −0.2530∗∗

(0.0574) (0.1268)

Light 0.0241∗∗ 0.0121
(0.0102) (0.0260)

GDPGrowth −0.0932∗∗∗ −0.0983∗∗

(0.0225) (0.0475)

Regional Dummies (3 Regions) Yes
# of Unobserved Types 2

Observations 1207
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