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Summary This paper considers the adaptability of estimation methods for binary response
panel data models to multiple fixed effects. It is motivated by the gravity equation used in
international trade, where important papers use binary response models with fixed effects
for both importing and exporting countries. Econometric theory has mostly focused on the
estimation of single fixed effects models. This paper investigates whether existing methods
can be modified to eliminate multiple fixed effects for two specific models in which the
incidental parameter problem has already been solved in the presence of a single fixed effect.
We find that it is possible to generalize the conditional maximum likelihood approach to
include two fixed effects for the logit. Monte Carlo simulations show that the conditional logit
estimator presented in this paper is less biased than other logit estimators without sacrificing
on precision. This superiority is emphasized in small samples. An application to trade data
using the logit estimator further highlights the importance of properly accounting for two
fixed effects.
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1. INTRODUCTION

Fixed effects have long been recognized as a key element of econometric modelling of panel data,
and a significant literature now exists in econometric theory on the inclusion of fixed effects in
both linear and nonlinear panel data models. Although econometric theory has largely focused
on single fixed effects estimators, empirical studies often include multiple fixed effects. The
present paper attempts to bridge part of this gap by looking at the very popular logit model.
The empirical relevance is demonstrated using Monte Carlo simulations and an application to
international trade data.

This paper was motivated by the fixed effects gravity equation models used in international
trade. This area of economics is concerned with the estimation of the factors conducive to
trade between countries. The importance of using fixed effects to control for country-specific
characteristics has been emphasized in an influential paper by Anderson and Van Wincoop
(2003). They called these characteristics multilateral resistance factors, and they were meant
to capture the fact that some countries simply trade more, or less. Many subsequent papers
contributing to the gravity equation literature have included fixed effects in their estimation
strategies. For example, Helpman et al. (2008) – hereafter referred to as HMR – and Santos Silva
and Tenreyro (2006) estimate nonlinear panel data models with fixed effects for both importing
and exporting countries. The first paper is a prominent study in the particular strand of the gravity
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equation literature that uses binary response panel data models to estimate the probability of
positive trade.

This paper investigates whether existing methods for eliminating a single fixed effect can
be modified to eliminate multiple fixed effects. This is relevant not only for data consisting of
country pairs, but also for a number of other areas of empirical microeconomics. For example, in
labour economics, influential papers, such as Abowd et al. (1999) use matched firm–employee
data to study wage determinants of French workers. For such data sets, one might want to allow
for both firm and worker fixed effects.1 In a more recent paper, Kirabo Jackson (2013) studies
the effect of match quality between employee and employer on productivity by using matched
student–teacher–school data. Part of his methodology relies on a logit with both teacher and
school fixed effects. These types of models are also used in the network literature. For example,
Graham (2016) uses a fixed effect approach to develop similar estimators to the one presented
here, in order to leave the joint distribution of the unobserved degree heterogeneity and observed
agent attributes unrestricted.

Fixed effects do not generally cause any problem in static linear models, as they can easily
be differenced out to allow consistent estimation of the relevant parameters. However, when
considering nonlinear panel data models, we encounter the well-known incidental parameter
problem identified by Neyman and Scott (1948).2 This has motivated a rich literature on the
estimation of single fixed effects nonlinear panel data models. The first model considered in
the literature is the logit model studied in Rasch (1960, 1961). Manski (1987) generalized this
to develop a conditional maximum score estimator for binary response models that remains
consistent under weak assumptions on the distribution of the errors. These solutions to the
incidental parameter problem, like those introduced in this paper, are model-specific.

With a more general approach to the problem, Hahn and Newey (2004) show that when n and
T grow at the same rate, the fixed effects estimator is asymptotically biased and the asymptotic
confidence intervals are wrong. They suggest two bias correction methods – the panel jackknife
and the analytical bias correction – for the case of a single fixed effect. Also working on a
general method, Arellano and Bonhomme (2009) suggest bias-reducing weighting schemes that
can produce asymptotically valid confidence intervals when N and T grow at the same rate. In
addition, Bonhomme (2012) proposes a systematic approach encompassing all nonlinear panel
data models. He constructs moment restrictions on the parameters of interest that are free of the
individual effects (once again, only one effect). This method applies to models with continuous
dependent variables and is consistent for fixed T . The continuity requirement would exclude
logit models in general and the example studied in Section 3 of the present paper in particular, for
obvious reasons. Moreover, the second restriction would be problematic for the gravity literature
as it generally has the T and N dimensions grow simultaneously.

Although there is still limited work in econometric theory for nonlinear panel data models
involving multiple fixed effects, this paper is part of a growing literature on this topic. Fernandez-
Val and Weidner (2016) adapt the analytical and jackknife bias correction methods introduced
in Hahn and Newey (2004) to nonlinear models with additive or interactive individual and
time effects. Their approach allows them to cover a broad class of popular models but does

1 Other authors contributing to that literature, such as Postel-Vinay and Robin (2002), have raised questions concerning
the validity of the fixed effects estimation with these types of data and have found alternative ways to allow for worker
and employer heterogeneity.

2 The incidental parameter problem refers to the fact that in nonlinear models with a fixed number of observations for
each individual, the bias in the estimation of the fixed effects contaminates the estimates of the parameters of interest.
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not completely eliminate the asymptotic bias and is limited to large-T panels. In a recent
paper, Jochmans (2016) uses some of the results presented in an earlier version of this paper –
Charbonneau (2013) – and develops the asymptotic properties of GMM estimators for models
with two-way multiplicative fixed effects.

The paper proceeds as follows. First, we describe the estimation approach developed in the
literature for one fixed effect in a logit model and then we try to generalize it to two. We find
that we can adapt the conditional maximum likelihood to estimate a logit with two fixed effects.
In general, this conditioning method is analogous to the difference-in-differences estimator used
in linear models. We then proceed to show the relevance of appropriately dealing with two fixed
effects in binary response models using the logit estimator presented in this paper. To accomplish
that, we carry out Monte Carlo simulations (presented in the online Appendix), and we use data
on trade flows between countries to test the logit estimator on the gravity equation.

Given the large number of empirical applications using multiple fixed effects and the general
popularity of binary response models, this method has broad applicability. Furthermore, we find
that appropriately controlling for multiple fixed effects has a substantial effect on the estimated
parameters of interest relative to models without fixed effects or models inappropriately
controlling for fixed effects.

2. MULTIPLE FIXED EFFECTS IN A LOGIT MODEL

The binary response model we consider is the simple and well-documented logit model. There is
a well-known application of the conditional maximum likelihood ‘trick’ that allows us to solve
the incidental parameter problem in a logit in the presence of one fixed effect. As we will see,
it is possible to generalize this method to include two fixed effects. We begin by presenting the
original solution, following somewhat closely the exposition of Arellano and Honoré (2001),
before moving on to two fixed effects.

For T = 2, suppose that we have observations generated by

yit = 1{x ′
itβ + αi + εit ≥ 0} i = 1, . . . , n,

where for all i and t the εit are independent and have a logistic distribution conditional on x and
the individual fixed effect α. This implies that we can express the following probability:

Pr(yi1 = 1 | xi1, xi2, αi) = exp(x ′
i1β + αi)

1 + exp(x ′
i1β + αi)

. (2.1)

It is then easy to show that the conditional likelihood will eliminate the fixed effect such that

Pr(yi1 = 1 | yi1 + yi2 = 1, xi1, xi2, αi)

= Pr(yi1 = 1 | xi1, xi2, αi)Pr(yi2 = 0 | xi1, xi2, αi)

Pr(yi1 = 1, yi2 = 0 | xi1, xi2, αi) + Pr(yi1 = 0, yi2 = 1 | xi1, xi2, αi)

= exp(xi1 − xi2)′β
1 + exp(xi1 − xi2)′β

. (2.2)

We can then find an estimator for the parameter β by applying this function to all pairs of
observations for a given individual, and for all individuals. This can be generalized to the
case where T > 2, and this is easy enough to calculate. Note that we are conditioning on
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yi1 + yi2 = 1, which means that we are using the information contained in pairs of observations
where the binary indicator changed. This approach to eliminate the fixed effects is also the one
used in the maximum score estimator of Manski (1987), which we analyse in the Appendix. It is
possible to obtain a likelihood function when T > 2, by conditioning on

∑T
t=1 yit to obtain the

conditional distribution

P
(
yi1, . . . , yit |

T∑
t=1

yit, xi1, . . . , xit, αi

)
= exp(

∑T
t=1 yitx

′
itβ)∑

(d1,...,dt )∈B exp(
∑T

t=1 dtx
′
itβ)

, (2.3)

where B is the set of all sequences of zeros and ones that have
∑T

t=1 dit = ∑T
t=1 yit; see Arellano

and Honoré (2001). Note that this implies that
∑T

t=1 yit is a sufficient statistic for αi .
We now show that a similar approach can be used in the case of two fixed effects in

a logit model and we provide an analogous result. Suppose that the observations are now
given by

yij = 1{x ′
ijβ + μi + αj + εij ≥ 0} i = 1, . . . , n, j = 1, . . . , n, (2.4)

where μi and αj are the fixed effects and εij follows a logistic distribution.3 Then, by
applying the method used above to eliminate one fixed effect, we can write the following
probabilities:4

Pr(ylj = 1 | x, μ, α, ylj + ylk = 1) = exp((xlj − xlk)′β + αj − αk)

1 + exp((xlj − xlk)′β + αj − αk)
(2.5)

and

Pr(yij = 1 | x, μ, α, yij + yik = 1) = exp((xij − xik)′β + αj − αk)

1 + exp((xij − xik)′β + αj − αk)
. (2.6)

As can be seen, the two previous equations no longer depend on the μ fixed effects. However,
they are still expressed in terms of α. We now try to find a conditional probability that does not
depend on the latter. First, we notice that (2.5) and (2.6) are like a logit with (xij − xik) as an
explanatory variable and (αj − αk) as a fixed effect. We can therefore apply the trick a second
time; hence, we compare it to another pair of observations with the same ‘fixed effect’. Using
both (2.5) and (2.6), and defining

c ≡ {ylj + ylk = 1, yij + yik = 1},
we can now write the following conditional probability:

Pr(ylj = 1 | x, μ, α, ylj + ylk = 1, yij + yik = 1, yij + ylj = 1)

= Pr(ylj = 1, yij + ylj = 1 | x, μ, α, c)

Pr(yij + ylj = 1 | x, μ, α, c)

= Pr(ylj = 1 | x, μ, α, c)Pr(yij = 0 | x, μ, α, c)

Pr(ylj = 1, yij = 0 | x, μ, α, c) + Pr(ylj = 0, yij = 1 | x, μ, α, c)

3 To remain consistent with the gravity model that motivated this paper and that is used in the application in Section 3,
we illustrate our approach for the case where both dimensions of the panel are equal, or T = n. Note, however, that the
method does not rely on this equality nor does it require a large-T panel.

4 Throughout the paper, x refers to the vector of all x.
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= exp((xlj − xlk)′β + αj − αk)

exp((xlj − xlk)′β + αj − αk) + exp((xij − xik)′β + αj − αk)

= exp(((xlj − xlk) − (xij − xik))′β)

1 + exp(((xlj − xlk) − (xij − xik)′β)
. (2.7)

The probability no longer depends on the fixed effects, hence allowing us to solve the incidental
parameter problem in the presence of two fixed effects. Indeed, we could now write a conditional
maximum likelihood function or apply the last expression to all quadruples of observations, as
with one fixed effect. Because the latter is easier to implement, the function to maximize is given
by

n∑
i=1

n∑
j=1

∑
l,k∈Zij

log
( exp(((xlj − xlk) − (xij − xik))′β)

1 + exp(((xlj − xlk) − (xij − xik))′β)

)
, (2.8)

where Zij is the set of all the potential k and l that satisfy ylj + ylk = 1, yij + yik = 1, yij + ylj = 1
for the pair ij.5

In the context of epidemiological studies, Hirji et al. (1987) show that a similar recursive
conditioning can be used to eliminate what they call nuisance parameters and speed-up
computations. The nuisance parameters that they consider are not fixed effects and do not relate
to the incidental parameters problem; they are simply normal covariates (like the x variables in
our model) that one needs to control for but for which the effect on the dependent variable is not
of interest (e.g. the constant).

Note that the possibility of solving the incidental parameter problem for one fixed effect does
not guarantee that it can be done for two or more. For instance, despite its similarities with the
logit, Manski’s maximum score estimator cannot be adapted to the case of two fixed effects (see
the Appendix). Fundamentally, the maximum score estimator fails in the presence of multiple
fixed effects because it does not have a recursive structure. The logit can accommodate two fixed
effects because using the known method once to deal with the first fixed effect gives us another
logit, therefore allowing a second application of that method. This does not hold for Manski’s
maximum score estimator.

To assess the accuracy of this two fixed effects logit estimator and to compare it with
other logit estimators, we ran Monte Carlo simulations. The results are presented in the online
Appendix. In short, these Monte Carlo simulations confirm that the logit estimator presented in
this paper is less biased than, as precise as and more robust to different fixed effects than other
logit estimators. Moreover, standard errors based on this estimator have the correct size. We now
move on to apply this estimator to trade data.

5 A conditional maximum likelihood function would be analogous to (2.3). The sufficient statistics for μi and αj would
then be

∑n
j=1 yij and

∑n
i=1 yij. As emphasized in Arellano and Honoré (2001), it would be computationally burdensome

to calculate the conditional maximum likelihood because of the large number of terms in the denominator, which is even
larger in the case of two fixed effects. Therefore, similarly to the one fixed effect case, we apply (2.8).
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3. APPLICATION: THE GRAVITY EQUATION AND THE EXTENSIVE
MARGINS OF TRADE

Understanding how different trade barriers influence trade flows is key when one wants to
study the impact of distance, trade agreements and other trade frictions. To do that, economists
have been using the gravity equation for over 50 years. As Bernard et al. (2007) state, ‘the
gravity equation for bilateral trade flows is one of the most successful empirical relationships
in international economics’. The gravity equation was first applied to aggregate trade. As its
name suggests, it was initially motivated by the Newtonian theory of gravitation (bilateral trade
should be positively related to the size of countries, as measured by their GDP, and negatively
related to their distance from one another). It now has a plethora of microeconomic foundations.
More recent work has emphasized the role of extensive margin adjustments in understanding the
variations of aggregate trade flows and has derived gravity equations for these extensive margin
adjustments; see, e.g. Bernard et al. (2011) and Mayer et al. (2014).6 For the purpose of this
application, we refer to the model where the dependent variable is binary (trade or not) as the
binary gravity equation.

There are many ‘zeros and ones’ relationships in trade and the logit is very widely used. In the
context of the gravity equation literature, the logit is most commonly used to study the extensive
margins of trade in heterogeneous firm models. In their influential paper, HMR try to improve
on traditional estimates of the gravity equation by accounting for both firm heterogeneity – in a
Melitz (2003) framework – and the frequently forgotten zero trade flows. To do this, they use a
two-stage procedure, where the first stage consists of estimating the probability that a country
trades with another. Although they use a probit with importer and exporter fixed effects, one
could also similarly use a logit. In a paper estimating the Chaney (2008) model with French
firm-level data, Crozet and Koenig (2010) also use the probability of exporting as a first stage in
their empirical strategy.7 More specifically, they run a logit with firm and import country–year
fixed effects to disentangle the elasticity of trade barriers on the intensive and extensive margins.

In order to allow direct comparison with results found in the literature, the application of
the logit estimator on the binary gravity equation is done using the data from HMR. This data
set consists of information on trade flows and country characteristics for 158 countries in 1986.
Applying their specific gravity model to their data gives added weight to the comparison of
the estimates produced by the estimator presented in this paper with those produced by other
commonly used estimators. However, note that all the results discussed below hold when using
different trade data.8 More detailed information about the data used by HMR can be found
in their paper. We find that applying the conditional logit to properly account for the multiple
fixed effects gives significantly different estimates of the probability of trading conditional on
a set of explanatory variables. For convenience, we hereafter refer to the logit estimator given
by the maximization of (2.8) as Logit 2FE. In what follows, we also call the regular logit that
ignores fixed effects, Logit, and the logit that estimates all the fixed effects (putting in dummies),
Logit FE.

6 Trade frictions have an impact on aggregate trade flows through both the amount that each firm or country exports
(the intensive margins) and the number of firms or countries exporting (the extensive margin). Note that the extensive
margin can also refer to the number of products exported.

7 Chaney (2008) introduces firm heterogeneity in a model of international trade to look at the effect the elasticity of
substitution between goods has on the intensive and extensive margins of trade. It is essentially a Melitz model with a
Pareto productivity distribution.

8 Results available on demand.
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The HMR gravity model to be estimated is given by

Prob[Tradeij = 1|observed variables]

= F (β0 + β1 ln(Dij) + β2Borderij + β3Islandij

+β4Landlockij + β5Legalij + β6Languageij + β7Colonyij

+β8Currencyij + β9RTAij + β10Religionij + μi + αj ), (3.1)

where Tradeij is an indicator variable that equals 1 when country i exports to country j and 0
otherwise, and F (·) is the cumulative distribution function (cdf) of the assumed distribution.9

Other variables are defined as follows: Dij is the simple distance between the most populated
cities of country i and country j , Borderij is a dummy that takes the value 1 if i and j share
a border, Islandij is a dummy that takes the value 1 if either one or both countries are islands,
Landlockij is a dummy that takes the value 1 if either one or both countries do not have access
to an ocean, Legalij is a dummy that takes the value 1 if the two countries have the same legal
system, Languageij is a dummy that takes the value 1 if i and j have the same official language,
Colonyij is a dummy that takes the value 1 if i and j were ever in a colonial relationship,
Currencyij is a dummy that takes the value 1 if the two countries use the same currency and
RTAij is a dummy that takes the value 1 if i and j are in a regional trade agreement. Finally, the
religion variable is defined as

Religionij = (%Protestants in country i · %Protestants in country j )

+ (%Catholics in country i · %Catholics in country j )

+ (%Muslims in country i · %Muslims in country j ).

Finally, μi and αj are importer and exporter fixed effects, respectively. The results are presented
in Table 1.

In addition to the OLS with fixed effects, the Logit, the Logit FE and the Logit 2FE,
we present results for the Probit with fixed effects used in HMR. Note that the latter are a
successful replication of the estimates presented in the original paper. Overall, the estimated
coefficients on distance differ somewhat more between the Logit FE and Logit 2FE than would
have been expected based on the Monte Carlo simulations. Indeed, the Logit 2FE suggests that
distance might have a smaller impact on the probability of exporting than traditional binary
models estimates indicate, and the difference with the Logit FE is statistically significant. The
estimated coefficient on border is also different between the two models, but that difference is not
statistically significant. In general, although the estimated coefficients for the other variables are
different for the Logit 2FE and the Logit FE, this difference, unlike that for distance or border,
is much closer to what the Monte Carlo simulations, especially design 4, suggested. Indeed,
Table A.4 of the online Appendix shows that the difference between the two models is at least
twice as large for the coefficients on the distance and border variables. In the case of the border
dummy, this could be due to its sparsity (only 17% are non-zero) and its high correlation with
distance.

Since the Logit 2FE does not provide estimates of the fixed effects, it is not possible to
compute the marginal effect of each variable. However, we can still compute the effect implied
by the difference in the distance coefficients of the various fixed effects estimators on the

9 In the original paper, the cdf is a unit-normal distribution, but here we assume it is a logistic distribution.
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Table 1. Logit results: HMR model and data.

Variables Probit FE OLS FE Logit Logit FE Logit 2FE

Distance −0.6597 −0.1086 −0.2939 −1.2526 −0.9948
(0.0239) (0.0041) (0.0192) (0.0424) (0.0547)

Border −0.3825 −0.0810 0.2834 −0.7624 −0.5171
(0.0993) (0.0218) (0.1184) (0.1761) (0.2285)

Island −0.3447 −0.0648 −0.3355 −0.6030 −0.3924
(0.0743) (0.0135) (0.0287) (0.1359) (0.1315)

Landlock −0.1806 −0.0316 −0.6225 −0.3607 −0.1984
(0.0973) (0.0156) (0.0308) (0.1808) (0.1860)

Legal 0.0964 −0.0039 −0.4939 0.1867 0.1832
(0.0298) (0.0053 ) (0.0289) (0.0539) (0.0608)

Language 0.2838 0.0783 0.1208 0.5037 0.4156
(0.0378) (0.0068) (0.0313) (0.0696) (0.0726)

Colonial ties 0.3252 0.0408 4.0701 0.5392 1.1366
(0.2444) (0.0196) (0.4165) (0.4647) (0.9944)

Currency 0.4917 0.0772 −0.7229 0.8973 1.0565
(0.1227) (0.0243) (0.1497) (0.2249) (0.2499)

RTA 1.9851 −0.0526 2.9708 3.4708 3.5227
(0.2651) (0.0413) (0.4193) (0.4928) (0.1696)

Religion 0.2605 0.0739 0.3289 0.4155 0.4850
(0.0583) (0.0108) (0.0478) (0.1056) (0.1145)

Note: Standard errors clustered at ij level (allowing for importer and exporter correlation). These are the estimated
coefficient values, and therefore not directly comparable across models (except for the three logit models).
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Figure 1. Probability of trading relative to distance. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 2. Difference in probability of trading relative to distance between different estimators. [Colour
figure can be viewed at wileyonlinelibrary.com]

probability of trading by looking at how this probability, estimated at the sample averages (and
therefore setting all fixed effects to zero), varies with the measure of distance. This is illustrated in
Figure 1 for the Probit FE, Logit FE and Logit 2FE. As expected, the Logit 2FE predicts a higher
probability of trading for all values of distance, particularly in the middle ranges. Note that
Figure 1 represents all distance values in the sample. Figure 2 plots the difference between the
probability of trading predicted by the Logit 2FE and the other two main models. The difference
is larger with the Logit FE, especially for countries that are relatively close, and peaks at 7.3
percentage points. This application highlights the importance of properly accounting for multiple
fixed effects.

4. CONCLUSION

This paper has examined estimators of binary response panel data models with multiple fixed
effects. There are an abundance of empirical methods applying two fixed effects in binary
response models in general, and in the logit in particular. However, current estimators are subject
to the incidental parameters problem. Although many methods have been developed to address
this problem in models with a single fixed effect, very little has been done for the cases with
two or more fixed effects. Attempting to fill this important gap, we have developed a method to
appropriately deal with two fixed effects for the logit model.

Our method is based on the conditional maximum likelihood of Rasch (1960, 1961). If,
with one fixed effect, it suffices to condition on the sum of the observations in one dimension
(typically, for one individual, the sum of yit over time), then with two fixed effects we condition
on the sums in both dimensions (for one importer i, the sum of yij for all exporters j ; for one

C© 2017 Royal Economic Society.
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exporter j , the sum of yij over all importers i). This approach allows us to consistently estimate
the parameters of interest.

We have shown that the conditioning method, which is the core of this paper, performs well in
recovering the true parameters in Monte Carlo studies. Indeed, we have found that the conditional
logit presented in this paper is less biased than, as precise as and more robust to different fixed
effects than other logit estimators. Importantly, if this superiority is emphasized in small samples,
it does not disappear for large samples (e.g. the size that one can obtain when studying trade
between countries). Moreover, standard errors produce correctly sized tests. We have also shown
that this same procedure yields quite different estimated coefficients from methods subjected to
the incidental parameters problem in applications with actual trade data.

The method developed in this paper has broad applicability, and our Monte Carlo studies and
applications highlight the importance of appropriately controlling for multiple fixed effects in
binary response panel data models for recovering the parameters of the underlying relationships
of interest.
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APPENDIX: MANSKI’S MAXIMUM SCORE ESTIMATOR

Manski (1987) developed a consistent maximum score estimator for binary response models allowing for
individual fixed or random effects in panel data. This estimator, unlike its predecessors – e.g. Andersen
(1970) – remains consistent under very weak assumptions on the disturbances. This characteristic could
make a multiple fixed effects maximum score estimator very useful. Therefore, we want to investigate the
possibility of generalizing this estimator to the case where there are two fixed effects. The conditional
maximum score estimator is similar to the estimator of the logit model. Indeed, it is also applied to a
binary response model and uses pairs of observations for the same individual where the value of the
indicator variable differs. However, unlike the logit conditional maximum likelihood, this estimator does
not generalize to the case with two fixed effects, even under a stronger set of assumptions. As detailed later,
this is because of the lack of recursive structure in this particular model.
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In Manski’s original paper, the model has the form

P (yit = 1 | xi1, xi2, αi) = Fi(x
′
it β + αi) t = 1, 2,

where αi once again represents the individual effect. The first assumption of Manski (1987) is that the
distribution F depends on i. It requires the disturbance to be stationary conditional on the identity of the
panel member but does not restrict it to be the same across individuals.

Manski’s key result resides in his first lemma, as follows.

LEMMA A.1.

x ′
i2β > x ′

i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) > P (yi1 = 1 | xi1, xi2, αi)

x ′
i2β = x ′

i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) = P (yi1 = 1 | xi1, xi2, αi)

x ′
i2β < x ′

i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) < P (yi1 = 1 | xi1, xi2, αi). (A.1)

If we condition on yi1 + yi2 = 1, we obtain

P (yi2 = 1 | yi1 + yi2 = 1, xi1, xi2, αi)

⎧⎨
⎩

>1/2 if (xi2 − xi1)′β > 0
= 1/2 if (xi2 − xi1)′β = 0
< 1/2 if (xi2 − xi1)′β < 0.

(A.2)

The probability in (A.2) takes the same form as in Manski (1975), so it is possible to use the maximum
score estimator. This first lemma allows him to develop, under some identification conditions, a consistent
estimator by maximizing for b the sample analogue of the following equation

H (b) ≡ E[sgn((xi2 − xi1)′b)(yi2 − yi1)], (A.3)

for the observations where yi1 	= yi2.
Unfortunately, this approach cannot be generalized in such a way as to generate an equivalent to this

necessary lemma for the case of multiple fixed effects panel data models. Indeed, following a similar line
of thought as for the logit case presented earlier, we would hope to adapt Lemma A.1 by applying the same
type of conditioning twice.

Introducing a second fixed effect in the model, we now have

P (yij = 1 | x, μ, α) = F (x ′
ijβ + μi + αj ) i, j = 1, . . . , n.

Here we restrict F to be the same for all observations. In other words, all the disturbances are drawn from the
same distribution. This is more restrictive than Manski’s assumption, but still allows for an interesting range
of models. We show that even under this stricter set of assumptions, we cannot generalize this estimator to
the case of two fixed effects. To do so, we first apply an analogous conditioning to that of (A.2) to eliminate
μi and we obtain

P (yij = 1 | yij + yik = 1, x, μ, α)

⎧⎨
⎩

>1/2 if (xij − xik)′β + αj − αk > 0
= 1/2 if (xij − xik)′β + αj − αk = 0
< 1/2 if (xij − xik)′β + αj − αk < 0.

This is similar to the first-step equations of the logit model (i.e. (2.5) and (2.6)): explanatory variable (xij −
xik) and fixed effect αj − αk . However, to apply this conditioning again, we would need P (yij = 1 | yij +
yik = 1, x, μ, α) to have the form F ((xij − xik)′β + αj − αk), where F is a cdf. Yet, this does not hold: we
cannot attest that this probability is always increasing. Therefore, we cannot apply Manski’s conditioning
a second time: Manski’s maximum score estimator cannot be adapted to the presence of two fixed effects,
even under a stronger set of assumptions.
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