
 

Bank of Canada staff working papers provide a forum for staff to publish work-in-progress research independently from the Bank’s Governing 
Council. This research may support or challenge prevailing policy orthodoxy. Therefore, the views expressed in this paper are solely those of the 
authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank. 

www.bank-banque-canada.ca 

 

Staff Working Paper/Document de travail du personnel 2018-47 

Challenges in Implementing Worst-
Case Analysis 

 

 
 

by Jon Danielsson, Lerby M. Ergun and Casper G. de Vries 



 

ISSN 1701-9397                                                                                                           © 2018 Bank of Canada 

Bank of Canada Staff Working Paper 2018-47 

September 2018 

Challenges in Implementing Worst-Case Analysis 

by 

Jon Danielsson,1 Lerby M. Ergun2 and Casper G. de Vries3 

1 London School of Economics 
 

2 London School of Economics 
and  

Financial Markets Department 
Bank of Canada 

Ottawa, Ontario, Canada K1A 0G9 
lergun@bankofcanada.ca 

 
3 Erasmus University Rotterdam 

 
 

 
 
 

 
 

mailto:lergun@bankofcanada.ca


 

i 
 

Acknowledgements 

This work was supported by the Economic and Social Research Council (ESRC) in funding 
the Systemic Risk Centre [grant number ES/K002309/1] and the Netherlands Organisation 
for Scientific Research Mozaiek grant [grant number: 017.005.108]. 

 



 

 ii 

Abstract 

Worst-case analysis is used among financial regulators in the wake of the recent financial 
crisis to gauge the tail risk. We provide insight into worst-case analysis and provide 
guidance on how to estimate it. We derive the bias for the non-parametric heavy-tailed 
order statistics and contrast it with the semi-parametric extreme value theory (EVT) 
approach. We find that if the return distribution has a heavy tail, the non-parametric worst-
case analysis, i.e. the minimum of the sample, is always downwards biased and hence is 
overly conservative. Relying on semi-parametric EVT reduces the bias considerably in the 
case of relatively heavy tails. But for the less-heavy tails this relationship is reversed. 
Estimates for a large sample of US stock returns indicate that this pattern in the bias is 
indeed present in financial data. With respect to risk management, this induces an overly 
conservative capital allocation if the worst case is estimated incorrectly. 
 
 
Bank topic: Financial stability 
JEL codes: C01, C14, C58 
 

Résumé 

Depuis la récente crise financière, l’analyse du pire scénario est utilisée par les autorités de 
réglementation du secteur financier pour évaluer le risque extrême. Nous apportons de 
nouvelles perspectives sur cette méthode et sur l’estimation de la valeur extrême qui en 
découle. Nous calculons le biais des estimateurs d’ordre non paramétrique de la queue de 
distribution et le comparons au biais associé à la méthode semi-paramétrique de la théorie 
des valeurs extrêmes (TVE). Quand la distribution des rendements a une queue épaisse, 
nous trouvons que la valeur minimum de l’échantillon — c’est-à-dire l’estimateur issu de 
l’analyse du pire scénario – est très modérée dans la mesure où elle surestime toujours le 
risque. Dans le cas des distributions à queues relativement épaisses, le biais se réduit 
substantiellement grâce à l’estimateur semi-paramétrique résultant de la TVE. Pour les 
queues moins épaisses, la relation s’inverse. Les estimations tirées d’un large échantillon 
du rendement d’actions du marché américain révèlent en effet la présence d’un 
comportement semblable dans les données financières. Sur le plan de la gestion du risque, 
ce résultat se traduit par une allocation très prudente des capitaux si le pire scénario est 
incorrectement estimé. 
 

Sujet : Stabilité financière  
Codes JEL : C01, C14, C58 
 

 
 



Non-technical Summary

Worst-case analysis studies the worst expected outcome over a predetermined
time length, with a typical question: What is the worst daily market outcome
in 10 years? This type of analysis is increasingly common since the recent
financial crisis. Much of the bank stress testing scenario production is based
on the worst observed historical event (BIS, 2017 and EIOPA, 2014). Others
use it as a value-at-risk metric. In spite of its increasing importance, little is
known about worst-case analysis and its proper estimation.

There are generally three main approaches for worst-case analysis. The sim-
plest, and the most obvious, is to directly read the object of interest from
the empirical distribution, in our case the historical minima. One can also
assume a model only for the tail of the distribution and not model the center
of the distribution, i.e. a semi-parametric approach. The third approach is
based on specifying a parametric distribution for all outcomes and estimat-
ing its parameters. Of these three alternatives, the last is the only one that
cannot be recommended due to an over-representation of observations from
the center of the distribution.

In this paper we compare the historical minima and semi-parametric ap-
proaches. Both worst-case estimators are biased towards giving larger val-
ues. However, we find the method that produces the smallest bias depends on
how heavy the tail of the distribution is. The semi-parametric approach pro-
duces the smallest bias for very heavy-tailed distributions, and the historical
minima produces the smallest bias for the relatively lighter heavy-tailed dis-
tributions. We confirm this relationship for the individual securities traded
on the US stock exchanges. Choosing the inappropriate estimator can lead
to an overly conservative capital allocation.
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1 Introduction

Worst-case analysis studies the worst expected outcome over a predetermined
time length, with a typical question: What is the worst daily market outcome
in 10 years or 2,500 days? This type of analysis is increasingly common
due to the recent financial crises. Much of the bank stress testing scenario
production is based on the worst observed historical event (BIS, 2017 and
EIOPA, 2014). Others use it as a value-at-risk (VaR) metric.1 In spite of
its increasing importance, little is known about worst-case analysis and its
proper estimation.

An inappropriate measurement of this risk metric can lead to a misallocation
of capital. In this paper we compare the non-parametric and semi-parametric
approaches. Both worst-case estimators are downwards biased for the left tail
quantile. The method that produces the smallest bias depends on the heav-
iness of the tail. The semi-parametric approach is first-moment stochastic
dominant for very heavy-tailed distributions, and the non-parametric ap-
proach is first-moment stochastic dominant for relatively lighter heavy-tailed
distributions. Given the second-moment stochastic dominance of the semi-
parametric approach, there is a strict preference for the semi-parametric
estimator in the case of the more heavy-tailed distributions. We confirm
this is the relevant case for the individual securities traded on the US stock
exchanges.

There are generally three main approaches to worst-case analysis. The sim-
plest is to directly read the object of interest from the empirical distribution,
in our case the historical minima. This is the non-parametric approach (NP).
One can also assume a model only for the tail of the distribution and not
model the center of the distribution; this constitutes the semi-parametric
approach (SP). The third approach is based on specifying a fully parametric
distribution for all outcomes and estimating its parameters. Of these three
alternatives, the last is the only one that is not recommended. The reason is
that the estimates are dominated by the center of the distribution, so that
the fit is optimal for a typical observation, but not the lowest. Therefore,
such an approach would in most cases deliver less precise and more uncertain
worst-case estimates than either the NP or the SP approach. We therefore
focus on NP and the SP estimators and provide guidance on the appropriate
use of either.

The NP quantile estimator is the maximum sample ordered observation, i.e.

1Danielsson (2011) gives a comprehensive overview of the different methodologies and
issues regarding VaR estimation.
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the most extreme order statistic. Through the use of extreme value the-
ory (EVT) and under the assumption that the underlying distribution is
heavy-tailed, Leadbetter, Lindgren and Rootzén (1983) derive the asymp-
totic distribution of the order statistics. Our focus is on the most extreme
observation. Using the asymptotic distribution of the extreme order statis-
tics we derive the bias and the variance of the extreme order statistics. The
NP estimator is downwards biased and increases in the heaviness of the tail.
The variance of the NP approach is large and does not exist for distributions
with a tail index lower than or equal to 2.

The SP estimator for the class of heavy-tailed distribution is the Weissman
(1978) estimator for the most extreme quantiles. The SP estimator is de-
rived by inverting the first-order Taylor expansion at infinity of the CDF for
heavy-tailed distributions. This inversion necessitates the estimation of the
tail index. The tail index is estimated by means of the Hill (1975) estimator.
The statistical properties of the tail index estimate dominate the properties of
Weissman’s quantile estimator. Goldie and Smith (1987) provide the asymp-
totic distribution of this estimator. The SP estimator is normally distributed
with the bias and variance decreasing in the heaviness of the distribution.
Additionally, the bias and the variance are dependent on the number of order
statistics, t, utilized to estimate the tail index and scaling constant of the
quantile estimator. The bias of the SP estimator is decreasing for t > exp(2).

The literature on the estimation of the extreme quantiles has put forth var-
ious bias-reducing estimators. The bias of the SP estimator can be largely
attributed to the bias in the tail index estimator. Gomes and Pestana (2007),
for instance, proposed an adequate bias-corrected tail index estimator by es-
timating the parameters of the second order in the Taylor expansion of the
tail distribution function. This paper tries to minimize the influence of this
bias, utilizing a distance metric which minimizes the distance between the
empirical and theorized distribution. This approach implicitly penalizes large
deviations in the very extreme part of the tail. It therefore often selects only
a very limited number of order statistics to estimate the Hill estimator and
therefore reduces the influence of this bias.

Many of the empirical applications based on VaR focus on a probability
closer to the center of the distribution. The academic literature has scarcely
focused on the worst case as a risk measure. Ghaoui, Oks, and Oustry (2003)
use the maximum VaR over a random space of probability distributions for
robust portfolio optimization. Zhu and Fukushima (2009) extend their paper
by including expected shortfall as the basis of their risk measure. Along this
line, Kerkhof, Melenberg, and Schumacher (2010) use the worst case across
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classes of models to incorporate model risk in capital reserve requirements.

The contribution of this paper lies in the comparison of the biases of the
two worst-case estimators. We show that the choice of estimator with the
lowest bias hinges on the tail index. For relatively heavy-tailed distributions,
the SP estimator has the smallest bias. This relationship reverses as the
distribution becomes less heavy-tailed. For example, for the Student-t family
of distributions, the point where the SP bias becomes larger than the NP bias
occurs around the Student-t distribution with 6 degrees of freedom. Given
that the variance of the NP approach is strictly larger than that of the SP
approach, for very heavy-tailed distributed variables the SP approach is the
strictly preferred estimator. Beyond the point where the relative size of
their biases switches, one needs to consider the bias-variance trade-off of the
estimators.

The comparison of the bias puts forth two predictions. First, the difference
between SP and NP, i.e. SP-NP, is an increasing function in the tail index.
Second, this difference is decreasing in t for t > exp(2). To investigate these
predictions, we use the securities return data by the Center for Research in
Security Price (CRSP) to apply the two worst-case estimators. We estimate
for each individual stock the NP and SP estimator. We evaluate the relation-
ship between the difference of the two estimates and the tail estimate and t.
The results from the empirical analysis reveal that for stocks with a heavy-
tailed distribution, the SP estimate is smaller than the NP estimate. This
changes for stocks with a larger estimated tail index, i.e. less heavy tail. The
switching of the relative size of the bias occurs for stocks with a tail index
above 3. We also find that t is negatively related to SP-NP. This shows that
the predicted relationships, with respect to t and α̂, in the relative bias of the
worst-case estimates can also be found in financial return data. Therefore,
the guidelines provided by the comparison of the bias and variance should
be taken into account when choosing the estimator for worst-case analysis.

In the next section we introduce the two quantile estimators and analyze
their bias and variance. In the subsequent section we explore the extent of
the bias in US securities data. The last section concludes.

2 Worst-case Estimators

This paper defines the worst case as the worst potential daily loss over n
number of days. Under the i.i.d. assumption this equates to the daily VaR
at probability level 1/n. Given this approach, we rely on EVT to further
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derive the properties of the SP and NP estimator.

2.1 The non-parametric approach

To derive the bias of the worst observation as a worst-case estimator, we start
with a relatively general approach. We begin by deriving the distribution of
observations in an ordered sample. Suppose one observes some i.i.d. heavy-
tailed random variable Y1, ..., Yn with distribution F , where

lim
s→∞

1− F (sx)

1− F (s)
= xα, α > 0. (1)

The class of distribution functions with heavy tails, like the Student-t, Pareto,
stable distribution or the unconditional distribution of the stationary solution
to a GARCH(1,1) process, is precisely defined in terms of the regular vari-
ation property. The sorted sample, i.e. order statistics, can be represented
as

max (Y1, ..., Yn) = X(1,n) ≥ X(2,n) ≥ · · · ≥ X(n,n) = min (Y1, ..., Yn) .

The distribution of the order statistics can be studied through the number
of exceedances. These follow a binomial distribution:

G(k,n) (x) =
k−1∑
r=0

(
n

r

)
[1− F (x)]r [F (x)]n−r . (2)

Suppose one is interested in the distribution of the maximum realization:

Pr (max (Y1, ..., Yn) < x) = G(1,n) (x) = [F (x)]n . (3)

Similar to the standard central limit theorem for the asymptotic distribution
of the arithmetic mean, Fisher and Tippett (1928) and Gnedenko (1943)
provide a limit theorem for the asymptotic distribution of the maximum, i.e.
EVT.

EVT gives the conditions under which there exist sequences bn and an such
that

lim
n→∞

[F (anx+ bn)]n → G(1,n) (x) ,

where G(1,n) (x) is the Fréchet distribution for heavy-tailed distributions.

Theorem 2.2.2 in Leadbetter, Lindgren, and Rootzén (1983) extends the EVT
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for the maximum to lower order statistics by means of the Poisson property
of the lower order statistics. In particular, the asymptotic distribution of the
kth largest order statistic is

G(k,n) (x)→ G(1,n) (x)
k−1∑
s=0

(
− log

[
G(1,n) (x)

])s
s!

. (4)

From (4) we determine the expectation of the order statistics2

E
[
X(k,n)

]
=

an
[k − 1]!

Γ

[
k − 1

α

]
(5)

and the variance

var
[
X(k,n)

]
=

a2n
[k − 1]!

[
Γ

[
k − 2

α

]
− 1

[k − 1]!
Γ

[
k − 1

α

]2]
. (6)

Here Γ () refers to the gamma function. To determine this expectation for a
specific heavy-tailed distribution, an needs to be chosen appropriately.3 To
find a good approximation, we use the first-order term of the Hall expansion
(Hall and Welsh, 1985):

Pr (Y ≤ −y) = F(−y) = Ay−α[1 +By−β + o(y−β)]. (7)

For the Pareto distribution, F (−y) = Ay−α, we observe that the Hall ex-
pansion perfectly fits the first-order term.4 For the Pareto distribution the

scaling constant an is (An)
1
α , where A is fixed the scale parameter. There-

fore, we can, through the Hall expansion, extract a good approximation of
the expectation of the order statistics of heavy-tailed distributions.

2.2 The semi-parametric approach

To contrast the expectation of the maximum observation, we compare it to
an SP estimator of the worst case. By inverting the first-order expansion

2See Appendix for the derivations.
3For the heavy-tailed distributions, bn = 0.
4All of the standard heavy-tailed distributions satisfy the Hall expansion. This also

applies to the GARCH(1,1) unconditional distribution, but the class by (7) is a bit narrower
than the class defined by (1).
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in (7), using the empirical counterpart of A =
t/n

X(t,n)−αt measured at some

threshold t and F (−y) = k/n, one obtains the SP tail quantile estimator by
Weissman (1978)

x̂
(n−k/n)
SP (t) = X(t,n)

(
t

k

) 1
α̂t

.

For distributions where (7) applies, Goldie and Smith (1987) derive the dis-
tribution of the SP quantile estimator

√
t

log (t/np)

(
x̂
(n−k/n)
SP (t)

x(p)
− 1

)
∼ N

(
−sign (B)√

2βα
,

1

α2

)
, (8)

where B and β are the second-order scale and shape parameters from (7).

2.3 Comparing the non-parametric and semi-parametric
quantile estimators

The two approaches, the NP and the SP, each have their own advantages and
disadvantages. While the NP is much simpler to implement, the SP might be
more accurate because it uses more tail observations in the estimation, and
therefore might result in an estimator with a smaller variance. However, the
SP is dependent on correctly specifying the SP distribution and identifying
a threshold X(t,n).

To shed more light on the use of these two estimators, we compare their bias
at p = 1/n. From (5) and (8) the bias of the two approaches is as follows:(

x̂
(n−1/n)
SP (t)

x(p)
− 1

)
∼− sign (B)√

2βα

log (t)√
t

SP (9)(
x̂
(n−1/n)
NP

x(p)
− 1

)
∼Γ

[
1− 1

α

]
− 1. NP (10)

Expressions (9) and (10) indicate that neither approach is first-moment
stochastic dominant in all circumstances. For the NP estimator, the asymp-
totic bias approaches infinity as α approaches 1. However, as α increases,
the Γ () function decreases rapidly. As α approaches 1, the bias in the SP
estimator is relatively small for moderate values of β and t. This leads to a
crossing point in the bias of the two estimators with respect to α.

Given values of t and β, we define switching point α∗. For α < α∗, the
absolute bias of the SP estimator is smaller than that of the NP estimator.
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When α > α∗, the relationship is reversed. For a fixed t, this relationship
is depicted in Figure 1.5 This figure portrays at which combination of α
and β the bias of the NP worst-case estimator becomes smaller than the SP
approach.

Figure 1: This figure depicts the area where the absolute bias of the semi-parametric
estimator becomes larger than the bias of the order statistic (gray area). The biases of
the estimators are at p = 1/n as in Equation (9) and (10). For this figure we fix t at
exp(2). To the right of the lines, the combination of α and β produces a larger bias for
the semi-parametric approach. The dotted line shows where the boundary shifts to when
the threshold t is doubled to 2exp(2).

In the case of the family of Student-t distributions, β = 2 and α equals the
degrees of freedom for the specific Student-t distribution. From Figure 1, we
read that in the case of the family of Student-t distributions, the switching
of the biases occurs around α∗ ≈ 5. For higher and lower values of t, the α∗

increases. For the family of symmetric stable distributions, the bias is always
smaller for the SP estimator, as β = α and α < 2.

5The bias of SP reaches its maximum at t = exp(2).
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Given the above expectation, determining the variance of the order statistics
is a trivial matter.

var
[
x̂
(n−1/n)
NP

]
=

a2n
[k − 1]!

Γ

[
k − 2

α

]
−
[

an
[k − 1]!

Γ

[
k − 1

α

]]2
(11)

var
[
x̂
(n−1/n)
SP

]
= a2n

1

α2

log (t/np)

t
. (12)

The variance of the NP estimators is strictly larger than that of the SP
estimator. For α ≤ 2, the variance of the NP does not exist. Figure 2
shows that for the relatively heavy-tailed distributions, the NP estimator
has a disproportionally larger variance than the SP estimator. This result,
combined with the comparison of the biases, indicates a strong preference
for the use of the SP approach over the NP approach for very heavy-tailed
distributed variables.6

The comparison of the biases leads to two empirical predictions. First, the
difference between the SP and NP estimator is an increasing function in
α. Second, given that t is above exp(2), the difference is decreasing in the
number of order statistics used in the SP approach. This dictates a negative
relationship between the difference in the biases and t. In the next section
we test these predictions for US stock market data.

3 Empirical Application

Financial institutions use VaR-based risk metrics to assess the risk of assets
they have on their books. The CRSP dataset contains a large cross-section
of daily stock prices for US stocks, the kind of assets financial institutions
typically hold. The large cross-section of stocks allows us to compare a large
number of worst-case estimates for the NP and SP estimators. Therefore,
we are able to determine whether the predicted differences in the bias and
variance of the estimators are also present in financial assets.

3.1 Data

The CRSP database contains individual stock data from 1925-12-31 to 2015-
12-31 for NYSE, AMEX, NASDAQ, and NYSE Arca. In the main analysis,

6Figure 3 in the Appendix depicts the ratio of the MSE of the two worst-case estimators.
The MSE of the two estimators also shows that for the more heavy-tailed distributions
the SP estimator is strictly preferred over the NP estimator.
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Figure 2: This figure displays the variance ratio of the semi-parametric and the non-
parametric worst-case estimator as a function of α. The variance ratio is given by
σ2
NP/(σ2

SP+σ2
NP ). For the variance of the semi-parametric estimator, we choose t = exp(2).

n = 1, 986 stocks are used. For every stock that is included in the analysis,
we require that it be traded on one of the four exchanges during the whole
measurement period, which is between 01-01-1995 and 01-01-2011.7 The
fixed time period is to ensure that the sample size is large enough for the

7In the CRSP database, exchange code -2, -1, 0 indicates that a stock was not traded
on one of the four exchanges and thus no price data is recorded for these days. Stocks
that contain exchange code -2, -1, 0 are not included in the analysis. We only use stocks
with share code 10 and 11.
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EVT estimation.8 Furthermore, this ensures that the empirical probability
at the largest order statistic is the same across different securities. The choice
of the specific sample period is to ensure a large cross-sectional sample. We
also require the average price of the stock to be above 5 dollars over the
measurement period.

3.2 Empirical analysis

The SP estimator requires the estimation of α and t. For this empirical
application we use the Hill estimator to estimate the tail exponent α. This
estimator depends on a selection of a high order statistic as a threshold,
i.e. X(t,n). This nuisance statistic is obtained by the KS-distance metric
developed in Danielsson et al. (2016).9 The KS-distance metric is focused
on picking t to fit the quantile of distribution. Danielsson et al. (2016) show
that alternative approaches, e.g. Danielsson et al. (2001) and Drees and
Kaufmann (1998), underperform significantly, especially when it comes to
the quantiles deep in the tail of the distribution.10

Given the estimate of the tail index and nuisance statistic, the quantile can
be estimated semi-parametrically for every individual stock. We compare the
difference between the previously introduced worst-case estimators for each
stock at the 1/n quantile. The difference,

SPi −NPi = X
(t,n)
i (ti)

1

α̂it −X(1,n)
i , (13)

for stock i has an estimate of the tail index in the SP quantile estimator. To
look at the initial relationship between the bias in the two estimators, we
sort the individual stocks by their estimated αi. Based on α̂i, the stocks are
assigned to five different baskets with a range of {α̂i < 2, 2 < α̂i ≤ 3, 3 <
α̂i ≤ 4, 4 < α̂i ≤ 5, 5 ≤ α̂i}. Table 1 reports the aggregate statistics of the
difference in the quantile estimators, SPi −NPi, for each basket.

The theoretical results stipulate that the relative size of the bias changes as a
function of α̂. Table 1 portrays this pattern for the left tail of the securities in

8The size of the time series for each individual firm is 4,030 days.
9The KS-distance metric chooses the threshold which minimizes the maximum quantile

distance between the empirical and Pareto distribution. This approach is further explained
in the Appendix.

10We also use a fixed number of order statistics, t, for each stock and obtain similar
results. See Table 5 in the Appendix.
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Table 1: SPi −NPi sorted by α̂i

All α̂i < 2 2 ≤ α̂i < 3 3 ≤ α̂i < 4 4 ≤ α̂i < 5 α̂i ≥ 5

Mean 0.041 -4.234 -0.909 0.369 1.197 1.861
Median 0.701 -5.749 -0.754 0.701 1.337 1.865
St. Dev. 2.235 5.664 2.926 1.303 1.154 0.604

Q0.01 -7.708 -9.186 -10.472 -3.087 -1.768 0.491
Q0.99 3.745 3.567 4.650 2.520 3.480 2.921

Rank Sum test 0.000 0.250 0.397 0.000 0.000 0.000
N 888 4 329 392 144 19

This table reports summary statistics for the difference between the semi-parametric
quantile estimator and the largest order statistic, SPi − NPi, for the left tail of US
stocks. For the SPi estimator, αi is estimated with the Hill estimator. To determine the
number of order statistics for the Hill estimator, we use the KS-distance metric described
in Danielsson et al. (2016). Column 1 reports the summary statistics of SP-NP for all
stocks. The second column reports the summary statistics of the difference for the stock
with α̂i ≤ 2. Columns 3 through 6 report the summary statistics for the stocks with the
corresponding α̂i. The first three rows report the mean, median and standard deviation
of the corresponding baskets. Q0.01 and Q0.99 report the 1% and 99% quantile for the
distribution of SPi − NPi for the different basket of stocks. The next row reports the
Wilcoxon signed-rank test p-value, testing non-parametrically for a difference in mean
rank. N is the number of stocks in each basket. The individual stock data is from the
CRSP dataset. The securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE
Arca exchanges over the period from 01-01-1995 to 01-01-2011. To be included, the
average stock price over the sample needs to be above 5 dollars.

the CRSP database.11 For these stocks the switch point is around α̂∗ = 3. It
is difficult to determine the exact switch point for real data. This is because
the second order parameter β, in the bias of the SP quantile estimator, is
hard to estimate precisely. In addition, the Hill estimator is generally biased
(Hall, 1982). This makes it difficult to determine the exact switch point. It
is encouraging that we see a monotonic decline in the average difference as
α̂ increases. This is supportive of the result that the bias of the EVT-based
worst-case estimator overtakes the bias of the NP quantile estimator. The
results for the difference in the median of each basket convey the same story.

The 1% and 99% quantiles of the buckets show that although the mean and
median showcase a switch between the severity of the bias of the quantile
estimators, this might be statistically insignificant. Therefore, we employ
the Wilcoxon signed-rank sum test to test for the difference in size of SPi
and NPi estimates. We find that for the stocks with a lighter heavy-tailed
return distribution the estimates are significantly different from one another.

11See Table 3 in the Appendix for the results for the right tail of the distribution for
the individual stocks.
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The empirical distribution of the SP quantile estimates tends to have larger
values than the distribution of the NP quantile estimates. This is significant
for α̂ ≤ 2 at a 5% significance level. This is due to the small sample and
the fact that the variance of both estimators is relatively large for low values
of α. For stocks with α ≈ α∗, the test shows that there is no significant
difference in the size of the estimates.

Table 2: CRSP data

SP-NP
Left tail Right tail

α̂i 1.261∗∗∗ 0.724∗∗∗ 1.808∗∗∗ 1.032∗∗∗

(0.116) (0.106) (0.178) (0.143)

ti/n ∗ 100 −0.336∗∗∗ −0.222∗∗∗ −0.417∗∗∗ −0.263∗∗∗

(0.040) (0.044) (0.051) (0.052)

Constant −4.135∗∗∗ 0.911∗∗∗ −1.777∗∗∗ −5.929∗∗∗ 1.156∗∗∗ −2.651∗∗∗

(0.433) (0.092) (0.436) (0.640) (0.121) (0.552)

Observations 864 864 864 867 867 867
R2 0.174 0.190 0.226 0.216 0.227 0.266

This table reports the regression results for the difference between the semi-parametric
quantile estimator and the largest order statistic, SPi −NPi, for US stocks. For the SP
estimator, αi is estimated with the Hill estimator. To determine the number of order
statistics for the Hill estimator we use the KS-distance metric described in Danielsson
et al. (2016). Here ti/n ∗ 100 is the percentage of order statistics from the total sample
to estimate the Hill estimate. We include only stocks with ti > exp(2). The individual
stock data is from the CRSP dataset. The securities need to be traded on NYSE, AMEX,
NASDAQ, and NYSE Arca exchanges over the period from 01-01-1995 to 01-01-2011. To
be included, the average stock price over the sample needs to be above 5 dollars.

Table 2 reports the results of regressing SPi − NPi on their respective tail
index and nuisance parameter t. The signs of the parameter estimates are as
prescribed by the comparisons of the biases in Section 2.3. The coefficient of
α̂ in the first column shows that an increase of the tail index by 1 increases
the difference in the worst-case return estimates by 1.261 percentage points.
The difference switches from negative to positive around a tail index of 3.3.
When including the fraction of order statistics utilized in the estimation of
the SP approach, the coefficient is as predicted. An increase in the number
of order statistics past t = exp(2) decreases the bias in the SP approach and
therefore decreases the difference in the worst-case estimates. Both α̂ and t̂
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have a significant effect on the difference in estimates. This holds for both
the left and right tails of the distribution.12

For the regressions presented in Table 2 we use α̂i instead of the true tail
index. The measurement error in α̂i could be correlated with SPi−NPi. To
address this issue we use an instrumental variable approach. In a two-stage
least-square regression, we use kurtosis, skewness and the standard deviation
of the empirical distribution as instruments for the tail index.13 Table 4, in
the Appendix, shows that the higher moments of the return distribution
explain a large portion of the variation in α̂. The second-stage regression
shows that the relationship between the bias and the tail index is not driven
by the measurement error in α̂i.

12The restricted sample period in Table 2 is chosen to maximize the cross-section of
returns. To show that these results are not sample-specific, Figure 4 in the Appendix
depicts the coefficients of the third and sixth regression model for a 10-year sample period
each year between 1975 to 2015.

13We have excluded the top and bottom 5% of the sample to prevent the tail observations
from influencing the instruments. Results where the instruments are based on the full
sample are quantitatively equivalent to the censored sample.
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4 Conclusion

With worst-case analysis becoming increasingly common in both policymak-
ing and practice, it is of interest to evaluate the qualities of common methods
for such applications. The simplest and perhaps the most common way is to
estimate the worst case by taking the most negative outcome in the historical
sample. Alternatively, one could estimate the lower tail of the distribution
by semi-parametric methods and use that to calculate the worst case.

Our overall conclusion is that either method is best, depending on how heavy
the tails are and their specific shape. Generally, for the heaviest, the semi-
parametric approach is best, and as it thins, the historical minima eventually
becomes better. This is further reinforced by the strictly higher variance of
the non-parametric estimator compared to the semi-parametric estimator.
These results are further confirmed in US stock market data. Individual
stocks with a relatively heavy tail have on average a lower semi-parametric
worst-case estimate. This relationship is reversed for stocks with a thinner
heavy tail.
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A Expectation and Variance

Given the CDF for the lower order statistics,

G(k,n) (x)→ G(1,n) (x)
k−1∑
s=0

(
− log

[
G(1,n) (x)

])s
s!

, (14)

where G(k,n) (x) is the CDF of the kth order statistic. For the domain of at-
traction of the heavy-tailed distributions, G(1,n) (x) is the CDF of the Frechet
distribution. Therefore, we have

G(k,n) (x) = e−a
α
nx

−α
k−1∑
s=0

(aαnx
−α)

s

s!
.

For the density we find

g(k,n) (x) = αaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
k−1

[k − 1]!

]
.

Given the density, determining the expectation of the kth order statistic is
straightforward:

E [Xn−k+1,n] =

∫ ∞
0

xαaαnx
−α−1e−a

α
nx

−α

[
(aαnx

−α)
k−1

[k − 1]!

]
dx.

Applying a change of variable y = aαnx
−α we get

E [Xn−k+1,n] =
an
k − 1

∫ ∞
0

y
1
αyk−1e−ydy

=
an

[k − 1]!
Γ

[
k − 1

α

]
.

Given the above expectation, determining the variance of the order statistics
is a trivial matter:

var [Xn−k+1,n] = E
[
X2
n−k+1,n

]
− E [Xn−k+1,n]2

=
a2n

[k − 1]!
Γ

[
k − 2

α

]
−
[

an
[k − 1]!

Γ

[
k − 1

α

]]2
(15)
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A.1 KS-distance metric

The purpose of the KS-distance metric is to find the optimal number of order
statistics to estimate the tail index with the Hill estimator. This method
achieves this by minimizing the distance between the empirical distribution
and Pareto distribution over the quantile dimension. The starting point for
locating t∗ is the first-order term of the power expansion:

Pr (X ≤ x) = F(x) = 1− Ax−α[1 + o(1)]. (16)

This function is identical to a Pareto distribution if the higher-order terms
are ignored. By inverting (16), we get the quantile function

x =

(
Pr (X ≥ x)

A

) 1
−α

. (17)

To turn the quantile function into an estimator, the empirical probability
k/n is substituted for Pr (X ≥ x). The A is replaced with the estimator
t
n

(Xn−t+1,n)α and α is estimated by the Hill estimator. The quantile is thus
estimated by

q (k, t) =

(
Pr (X > x)

A

) 1
−α

=

[
t

k
(xn−t+1,n)α̂t

] 1
α̂t

. (18)

Here k is the (n− k)th order statistic X1,n ≤ X2,n ≤ ... ≤ Xn−k,n ≤ ... ≤ Xn,n

such that k/n comes closest to the probability level Pr (X > x).

Given the quantile estimator, the empirical quantile and the penalty function,
we get

t∗ = arg inf
t

[
sup
k
|xn−k,n − q (k, t)|

]
, for k = 1, ..., T, (19)

where T > t is the region over which the KS-distance metric is measured.
Here xn−k,n is the empirical quantile and q (k, t) is the estimated quantile
from (18). This is done for different levels of t. The t, which produces the
smallest maximum horizontal deviation along all the tail observations until
T , is the t∗ for the Hill estimator.
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Figure 3: This figure displays the MSE ratio of the semi-parametric and the non-
parametric worst-case estimator as a function of α. From (8), (10), (15) and (12) to con-
struct the MSE = V ariance+Bais2. The MSE ratio is given by MSENP/(MSESP+MSENP ).
For the MSE of the semi-parametric estimator we choose t = exp(2) and β = 2.
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Table 3: CRSP data

All α̂i < 2 2 ≤ α̂i < 3 3 ≤ α̂i < 4 4 ≤ α̂i < 5 α̂i ≥ 5

Mean -0.028 -6.597 -1.224 0.648 1.518 2.203
Median 0.832 -4.382 -1.125 1.006 1.464 2.106
St. Dev. 2.798 6.893 2.902 1.567 1.458 0.995

Q0.01 -7.973 -27.236 -8.216 -4.072 -1.689 0.334
Q0.99 4.000 -0.051 4.311 3.321 4.257 4.097

Rank Sum test 0.001 0.000 0.115 0.000 0.000 0.000
N 884 22 315 383 151 13

This table reports summary statistics for the difference between the semi-parametric
quantile estimator and the largest order statistic, SPi − NPi, for the right tail of US
stocks. For the SP estimator, α is estimated with the Hill estimator. To determine the
number of order statistics for the Hill estimator we use the KS-distance metric described
in Danielsson et al. (2016). Column 1 reports the summary statistics of SP-NP for all
stocks. The second column reports the summary statistics of the difference for the stock
with α̂ ≤ 2. Columns 3 through 6 report the summary statistics for the stocks with the
corresponding α̂. The first three rows report the mean, median and standard deviation
of the corresponding basket. Q0.01 and Q0.99 report the 1% and 99% quantile for the
distribution of SPi − NPi for the different baskets of stocks. The next row reports the
Wilcoxon signed-rank test p-value, testing non-parametrically for a difference in mean
rank. N is the number of stocks in each basket. The individual stock data is from the
CRSP dataset. The securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE
Arca exchanges over the period from 01-01-1995 to 01-01-2011. To be included, the
average stock price over the sample needs to be above 5 dollars.
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Table 4: IV Regression

SP-NP

Left tail Right tail
Stage 2 Stage 1 Stage 2 Stage 1

α̂ifitted 1.566∗∗∗ 0.824∗∗

(0.269) (0.401)

ti/n ∗ 100 −0.091∗ −0.092∗∗∗ −0.294∗∗∗ −0.102∗∗∗

(0.048) (0.008) (0.065) (0.007)

Kurtosis −0.014∗∗∗ −0.004∗∗∗

(0.001) (0.001)

Skewness 0.291∗∗∗ −0.104∗∗∗

(0.031) (0.026)

St. Dev. 11.502∗∗∗ 25.239∗∗∗

(2.640) (2.823)

Constant −4.902∗∗∗ 3.475∗∗∗ −1.882 3.147∗∗∗

(1.004) (0.064) (1.482) (0.071)

Observations 864 864 867 867
R2 0.221 0.492 0.231 0.526
F Statistic 122.182∗∗∗ 208.147∗∗∗ 129.524∗∗∗ 239.171∗∗∗

This table reports the regression results of the two-stage least-square estimation to in-
strument the estimated tail index, for US stocks. In the first stage we estimate
α̂i = b0+b1∗Kurtosisi+b2∗Skewnessi+b3∗StDevi+b4∗(ti/n∗100)+εi. Here kurtosis,
skewness and standard deviation are the moments of the return distribution of stock i. We
exclude the top and bottom 5% of the observations in the measurement of the higher mo-
ments. In the second stage we estimate SPi−NPi = c0+c1∗α̂ifitted+c2∗(ti/n∗100)+νi.

For the SP estimator, αi is estimated with the Hill estimator. To determine the number of
order statistics for the Hill estimator we use the KS-distance metric described in Daniels-
son et al. (2016). Here ti/n∗100 is the percentage of order statistics from the total sample
to estimate the Hill estimate. We include only stocks with ti > e2. The individual stock
data is from the CRSP dataset. The securities need to be traded on NYSE, AMEX, NAS-
DAQ, and NYSE Arca exchanges over the period from 01-01-1995 to 01-01-2011. To be
included, the average stock price over the sample needs to be above 5 dollars.
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Table 5: CRSP data: Fixed threshold

SP-NP
Left tail Right tail

α̂i 0.481∗∗∗ 0.849∗∗∗

(0.092) (0.138)

Constant −4.352∗∗∗ −6.271∗∗∗

(0.405) (0.594)

Observations 889 889
R2 0.030 0.041

This table reports the regression results for the difference between the semi-parametric
quantile estimator and the largest order statistic, SPi −NPi, for US stocks. For the SP
estimator, αi is estimated with the Hill estimator. The number of order statistics is fixed
at 0.25% of the total sample. The individual stock data is from the CRSP dataset. The
securities need to be traded on NYSE, AMEX, NASDAQ, and NYSE Arca exchanges over
the period from 01-01-1995 to 01-01-2011. To be included, the average stock price over
the sample needs to be above 5 dollars.
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Figure 4: These figures depict the stability of the parameter estimates of Table 2. The
solid lines are the parameter estimates over time and the dotted lines are their respective
95% error bounds. The two top and two bottom panels show the results for the left tail
and right tail of the distribution, respectively. The left figures depict the results for the
coefficient estimates α̂i and the right figures show the coefficient estimates ti/n ∗ 100. The
regression equation, SPi − NPi = c + a α̂i + b ti/n ∗ 100 + ei, is re-estimated each year.
In the re-estimation, the data from the preceding 10 years are used to proxy SPi −NPi,
α̂i, and ti/n. We include only stocks with ti > exp(2). The individual stock data is from
the CRSP dataset. The securities need to be traded on NYSE, AMEX, NASDAQ, and
NYSE Arca exchanges over the period from 01-01-1965 to 01-01-2015. To be included, the
average stock price over the sample needs to be above 5 dollars.
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