A Theory of Leaning Against the Wind

Franklin Allen Gadi Barlevy Douglas Gale

Imperial College

Chicago Fed

NYU

November 2018

Disclaimer: Our views need not represent those of the Federal Reserve Bank of Chicago or the Federal Reserve System

- Long debate as to what to do in face of rapid run-up in asset prices
 - Bernanke and Gertler (1999) wait and clean up (stimulate) if price falls
 - Borio and Lowe (2002) asset price booms + debt usually end badly

Argue policymakers should lean against the wind (raise rates in asset booms)

- Many have taken last crisis as further evidence that waiting is bad
- Svennson (2014, 2017) argues raising rates can be counterproductive
- We explore these issues through lens of a GE risk-shifting model

- Key feature of risk-shifting creditors unsure about their risk exposure
 - · Common to new technologies or assets valued idiosyncratically (housing)
- We show risk-shifting can give rise to Borio-Lowe episodes
 - Asset bubbles financed with debt, eventually collapse and lead to default
- Model suggests scope for intervention (misallocation + excess leverage)
- Raising rates exacerbates first distortion but mitigates second
- Promise to raise rates if bubble lasts mitigates both (targets speculators)

Setup

- OLG setup with two-period lived agents and single consumption good
- Agents only care about consumption when old: $u(c_t, c_{t+1}) = c_{t+1}$

• At t = 0, old endowed with 1 unit of asset that pays d each period

- We will eventually allow dividend to be stochastic
- 2 At each $t \ge 0$, cohort consists of two types:
 - Savers unproductive but endowed w/e goods when young \Rightarrow need to save
 - Entrepreneurs productive but born with no endowment
 - Each can convert up to 1 unit at t into 1 + y units in t + 1

- $N(y) \equiv$ mass of entrepreneurs w/productivity $\leq y$, range of y is $[0, \infty)$

• Young savers use e to buy assets from old and fund young entrepreneurs

Trade between savers and entrepreneurs subject to following frictions:

- Trade via debt contracts, pay $1 + R_t$ for each unit borrowed
- Savers can't observe y or whether borrowers buy assets or produce
- If borrower defaults, lenders incur cost Φ per unit lent

Warmup: Equilibrium with Riskless Asset

- Eqbm is path for asset price + loan rate $\{p_t, R_t\}_{t=0}^{\infty}$ that clears markets
 - Young savers allocate e between assets and lending
 - Young entrepreneurs choose to borrow to produce and/or to buy assets
 - Old sell any assets they own and collect on or repay loans
- With dividend constant, no default
 - Savers indifferent between lending and buying asset, i.e. $1 + R_t = \frac{d + p_{t+1}}{p_t}$
 - Only sufficiently productive entrepreneurs (with $y \ge R_t$) produce
 - Market clearing each period: $p_t + \int_{B_t}^{\infty} dN(y) = e$
 - Combining equations reveals unique eqbm has $(p_t, R_t) = (p, R) \forall t$
- Equilibrium price p uniquely solves $p + \int_{d/p}^{\infty} dN(y) = e$, no bubble

Monetary Policy

- How can we think about monetary policy in this setup?
 - Follow Galí (2014): income e emerges from production with sticky prices
 - Prices sticky for one period, so policy only affects current real variables
 - Assets trade after production, so prices as in analog endowment economy
- $1 + R_0 = \frac{d+p_1}{p_0}$; Since i_0 can't affect d or p_1 , must lower p_0 to raise real rate
- Works by discouraging labor (via lower real wage) \Rightarrow lower e_0
- Raising real rates \approx reducing endowment (same effect as a tax)

• Now suppose dividend follows regime switching process:

 $d_t = D$ w/prob π dividend d_t permanently switches to d where 0 < d < D

- Denote equilibrium by (p_t^D, R_t^D) if $d_t = D$ and (p_t^d, R_t^d) if $d_t = d$
 - Need 1 + R^D_t ≥ ^{D+p^D_{t+1}}/_{p^D_t} or infinite borrowing from low *y* agents
 Need 1 + R^D_t ≤ ^{D+p^D_{t+1}}/_{p^D_t} or else no demand for asset ⇒ 1 + R^D_t = ^{D+p^D_{t+1}}/_{p^D_t}
- Market clearing same as before: $p_t^D + \int_{R_t^D}^{\infty} dN(y) = e$
- Key Result: Equilibrium (p_t^D, R_t^D) same as if $d_{t+1} = D$ forever

Credit Booms and Bubbles

- Bubble: asset price can exceed fundamentals while d_{t+1} = D
 - 1 + $R^{D} = \frac{D + p_{t}^{D}}{p_{t}^{D}} > E\left[\frac{d_{t+1} + p_{t+1}}{p_{t}^{D}}\right]$; for small Φ , also true for expected return
 - p^D > PDV of dividends evaluated at expected return on lending
 - Intuitively, speculators who don't care about downside bid up asset price
- Credit boom: for small Φ, all assets bought w/debt while d_{t+1} = D
- High realized returns on both lending and assets while d_{t+1} = D
 - Expected returns, however, can be lower; R^D too low given risk
- Eventual crash: asset price falls from p^D to p^d when dividends fall
- Ends badly: fall in dividends leads to default and output losses (Φρ^D)

Leaning Against the Wind

- Two reasons there may be scope for intervention during boom:
 - Bubble crowds out production (entrepreneurs misallocate resources)
 - Productivity of marginal entrepreneur is $y = R^D > E\left[\frac{d_{t+1}+p_{t+1}}{p_t}\right] 1$
 - Excessive borrowing against risky assets
 - Borrowers don't care about costs Φp^D they impose on lenders
- Can raising rates via monetary policy (LATW) improve welfare?
 - Reducing e_0 lowers p_0^D and increases R_0^D
 - Higher R_0^D further crowds out production \Rightarrow exacerbates distortion
 - Lower p_0^D dampens borrowing, lowers forgone output Φp_0^D if bubble bursts

Welfare effect ambiguous, but leaning can raise welfare if Φ large

Threats of Future Action

Threat to raise rates if bubble persists (reduce e_1 if $d_1 = D$) raises welfare

- Lowers p_1^D at date 1, which reduces $1 + R_0^D = \frac{D + p_1^D}{p_2^D}$ at date 0
- Policy still lowers p_0^D and reduces forgone output Φp_0^D if bubble bursts
- Intuition: Serves to target speculation even without observing it

Take away: Risk-shifting useful framework for thinking about bubbles

- Reveals scope for intervention and connection to proposed remedies
- Evaluate when raising rates beneficial as well as other policies