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Abstract 
Implications for signal extraction from specifying unobserved components (UC) models 
with correlated or orthogonal innovations have been well investigated. In contrast, the 
forecasting implications of specifying UC models with different state correlation structures 
are less well understood. This paper attempts to address this gap in light of the recent 
resurgence of studies adopting UC models for forecasting purposes. Four correlation 
structures for errors are entertained: orthogonal, correlated, perfectly correlated 
innovations, and a new approach that combines features from two contrasting cases, 
namely, orthogonal and perfectly correlated innovations. Parameter space restrictions 
associated with different correlation structures and their connection with forecasting are 
discussed within a Bayesian framework. As perfectly correlated innovations reduce the 
covariance matrix rank, a Markov Chain Monte Carlo sampler, which builds upon 
properties of Toeplitz matrices and recent advances in precision-based algorithms, is 
developed. Our results for several measures of U.S. inflation indicate that the correlation 
structure between state variables has important implications for forecasting performance 
as well as estimates of trend inflation. 

Bank topics: Econometric and statistical methods; Inflation and prices 
JEL codes: C11, C15, C51, C53 
 

Résumé 
Au regard de l’extraction des signaux, les implications de la spécification de modèles à 
composantes non observées avec innovations corrélées ou orthogonales ont été largement 
analysées. Par contraste, s’agissant des prévisions, les implications de modèles à 
composantes non observées avec différentes structures de corrélation des variables d’état 
sont moins bien comprises. Dans le présent article, nous tentons de combler cette lacune, à 
la lumière de la récente résurgence d’études qui adoptent des modèles à composantes non 
observées afin d’établir des prévisions. Nous considérons quatre structures de corrélation 
entre les innovations : orthogonales, corrélées et parfaitement corrélées ainsi qu’une 
nouvelle approche qui combine des éléments de deux structures très différentes, à savoir 
les innovations orthogonales et parfaitement corrélées. Nous analysons, dans un cadre 
bayésien, les restrictions de l’espace de paramètres associées à différentes structures de 
corrélation et leurs liens avec les prévisions. Comme les innovations parfaitement corrélées 
réduisent le rang de la matrice de covariance, nous développons un algorithme 
d’échantillonnage de Monte-Carlo par chaînes de Markov qui se fonde sur les propriétés 
des matrices de Toeplitz et les récentes avancées dans le domaine des algorithmes de 
précision. Selon nos résultats de plusieurs mesures de l’inflation aux États-Unis, la 
structure de corrélation entre les variables d’état a d’importantes implications pour la 
qualité des prévisions et les estimations de l’inflation tendancielle. 

Sujets : Méthodes économétriques et statistiques; Inflation et prix 
Codes JEL : C11, C15, C51, C53 

 



Non-technical summary

Unobserved components (UC) models have been widely employed in empirical macroeconomic

studies over the years. This can be largely attributed to the fact that UC models provide an

appropriate framework to capture features of economic time series that are instrumental for re-

searchers and policy makers. For example, time series properties – such as the existence of trends

and cyclical and seasonal patterns – can be naturally accommodated within a UC framework and

extracted using filtering techniques and related methods.

Over the past three decades, a wealth of studies analyzed the in-sample properties of UC

models. In particular, the issue of specifying the correlation between trend and cyclical dynamics

in a UC framework proved to be important for business cycle measurement (Morley, Nelson and

Zivot (2003), Oh, Zivot and Creal (2008) and Iwata and Li (2015)) and for investigating properties

of parametric filters (Harvey and Koopman (2000) and Proietti (2006)). However, the out-of-

sample implications of specifying different correlation structures between permanent and transitory

movements remain less well understood. In view of the recent resurgence of studies adopting UC

models for forecasting purposes, this paper attempts to address this gap.

Overall, three main contributions arise from this study: (1) a substantial forecasting exercise for

several measures of U.S. inflation based on eleven classes of UC models; (2) a new class of UC model

that accommodates two contrasting correlation structures (absence of and perfect correlation); and

(3) an efficient estimation algorithm that nests all UC models adopted in this paper. Our results

indicate that allowing for correlation between permanent and transitory price level movements

lead to some improvements in inflation forecasting at both point and density dimensions. We also

document that measures of trend inflation can be sensitive to how one specifies the correlation

between permanent and transitory price level movements.
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1 Introduction

Unobserved components (UC) models provide a flexible and yet parsimonious framework that

has been widely employed in empirical macroeconomics over the years.1 When estimating such

models, however, one is typically confronted with the issue of formulating the correlation structure

between innovations driving different components (states). Depending on the subject matter,

economic theory, statistical properties or a combination of both can be used to provide guidance

on suitable modelling strategies of the covariance matrix. In particular, there is a wealth of

studies discussing different approaches to model correlation and their effects on estimated outputs

(i.e., implications of a signal extraction problem). For example, Harvey and Koopman (2000)

and Proietti (2006) investigate the differences in parametric filtering that arise in terms of how

observations are weighted when adopting UC models with orthogonal and correlated innovations.2

Others, such as Morley et al. (2003), Oh and Zivot (2006), Oh et al. (2008) and Iwata and Li

(2015), study different correlation structures to reconcile discrepancies between business cycle

measures generated by UC models and measures based on the Beveridge-Nelson decomposition

(see Beveridge and Nelson (1981)). Similarly, Dungey et al. (2015) adopt a correlated innovations

UC model framework to suggest identification strategies of permanent and transitory shocks to

trend and cyclical components of U.S. real GDP.

The brief description above is intended to highlight that many authors have studied what can be

broadly interpreted as in-sample implications of different correlation structures within UC models.

However, a corresponding comparative study in terms of out-of-sample implications remains, to

the best of our knowledge, uninvestigated to date. As such, the analysis provided in this paper

contributes to fill this gap. Moreover, the recent resurgence of papers adopting UC models for

inflation forecasting purposes – as in Stock and Watson (2007), Stella and Stock (2013), Chan

(2013), Chan et al. (2013), Clark and Doh (2014), Garnier et al. (2015) and Stock and Watson

(2016) – strengthens the case for out-of-sample evaluation of the correlation structure within such

models.

Notably, modern approaches to forecasting using UC models, as in the studies mentioned above,

typically exhibit three features: (1) using Bayesian, or more precisely, Markov Chain Monte Carlo

(MCMC) techniques to conduct estimation; (2) using orthogonal innovations; and (3) introducing

stochastic volatility à la, e.g., Kim et al. (1998) to model changes in the conditional variance of

innovations over time. In this paper we keep point 1, extend point 2 and leave point 3 for future

research. To be clear, in our empirical exercise, we leave out stochastic volatility not because we

1We cannot possibly do justice to the literature here. We point the reader to Harvey (1985), Watson (1986),
Clark (1987), Morley et al. (2003), Proietti (2006), Stock and Watson (2007), Perron and Wada (2009) and Luo
and Startz (2014) for an overview of the literature.

2Harvey and Koopman (2000) show that orthogonal innovations imply two-sided filters (or smoothers) with
symmetric weights in the middle of a series. Such symmetry is argued by the authors to be an attractive feature of
UC models with orthogonal components.
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think it is unimportant for forecasting, but in order to make the out-of-sample assessment of each

correlation structure as free as possible from other modeling features that can also impart changes

to forecasting performance. Once we are confident about potential forecasting benefits of UC

models that deviate from the popular orthogonal innovations framework, a natural extension to

our study is to incorporate stochastic volatility and conduct the forecasting exercise to a broader

range of models.

It is important to recognize that when generating forecasts that incorporate parameter un-

certainty, as in the case of Bayesian estimation, the correlation structure has a direct connection

with the forecasting function that does not arise naturally if adopting other approaches such as

maximum-likelihood-based forecasts. Within a Bayesian setting, construction of the predictive

density entails integration of the likelihood function over the parameter space of a model. As dis-

cussed in Section 3, depending on how one models the correlation between innovations, restrictions

on the parameter space associated with a particular UC representation can be imposed or relaxed

and, by the same token, point and density forecasts can be affected. In particular, the usual or-

thogonal innovations approach often imposes strong parameter space restrictions when compared

with their correlated counterparts, as pointed out in, e.g., Harvey and Koopman (2000), Morley

et al. (2003), Ord et al. (2005) and Oh et al. (2008). Obviously, whether a more or less restricted

parameter space is desirable for forecasting performance is an empirical question that we address

in this paper.

Our empirical evaluation is built around four correlation structures: innovations (or, equiva-

lently, states) are allowed to be orthogonal, correlated, or perfectly correlated, but we also include

a new approach combining aspects from two contrasting correlation structures. In particular, we

construct UC models that specify two latent components driven by the same stochastic process

(i.e., perfect correlation) while the dynamics of a third component are governed by an orthogonal

innovation. As a result, we propose a new class of UC model that bridges the usual orthogo-

nal innovations approach (e.g., Harvey (1985), Clark (1987), Stock and Watson (2007)) and the

single source of error (SSOE) representation of state space models advocated by, for example,

Snyder (1985), Ord et al. (1997) and Chatfield et al. (2001). We refer to such a class of model

as reduced source of error (RSOE) to distinguish it from its SSOE and multiple source of error

(MSOE) counterparts. Since parameters in both MSOE with orthogonal innovations and SSOE

models are identified, RSOE variants provide a novel strategy to allow for state correlation without

incurring well-known limitations of identifying covariance matrix parameters within UC models

(see, e.g., Morley et al. (2003), Oh and Zivot (2006) and Oh et al. (2008)) and without requiring

perfect correlation across all state variables. When modeling inflation, for example, RSOE models

can combine an orthogonal trend inflation component, as commonly adopted, with a flexible and

innovations-parsimonious representation of transitory inflation dynamics. As we show later, the

RSOE scheme can also represent a compromise between SSOE and MSOE variants in terms of
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parameter space restrictions.

To evaluate forecast performance across different correlation structures, a substantive forecast-

ing exercise accounting for eleven UC models is conducted. In keeping with other studies using

UC models for forecasting purposes (e.g., Stock and Watson (2007), Chan (2013), Chan (2015),

Clark and Doh (2014) and Garnier et al. (2015)), we use several quarterly inflation measures in our

empirical application. Forecasting performance is assessed in terms of point and density forecast

accuracy. We find that the choice of correlation structure between state variables has apprecia-

ble implications for forecasting performance. Allowing for correlation between innovations leads

to statistically significant improvements in both point and density forecast estimates at various

forecasting horizons relative to orthogonal innovations. In addition, even though the focus here

is on forecasting, we show that trend inflation measures can be sensitive to different correlation

structures. In particular, RSOE models generate smoother measures of trend inflation, which is

often perceived as a desirable feature for policy analysis. To gauge the statistical significance of the

differences in forecasting performance, we follow other authors (see, e.g., Bauwens et al. (2014),

Clark and Ravazzolo (2014), Clark and Doh (2014) and Garnier et al. (2015)) and report t-test

results for the Diebold and Mariano (1995) test.

Allowing for perfectly correlated innovations (as in the SSOE and RSOE cases) produces co-

variance matrices with reduced rank. To accommodate rank reduction, we develop an MCMC

sampler that builds upon properties of Toeplitz matrices and extends previous work on precision-

based algorithms for state space models in Chan and Jeliazkov (2009). In particular, we propose

a new (precision-based) disturbance-smoothing algorithm that adds to the existing (Kalman-filter

based) ones of De Jong and Shephard (1995) and Durbin and Koopman (2002). As shown in

McCausland et al. (2011) precision-based samplers are more efficient than the traditional Kalman

filter-based approach for state simulation.

The structure of the rest of this paper is as follows: Section 2 presents all UC models entertained

in this paper. In Section 3 we discuss how changes in state correlation can affect the forecasting

distribution within a Bayesian estimation framework. Section 4 deals with the issues of carrying

out MCMC estimation of UC models with a reduced rank covariance matrix. Section 5 develops

an efficient and general posterior simulator to estimate UC models with both full and reduced rank

covariance matrices. Out-of-sample forecast evaluation based on various correlation structures is

presented in Section 6. Section 7 concludes and presents directions for future research.
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2 The Models

We begin by presenting the UC models adopted in our empirical application. In particular, models

can be organized in two categories, namely, UC models suited for I(1) and I(2) univariate processes

(I(1)-UC and I(2)-UC hereafter). Since our focus is on inflation, I(1)-UC models are fit to the first

difference in log price level measures while I(2)-UC models address inflation dynamics by directly

modeling movements in the log price level (e.g., log CPI and log real GDP implicit price deflator).3

The I(2)-UC models lead to a larger number of innovations and, consequently, a wider range of

correlation structures relative to I(1)-UC models is explored.4

2.1 I(1)-UC Models

Let yt denote an univariate I(1) process such that:

yt = τt + ct, (1a)

τt = τt−1 + ηt, (1b)

φ(L)ct = εt, (1c)[
εt

ηt

]
∼ N

([
0

0

]
,

[
σ2
ε ρεησεση

ρεησεση σ2
η

])
. (1d)

Therefore, I(1)-UC models describe yt as the sum of two latent components, each of which being

responsible for different type of dynamics. Specifically, when yt denotes an inflation measure, τt

is commonly referred to as trend inflation, which accords well with the Beveridge-Nelson charac-

terization of what represents long-run dynamics in macroeconomic aggregates (see Beveridge and

Nelson (1981)). Transitory deviations about τt are captured by an ergodic autoregressive process,

ct. In keeping with previous studies (e.g., Kang et al. (2009) and Garnier et al. (2015)), such

transient dynamics provide a measure for the inflation gap. To allow for persistent movements in

ct, a pth-order autoregressive lag polynomial, φ(L) = (1− φ1L
1 − φ2L

2 − ...− φpLp), is introduced

with roots of φ(x) = 0 lying outside the unit circle. In particular, we consider two cases: p = 0 and

p = 2, hence modeling ct as an AR(0) or AR(2) process, respectively. Our choice of p is motivated

by previous studies.

When p = 0 (i.e., φ(L) = 1), the framework above describes a simple random walk plus noise, or

3Data description is deferred to Section 6.1.
4Admittedly, the order of integration of inflation is a debatable issue. For example, depending on the sample

period, the Dickey-Fuller type of tests suggests one or no unit-root for all inflation measures. Given that the focus
here is on out-of-sample performance, we take an agnostic view on pre-testing procedures and produce forecasts
based on models that assume inflation and price level series are I(1) and I(2) respectively. We stress, however, that
Dickey-Fuller test results based on the full sample used in our forecasting exercise detected one unit-root and two
unit-roots for inflation and log price level measures, respectively.
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local level, model. Such class of model has been adopted recently by numerous inflation forecasting

studies (e.g., Stock and Watson (2007), Chan (2013), Clark and Doh (2014)). In contrast, when

p = 2 (as in, e.g., Kang et al. (2009) and Garnier et al. (2015)) persistence in ct might reflect,

for example, the role of nominal price rigidities in slowing down price level fluctuations about

τt, as postulated by New Keneysian macroeconomic models (e.g., Christiano et al. (2005) and

Smets and Wouters (2007)). In addition, Morley et al. (2003) show that specifying ct as an AR(2)

process enables just-identification of ρεη.
5 As such, ρεη can be inferred using sample information

rather than being fixed according to some arbitrary identification strategy. This contrasts with the

local level model, where different values of ρεη can lead to equivalent evaluations of the likelihood

function (see e.g., Harvey (1989), chapter 2, and Morley et al. (2003)), hence making estimation

of this parameter more difficult.

A common strategy to address identification of ρεη is to set ρεη = 0, such that we treat εt and

ηt as being orthogonal (e.g., Stock and Watson (2007), Chan (2013) and Clark and Doh (2014)).

Other authors, such as Ord et al. (1997), Snyder et al. (2001) and Chatfield et al. (2001), set

ρεη = ±1, such that state innovations are perfectly correlated. These contrasting identification

strategies, however, affect the construction of predictive densities. We discuss this issue more

carefully in Section 3 as it constitutes an important motivation to our empirical exercise.

The three structures entertained in this paper to model the covariance matrix, Ω, associated

with I(1)-UC models are:

Ω =

{[
σ2
ε ρεησεση

ρεησεση σ2
η

]
,

[
σ2
ε ±σεση

±σεση σ2
η

]
,

[
σ2
ε 0

0 σ2
η

]}
.

The first denotes the unrestricted case where ρηε is estimated. As discussed above, this covariance

structure applies only to the case where ct is set as an AR(2) process. The second and third

structures describe the perfectly correlated and uncorrelated innovations cases, respectively.

Now, let κτ denote a loading parameter and MNZ be the short notation for the UC model in

Morley et al. (2003) (i.e., MNZ stands for Morley, Nelson and Zivot), which sets ct as an AR(2)

process. Combining the three covariance structures above with p = 0 and p = 2, accordingly, gives

rise to five I(1)-UC models with the following state equations:

• Local Level-SSOE (ρεη = ±1, and p = 0): τt = τt−1 + κτεt, ct = εt;

• Local Level-MSOE (ρεη = 0, and p = 0): τt = τt−1 + ηt, ct = εt;

• MNZ-SSOE (ρεη = ±1, and p = 2): τt = τt−1 + κτεt, (1− φ1L− φ2L
2)ct = εt;

5To be precise, by just-identification of ρεη (or any other parameter) we mean that the likelihood contribution
is not invariant to different values of ρεη.
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• MNZ-MSOE(UR) (ρεη 6= 0, and p = 2): τt = τt−1 + ηt, (1− φ1L− φ2L
2)ct = εt;

• MNZ-MSOE (ρεη = 0, and p = 2): τt = τt−1 + ηt, (1− φ1L− φ2L
2)ct = εt.

Since the UC model in Morley et al. (2003) can accommodate two variants of MSOE schemes,

namely, when ρεη = 0 and ρεη being unrestricted, we refer to each case as MNZ-MSOE and

MNZ-MSOE(UR), respectively. When innovations are allowed to be correlated (i.e., SSOE and

MSOE(UR)), the loading parameter, κτ , governs the correlation sign between states as well as

the magnitude of the effect that the common innovation, εt, has on τt. In particular, when ρεη

is unrestricted, we follow Luo and Startz (2014) and specify innovations to τt as ηt = η∗t + κτεt,

such that η∗t ∼ N (0, σ2
η) and Cov(εt, η

∗
t ) = 0. Such parameterization is useful as it ensures Ω is

positive-definite for any estimates of σ2
ε , σ

2
η and κτ .

6

2.2 I(2)-UC Models

I(2)-UC models propose an analogous decomposition of yt as in the I(1) case with one main dis-

tinction: the underlying latent level of yt, τt, is augmented by another latent stochastic component,

µt. Formally, we have:

yt = τt + ct, (2a)

τt = µt + τt−1 + ηt, (2b)

µt = µt−1 + ζt, (2c)

φ(L)ct = εt, (2d) εt

ηt

ζt

 ∼ N


 0

0

0

 ,
 σ2

ε ρεησεση ρεζσεσζ

ρεησεση σ2
η ρηζσησζ

ρεζσεσζ ρηζσησζ σ2
ζ


 . (2e)

Since τt is now specified as a random walk with drift process, such models are useful to model

variables that grow over time. As a result, instead of inflation, yt now denotes log price level and

τt reflects latent movements in trend price level rather than trend inflation. Nevertheless, I(2)-UC

models can also be perceived as models for inflation. In fact, note that by taking first differences

6Of course, since we set ηt = η∗t + κτεt, given values for σ2
ε , σ2

η and κτ , ρεη can be recovered using ρεη =
κτσ

2
ε√

σ2
ε(κ

2
τσ

2
ε+σ

2
η)

.
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(∆ = (1− L)) of yt and defining c̃t = (1− L)ct + ηt, one can re-express the system above as:

∆yt = µt + c̃t, (3a)

µt = µt−1 + ζt, (3b)

φ(L)c̃t = φ(L)ηt + (1− L)εt, (3c)

which is essentially the same framework presented earlier for I(1)-UC models except for two facts:

(a) the inflation gap, c̃t, has now an ARMA (p,q) representation, where q > 0; and (b) instead of

two innovations, I(2)-UC models can accommodate up to three innovations. Consequently, different

correlation structures can be explored. Specifically, we look at three approaches to identifying

correlation amongst εt, ηt and ζt. As before, we adopt the contrasting SSOE and MSOE schemes

whereby all innovations are either perfectly correlated or uncorrelated, but also entertain a new

approach that bridges the previous two. We construct UC models that preserve trend inflation

(now represented by µt) as an orthogonal state, but treat MA terms in c̃t as the same stochastic

process. In other words, we set ηt = κτεt. Since this approach represents a midpoint between SSOE

and MSOE models, we refer to variants following this identification strategy as RSOE models.7

Below we present the covariance structures respectively associated with the SSOE, RSOE and

MSOE schemes:

Ω =


 σ2

ε ±σεση ±σεσζ
±σεση σ2

η ±σησζ
±σεσζ ±σησζ σ2

ζ

 ,
 σ2

ε ±σεση 0

±σεση σ2
η 0

0 0 σ2
ζ

 ,
 σ2

ε 0 0

0 σ2
η 0

0 0 σ2
ζ


 .

It should be noted that, if desired, an unrestricted version of Ω for I(2)-UC models could also be

estimated. In particular, Oh and Zivot (2006) show that all correlation parameters in (2e) can be

identified under the likelihood function associated with such models when φ(L)ct is specified as

an AR(4) process. For parsimony and to avoid potential root cancelation issues we do not pursue

such an approach here. Hence, akin to I(1)-UC models, we let p = 0 and p = 2. In the first case

we obtain the widely used local linear trend model (see e.g., Harvey and Jaeger (1993), Zarnowitz

and Ozyildirim (2006) and Frühwirth-Schnatter and Wagner (2010)). Setting p = 2 yields Clark’s

double-drift UC model (see Clark (1987) and Oh and Zivot (2006)). Finally, as before, combining

the covariance structures above with the different orders of p allows us to construct the following

six models:

7For inflation, one possible motivation for such identification scheme is to think of changes in trend inflation
as mainly reflecting systematic changes in the conduct of monetary policy (e.g., Woodford (2007))–here broadly
captured by ζt. On the other hand, εt could be perceived as encompassing non-monetary policy factors underlying
transitory inflation dynamics. Such transient movements could reflect shifts that affect the (observed or trend) price
level but not trend inflation (a plausible scenario when inflation expectations are well-anchored). As an example of
such one-off price shifters, one could think of one-off changes in the price level typically observed after changes in
taxation (e.g., introduction of value added taxes) and (or) changes in energy and oil prices.
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• Local Linear Trend-SSOE (ρεη = ±1, ρεζ = ±1, ρηζ = ±1 and p = 0): τt = µt+τt+κτεt,

µt = µt−1 + κµεt, ct = εt;

• Local Linear Trend-RSOE (ρεη = ±1, ρεζ = ±1, ρηζ = 0 and p = 0): τt = µt + τt + κτεt,

µt = µt−1 + ζt, ct = εt;

• Local Linear Trend-MSOE (ρεη = 0, ρεζ = 0, ρηζ = 0 and p = 0): τt = µt + τt + ηt,

µt = µt−1 + ζt, ct = εt;

• CLARK-SSOE (ρεη = ±1, ρεζ = ±1, ρηζ = ±1 and p = 2): τt = µt + τt + κτεt,

µt = µt−1 + κµεt, (1− φ1L− φ2L
2)ct = εt;

• CLARK-RSOE (ρεη = ±1, ρεζ = ±1, ρηζ = 0 and p = 2): τt = µt+τt+κτεt; µt = µt−1+ζt,

(1− φ1L− φ2L
2)ct = εt;

• CLARK-MSOE (ρεη = 0, ρεζ = 0, ρηζ = 0 and p = 2): τt = µt + τt + ηt, µt = µt−1 + ζt,

(1− φ1L− φ2L
2)ct = εt;

where a new loading parameter, κµ, is introduced in the state equation for µt in SSOE variants

and can be described in a similar fashion as κτ in the I(1)-UC case. Table 1 summarizes all eleven

specifications presented in this section.

Table 1: List of Models

Identifier Description*
Local Level-SSOE RW trend inflation and white noise inflation gap; ρεη = ±1
Local Level-MSOE RW trend inflation and white noise inflation gap; ρεη = 0
MNZ-SSOE RW trend inflation and AR(2) inflation gap; ρεη = ±1
MNZ-MSOE(UR) RW trend inflation and AR(2) inflation gap; ρεη = unrestricted
MNZ-MSOE RW trend inflation and AR(2) inflation gap; ρεη = 0
Local Linear Trend-SSOE RW trend inflation and price level; MA(1) inflation gap; ρεη = ρεζ = ρηζ = ±1
Local Linear Trend-RSOE RW trend inflation and price level; MA(1) inflation gap; ρεη = ±1 and ρεζ = ρηζ = 0
Local Linear Trend-MSOE RW trend inflation and price level; MA(1) inflation gap; ρεη = ρεζ = ρηζ = 0
CLARK-SSOE RW trend inflation and price level; ARMA(2,2) inflation gap; ρεη = ρεζ = ρηζ = ±1
CLARK-RSOE RW trend inflation and price level; ARMA(2,2) inflation gap; ρεη = ±1 and ρεζ = ρηζ = 0
CLARK-MSOE RW trend inflation and price level; ARMA(2,2) inflation gap; ρεη = ρεζ = ρηζ = 0

*RW stands for random walk.
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3 How Changes in the Correlation Structure Can Affect

Forecasting

We now discuss how different correlation structures can influence forecasting performance within

a Bayesian forecasting framework.8

For concreteness, consider now the task of producing k-step-ahead forecasts for some variable

yt. Also, let y = (y1, . . . , yt)
′ and θUC denote an n-dimensional set of parameters associated with

any of the UC models described in Section 2 such that θUC ∈ ΘUC ⊆ Rn, where ΘUC describes

the parameter space corresponding to the values of θUC . Letting f denote any probability density

function, a density forecast of yt+k is given as follows:9

f(yt+k|y) =

∫
ΘUC

f(yt+k|y,θUC) f(θUC |y)dθUC

=

∫
ΘUC

f(yt+k|y,θUC)
f(y|θUC)f(θUC)

f(y)
dθUC , (4)

where the second term of the integrand in (4) follows directly from an application of Bayes’ rule.

In words, marginalization of θUC in f(yt+k|y) implies that Bayesian forecasting accounts for the

global properties of the predictive density, f(yt+k|y,θUC), and posterior kernel, f(y|θUC)f(θUC).

As such, instead of density forecasts based on a single estimate of θUC – say, θ̂UC corresponding

to the mode of f(yt+k|y,θUC) – forecasts from f(yt+k|y) incorporate all possible values of θUC

within ΘUC . Naturally, since f(yt+k|y) is a function of ΘUC , if the latter is altered then point and

density forecast metrics associated with the former are likely to be affected as well. Changes in

the correlation between innovations within a UC model can alter ΘUC .

To give an example, consider again the local linear trend model shown in Section 2.2. One can

readily verify that taking second differences (∆2) of the measurement equation in (2a) yields:

∆2yt = ζt + ηt − ηt−1 + εt − 2εt−1 + εt−2. (5)

Next, by virtue of Granger’s lemma (see Granger and Newbold (1986), p. 28-30), it can be shown

that the expression above can be recast as a reduced-form ARIMA (0,2,2) process:

∆2yt = ut + ϕ1ut−1 + ϕ2ut−2, ut ∼ N (0, σ2), (6)

8The reader is referred to Geweke and Whiteman (2006) for a detailed discussion on Bayesian forecasting
techniques.

9For simplicity, we assume f is a continuous probability distribution. Nonetheless, the ideas underpinning
forecasting implications from combining parameter uncertainty and parameter space restrictions can be carried
over to discrete and mixed discrete-continuous distributions at the expense of making notation more cumbersome.
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where reduced-form parameters, ϕ1, ϕ2 and σ2, are nonlinearly related to UC parameters, θUC ={
σ2
ε , σ

2
η, σ

2
ζ , ρεη, ρεζ , ρηζ

}
.

It is thus important to recognize that the local linear trend model and its expression in second-

difference form in (5) represent alternative parameterizations of a reduced form ARIMA (0,2,2)

model.10 As a result, the predictive density in (4) can, in principle, also be expressed as:

f(yt+k|y) =

∫
ΘARIMA

f(yt+k|y,θARIMA)
f(y|θARIMA)f(θARIMA)|J |

f(y)
dθARIMA, (7)

where θARIMA = {ϕ1, ϕ2, σ
2}, such that θARIMA ∈ ΘARIMA ⊆ R3 and |J | denotes the Jacobian

of the transformation to parameterize the prior density, f(θUC), in terms of θARIMA. When |J |
cannot be computed, an approximation of f(θUC) in terms of θARIMA may be achieved numerically

or using techniques such as saddlepoint approximations (see e.g., Goutis and Casella (1999)).

Importantly, the expression in (7) suggests that one can study out-of-sample effects of different

correlation assumptions on ρεη, ρεζ and ρηζ by deriving the restrictions such assumptions imply

on the parameter space of an invertible and stationary reduced form ARIMA model, ΘARIMA.

To be precise, since ΘARIMA is unique (as implied by the Wold decomposition), the predictive

likelihood, f(yt+k|y,θARIMA), will take different values for any θARIMA ∈ ΘARIMA. Therefore,

inasmuch as changes in identifying strategies for ρεη, ρεζ and ρηζ alter ΘARIMA, one can see from

(7) that f(yt+k|y) will not be invariant to such changes.

To illustrate, Figure 1 shows how the SSOE, RSOE and MSOE correlation schemes for the

local linear trend generate substantial differences to the support of the predictive likelihood,

f(yt+k|y,θARIMA), as measured in terms of the invertibility region of reduced form MA param-

eters. In particular, looking at the dotted area that describes the support of θARIMA (over the

MA parameter space) for the uncorrelated innovations case (i.e., MSOE), one can note that such

a region is much more restricted relative to the SSOE and RSOE variants. In other words, for the

local linear trend model, orthogonality considerably limits the amount of parameter uncertainty

that f(yt+k|y) can account for.11 Whether or not such constraints are desirable for forecasting is,

ultimately, an empirical question.

10The canonical representation of an ARIMA (0,2,2) model in (6) is unique. On the other hand, more than one
UC model representation can lead to the same reduced-form representation (see e.g., Cochrane (1988)).

11Derivation of the admissible regions shown in Figure 1 is deferred to Appendix A.3.
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Since RSOE models constitute a new class of models, before turning to estimation, we now

state the conditions that ensure that such models yield an invertible and stationary ARIMA

representation:

Proposition 3.1

3.1(a) : If ζt
i.i.d.∼ N (0, σ2

ζ ), then the Local Linear Trend-RSOE model has an invertible ARIMA(0,2,2)

representation.

3.1(b) : If the roots of the lag polynomial φ(L) lie outside the unit circle then the CLARK-RSOE

model has an invertible and stationary ARIMA(2,2,3) representation.

Proof – See Appendix A.1.

4 MCMC Inference of UC Models with Reduced Rank

Covariance Matrix

A common approach to estimate UC models (or state space models in general) is to employ MCMC

simulation techniques.12 The usefulness of MCMC sampling in the context of UC models stems

from the modular nature of such type of algorithm. In particular, MCMC-based estimation allows

one to transform the intractability of direct sampling from a high-dimensional joint posterior dis-

tribution into a simpler problem of iterative sampling from lower-dimensional conditional posterior

distributions. For the SSOE and RSOE variants, however, perfect correlation between some or

all innovations reduces the rank of the covariance matrix. As a result, proper MCMC estimation

requires addressing matrix singularities that do not occur in the orthogonal and (imperfectly)

correlated innovations cases. To the best of our knowledge, MCMC estimation of UC models in-

corporating the type of rank structures explored in this paper has not appeared in the literature

to date. Therefore, before developing an MCMC algorithm for the models in Section 2, it is useful

to highlight how such restrictions affect an otherwise standard MCMC sampling scheme.13

For concreteness, consider again the local linear trend model described in Section 2.2. Formal

Bayesian estimation of such a model would entail sampling τt and µt through t = 1, ..., T plus

parameters (if Ω is unrestricted), σ2
ε , σ

2
η, σ

2
ζ , ρεη, ρεζ and ρηζ , from the joint posterior distribution

associated with this model. Formally, letting τ0 and µ0 denote the initial conditions for τt and µt

12The interested reader is referred to e.g., Koop (2003), Gamerman and Lopes (2006) and the references therein
for a detailed textbook treatment on MCMC estimation.

13Forbes et al. (2000) and Snyder et al. (2001) address Bayesian estimation of state space models with an SSOE
representation. Their approach, however, does not encompass MCMC estimation. As is well known, MCMC
estimation allows one to work with a wide range of priors. Moreover, once an MCMC algorithm for SSOE and
RSOE models is developed, future work could extend such an algorithm to incorporate nonlinearities that accord
well with MCMC sampling, such as stochastic volatility.
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Figure 1: Parameter space restrictions over the invertibility region of reduced-form MA parameters
following different correlation structures for the local linear trend model. Dotted area denotes the
admissible (or non-constrained) region for each correlation structure.

Local Linear Trend-SSOE

Local Linear Trend-RSOE

Local Linear Trend-MSOE
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respectively and given the vector of observations, y = (y1, ..., yT )′, a common MCMC algorithm

for the local linear trend model can be described as a two-step sampling scheme that involves

sequentially drawing from the following conditional posteriors:14

1.f(z|y,θ);

2.f(θ|y, z),

where θ = {σ2
ε , σ

2
η, σ

2
ζ , ρεη, ρεζ , ρηζ , τ0, µ0} and z = {τ , µ}, such that τ = (τ1, ..., τT )′

and µ = (µ1, ..., µT )′.

As is well known, MCMC simulation only requires evaluation of the kernel associated with

each conditional posterior above. Thus, to understand how MCMC sampling can be affected by

rank reduction of Ω it is useful to address the implications to the kernel of f(z|y,θ) and f(θ|y, z).

Proposition 4.1 below summarizes such considerations:

Proposition 4.1 Let y and the elements in z denote exchangeable random vectors. If UC models,

as the ones considered in Section 2, contain one (or more) perfectly correlated state(s) then the

kernel of f(z|y,θ) and f(θ|y, z) exhibits a rank-deficient covariance matrix.

Proof – See Appendix A.2.

While Proposition 4.1 might appear intuitive, it has important implications for the design of

MCMC samplers of UC models with reduced rank covariance matrix. Specifically, the issues

highlighted in Proposition 4.1 result from density degeneracies (i.e., probability distributions with

zero variance) that occur when allowing for perfectly correlated states. In such cases, simula-

tion smoothing (i.e., sampling from f(z|y,θ)) can still be carried out using standard Forward-

Filtering-Backward Smoothing (FFBS) algorithms as in Frühwirth-Schnatter (1994), Carter and

Kohn (1994), De Jong and Shephard (1995) or Durbin and Koopman (2002). In particular, as

pointed out in, e.g., Harvey and Koopman (2000) and Casals et al. (2015), degeneracies that stem

from perfectly correlated states can be handled within the Kalman filter by setting the variance-

updating step to zero in the forward filtering recursions, which makes the backward smoothing

step redundant.15 In contrast, for parameter sampling (i.e., sampling from f(θ|y, z)), the filter-

ing recursions used for simulation smoothing do not apply and one needs to derive a well-defined

density to sample from. This can be achieved by integrating out perfectly correlated states from

an MCMC sampler. In the next section we propose a new MCMC sampler that does this by

parameterizing UC models in terms of their innovations rather than states.

14Initialization of state variables is discussed in Section 5.
15See Harvey (1989) and Durbin and Koopman (2012) for a detailed textbook treatment of the Kalman filter.
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5 Posterior Analysis

In this section we present an efficient posterior simulator for the UC models discussed in Section 2.

In particular, we develop a disturbance-smoothing algorithm that allows us to recover the states τt,

µt and ct by simulating the innovations ηt, ζt and εt. In doing so, we construct a general estimation

framework that readily accommodates the differences in the covariance rank across models. More

precisely, UC models are reparameterized in terms of the disturbances driving the state variables

τt, µt and ct. Within such a framework, MCMC sampling issues discussed in Section 4 can be

easily tackled. As we show below, once we develop an MCMC algorithm for the UC model with

the largest number of disturbances (in our case, the CLARK-MSOE model), estimation of all other

UC variants can be treated as special cases nested within a general framework.

Our algorithm differs from other well-known disturbance-smoothing samplers in the literature

as in DeJong and Shephard (1995) and Durbin and Koopman (2002). Instead of adopting FFBS

recursions, we build on recent work in precision-based methods akin to Chan and Jeliazkov (2009)

and Chan (2013). As noted in McCausland et al. (2011), precision-based algorithms are compu-

tationally more efficient than their FFBS counterparts. We stress that such computational gains

are substantial, especially in recursive forecasting applications – such as ours – exhibiting several

models and series that require simulation of posterior distributions literally billions of times.

For concreteness, consider now the CLARK-MSOE model discussed in Section 2.2. Stacking

yt, τt, µt and ct over t for t = 1, 2..., T yields the following matrix representation:

y = τ + c, (8)

Hτ = ι0τ0 + µ+ η η ∼ N (0, Ση), (9)

Hµ = ι0µ0 + ζ ζ ∼ N (0, Σζ), (10)

Hφc = ε ε ∼ N (0, Σε), (11)

where Σi = σ2
i IT for i = ε, η and ζ; τ = (τ1, ....τT )′, µ = (µ1, ..., µT )′, c = (c1, ..., cT )′, ε =

(ε1, ..., εT )′, η = (η1, ...ηT )′, ζ = (ζ1, ...ζT )′, ι0 = (1, 0, ..., 0)′ and

H =



1 0 0 0 0

−1 1 0 0 0

0 −1 1
. . .

...
...

...
. . . . . .

0 0 · · · −1 1


, Hφ =



1 0 0 0 0

−φ1 1 0 0 0

−φ2 −φ1
. . . . . .

...
...

. . . . . .

0 · · · −φ2 −φ1 1


.

Two comments are in order here. First, note that both H and Hφ are banded T × T matrices.

More specifically, they are lower triangular Toeplitz matrices. In what follows, we explore the
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sparse structure and the commutative property associated with such matrices (see e.g., Pollock

et al. (1999), p. 644) to develop a disturbance-based parametrization of the system above which

enables fast posterior simulation. Second, akin to Snyder et al. (2001) we initialize τt and µt using

Winter’s approach (see Winters (1960)) to construct the initial conditions, τ0 and µ0, based on

the first five years of data. Also, for simplicity, pre-sample values for the stationary state, ct, are

set to zero. Therefore, initial conditions are treated as predetermined terms and do not enter the

MCMC sampling algorithm discussed below.16

Next, we derive a disturbance-based parameterization of the model described in (8)–(11). To

do so, notice that by pre-multiplying both sides of (8) by HH gives:

HHy = HHτ + HHc, (12a)

HHy = Hι0τ0 + Hµ+ Hη + HHc, (12b)

(HH)−1HφHHy = (HH)−1Hφ (Hι0τ0 + ι0µ0 + ζ + Hη + HHc) , (12c)

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε, (12d)

where ỹ = Hφy, z0 = (τ0 µ0)
′, X0 is a T × 2 matrix, X0 = ((HH)−1HφHι0 (HH)−1Hφι0), and

X1 and X2 represent T ×T matrices defined as X1 = X2 = Hφ. The disturbance vectors η and ζ,

by a simple change of variable, are now denoted as η̃ = H−1η and ζ̃ = (HH)−1ζ. Once a draw for

η̃ and ζ̃ is obtained, the original disturbance vectors can be readily recovered using η = Hη̃ and

ζ = HHζ̃. Note also that the specification in (12d) is possible since (HH)−1 and Hφ are lower

triangular Toeplitz matrices. Therefore, using (HH)−1Hφ = Hφ(HH)−1 in (12c) makes it easy to

verify that (12d) ensues.17

Now recall that once we present the measurement equation as in (12d), the disturbances, η̃

and ζ̃, can be interpreted as our new state vectors. As a result, the state-space representation in

(8)–(11) can be recast as:

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε ε ∼ N (0, Σε), (13)

η̃ ∼ N (0, Dη̃), (14)

ζ̃ ∼ N (0, Dζ̃), (15)

where Dη̃ = H−1ΣηH
′−1 and Dζ̃ = (HH)−1Σζ(HH)′−1.

16If desired, one could treat τ0, µ0, c0 and c−1 as parameters, hence augmenting our MCMC algorithm to draw
from the conditional posteriors of such parameters. Winters’ exponential smoothing method, on the other hand,
is easy to implement and reduces the number of parameters one needs to sample. For additional approaches to
initialize state space models that share similarities with the framework presented here, the reader is referred to
De Jong and Chu-Chun-Lin (1994) and Casals and Sotoca (2001).

17We also use the fact that the product between and the inverse of two lower triangular Toeplitz matrices yield
another lower triangular Toeplitz matrix. In other words, if H is a lower triangular Toeplitz matrix, so are HH
and (HH)

−1
.
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The usefulness of parameterizing UC models in terms of innovations becomes more evident

in the case of UC models that contain a covariance matrix with reduced rank. In particular,

since rank reduction stems from reducing the number of innovations, the representation in (13)–

(15) provides an intuitive way to think of SSOE and RSOE schemes as nested cases within an

‘innovations-richer’ framework. For example, the SSOE case can be thought of as an MSOE

specification where X1 = X2 = 0(T×T ) since SSOE models do not require sampling η̃ and ζ̃. In

fact, all UC variants entertained in this paper can be accommodated into the framework given

by (13)–(15) for appropriately defined ỹ, η̃, ζ̃, X0, X1, X2 and z0. Doing so reduces the coding

burden typically associated with adapting an MCMC algorithm to various problems.18 To avoid

cluttering the discussion here with algebraic details, we defer the derivation and presentation of

the exact structures of such matrices and vectors for each model in Table 1 to Appendix A.5.

Obtaining posterior draws for the representation in (13)–(15) can, thus, be summarized as a

three-step algorithm that requires sequentially sampling from:

1.f(η̃|y, z−η̃,θ),

2.f(ζ̃|y, z−ζ̃ ,θ),

3.f(θ|y, z),

where we adopt the notation z−j to describe elements in z other than j.

Steps 1 and 2 represent the disturbance-smoothing block, Step 3 denotes parameter (block)

sampling. In practice, reducing the number of innovations entails removing Steps 1 and 2 from

the MCMC algorithm accordingly. In other words, depending on the correlation structure, one

can have z = {η̃, ζ̃} (i.e., MSOE case), z = {ζ̃} (i.e., RSOE case) or z = ∅ (i.e., SSOE case).

Similarly, parameters in θ are also model contingent. For the CLARK-MSOE model we have:

θ = {σ2
ε , σ

2
η, σ

2
ζ , φ1, φ2}.19 Nonetheless, despite the different configurations of θ, parameter

draws are obtained using the same strategy across models, namely a Metropolis-within-Gibbs

algorithm. Parameter sampling is discussed in Section 5.2. We turn next to the discussion of

disturbance smoothing.

5.1 Disturbance Smoothing

This section introduces a direct and efficient way to sample η and ζ required for the MSOE and

RSOE schemes. We begin by sampling η. To do so, note first that since ε and η̃ are normally

distributed random vectors, the conditional likelihood, f(y|z,θ), and prior f(η̃|θ) can be expressed

18More specifically, adopting general notation as in (13)–(15) enables one to describe posterior moments for all
models in terms of common matrix structures.

19For notational convenience we exclude z0 as a conditioning factor in conditional posteriors of the MCMC
algorithm since, as previously discussed, initial conditions are predetermined using Winter’s approach.
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as:

f(y|z,θ) ∝ |Σε|−
1
2 exp

(
−(ỹη̃ −X2η̃)′Σ−1ε (ỹη̃ −X2η̃)

2

)
, (16)

and

f(η̃|θ) ∝ |Dη̃|−
1
2 exp

(
−
η̃′D−1η̃ η̃

2

)
, (17)

where ỹη̃ = ỹ −X0z0 −X1ζ̃.

Next, using Bayes’ rule to combine (16) with (17) and applying standard regression results

(e.g., Koop et al. (2007)) yields:

f(η̃|y, z−η̃,θ) ∝ exp

(
−

(ỹη̃ −X2η̃)′Σ−1ε (ỹη̃ −X2η̃) + η̃′D−1η̃ η̃

2

)
,

∝ exp

− η̃′
(
X

′
2Σ−1ε X2 + D−1η̃

)
η̃ − 2ỹ′η̃Σ

−1
ε X2η̃

2

 ,

= exp

(
−
η̃

′
D−1η̃ η̃ − 2d′η̃D

−1
η̃ η̃

2

)
.

The expression above reveals a Gaussian kernel for η̃|y, z−η̃,θ ∼ N
(
dη̃,Dη̃

)
, where

Dη̃ =
(
X

′
2Σ−1ε X2 + D−1η̃

)−1
and dη̃ = Dη̃X

′
2Σ−1ε ỹη̃. Now, remember that we defined X2 = Hφ

and Dη̃ = H−1ΣηH
′−1 . Using these two results, it is easy to verify that the precision matrix,

D−1η̃ =
(
H

′

φΣ
−1
ε Hφ + H′Σ−1η H

)
is a sparse matrix with a pentadiagonal structure. To be precise,

this means D−1η̃ contains 5T − 6 non-zero entries, which is substantially less than T 2 non-zero

entries as in the case of full T × T matrix. As a result, we can implement the precision sampler of

Chan and Jeliazkov (2009), which exploits the banded structure of D−1η̃ to expedite computation.

In particular, the authors show how Dη̃ =
(
X

′
2Σ−1ε X2 + D−1η̃

)−1
can be computed using three

steps of O(T ) operations instead of O(T 3) operations, which is what is required if computing(
X

′
2Σ−1ε X2 + D−1η̃

)−1
via brute-force inversion (see e.g., Golub and Van Loan (1983) p. 156).

To illustrate how we adapt the algorithm in Chan and Jeliazkov (2009) for disturbance smooth-

ing, we introduce the following notation: given a lower (upper) triangular T×T non-singular matrix

C and a T × 1 vector b, let C \b denote the unique solution to the triangular system Cx = b ob-

tained by forward (backward) substitution, i.e., C\b = C−1b. Sampling η̃|y, z−η̃,θ ∼ N
(
dη̃,Dη̃

)
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is then conducted following four O(T ) operations:

(1) Chol(D−1η̃ ) = CC′,

(2) x = C \
(
X

′

2Σ−1ε ỹη̃

)
,

(3) dη̃ = C′ \ x,

(4) η̃ = dη̃ + C′ \ u u ∼ N (0, I) .

The first step describes the Cholesky decomposition of D−1η̃ , such that D−1η̃ = CC′. Since D−1η̃ is a

banded matrix, a Cholesky factorization only involves O(T ) operations (see Golub and Van Loan

(1983) p. 156). Step 2 requires solving a triangular system by forward substitution (given that C

is a lower triangular matrix) that entails O(T ) operations as well. Step 3 is equivalent to Step 2,

except that the solution of the triangular system, C′\x, is now obtained by backward substitution.

It is then straightforward to see that Steps 2 and 3 combined, by definition, yield:

dη̃ = C′−1
(
C−1

(
X

′

2Σ−1ε ỹη̃

))
= (CC′)

−1
(
X

′

2Σ−1ε ỹη̃

)
= D−1η̃

(
X

′

2Σ−1ε ỹη̃

)
.

Finally, Step 4 describes an affine transformation of standard normal random vector u. Hence, by

sampling T independent standard normal draws u ∼ N (0, I), one can readily verify that the last

step in the algorithm above returns a T × 1 random vector η̃ ∼ N
(
dη̃,Dη̃

)
. As mentioned earlier,

once we obtained η̃, one can check how the latter is parameterized to recover η. In the case of the

CLARK-MSOE model we have η̃ = H−1η, hence η = Hη̃.

Posterior simulation of f(ζ̃|y, z−ζ̃ ,θ) can be carried out just as described for f(η̃|y, z−η̃,θ),

except that now one needs to combine the likelihood in (16) with the following prior density:

f(ζ̃|θ) ∝ |Dζ̃ |
− 1

2 exp

− ζ̃ ′D−1ζ̃ ζ̃
2

 .

For the sake of brevity, we skip redundant algebraic manipulations and directly present pos-

terior moments associated with f(ζ̃|y, z−ζ̃ ,θ). Formally, we have ζ̃|y, z−ζ̃ ,θ ∼ N
(
dζ̃ ,Dζ̃

)
, where

Dζ̃ =
(
X

′
1Σ−1ε X1 + D−1

ζ̃

)−1
, dζ̃ = Dζ̃X

′
1Σ−1ε ỹζ̃ and ỹζ̃ = ỹ −X0z0 −X2η̃. Note that X1 = Hφ,

D−1
ζ̃

= (HH)′Σ−1ζ (HH) and X
′
1Σ−1ε X1 are all sparse matrices. Therefore, draws of ζ̃ = (HH)−1ζ

can also be quickly obtained adjusting the four O(T ) steps described above to the conditional

posterior mean and variance of ζ̃|y, z−ζ̃ ,θ (i.e., dζ̃ and Dζ̃ respectively). Of course, given ζ̃,

setting ζ = HHζ̃ allows one to recover ζ.
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5.2 Parameter Sampling

Just like state innovations, parameters are also specification contingent. For example, recall that

the loading parameters κτ and κµ appear only in UC models containing two or more correlated

states. Similarly, φ1 and φ2 need to be sampled only in UC models where ct has an autoregressive

representation. Despite such specificities, parameter sampling can be described within a general

framework as well.

To be clear, let θ = {σ2
ε , σ

2
η, σ

2
ζ , κτ , κµ, φ1, φ2} denote the set containing all possible

parameters for any of the UC models discussed in Section 2. Moreover, let θ−σ2 denote any

specification-consistent subset of θ such that variance parameters, σ2
ε , σ

2
η and σ2

ζ , are excluded.

Similarly, let σ2 denote a subset of θ containing specification-consistent variance parameters.

To illustrate, in the case of the CLARK-MSOE model we have θ−σ2 = {φ1, φ2} and σ2 =

{σ2
ε , σ

2
η, σ

2
ζ}. An MCMC sampling scheme for the elements in θ can thus be recast as a two-step

algorithm:

3.1. f(σ2|y, z,θ−σ2),

3.2. f(θ−σ2 |y, z,σ2).

To sample from the distributions above we consider the following independent priors:20

σ2
i ∼ IG(νi, S i) for i = ε, η and ζ; κi ∼ N (0, σ2

i )I(ψ∈Aψ) for i = τ and µ;

φi ∼ N (0, σ2
φi

)I(φ∈Aφ) for i = 1 and 2,

where IG denotes an inverse-gamma density and I(ψ∈Aψ) and I(φ∈Aφ), respectively, represent in-

dicator functions that ensure draws of κi and φi are compatible with an invertible and stationary

reduced form ARIMA representation of the UC models in Section 2. In addition to Proposition

3.1, the exact invertibility (Aψ) and stationary (Aφ) conditions for the UC models adopted in this

paper are discussed in Appendix A.4.

In practice, posterior draws from f(σ2|y, z,θ−σ2) can be obtained by sampling each variance

parameter separately from an inverse-gamma density, i.e., the variance parameters in σ2 are a

posteriori independent. In fact, using standard methods (see e.g., Koop (2003)) one can verify

that:

σ2
i |y, z,θ−σ2

i
∼ IG

(
νi +

T

2
, S̄i

)
for i = ε, η and ζ,

where S̄i = S i +
∑T
t=1 i

2
t

2
for i = ε, η and ζ.

20Prior hyperparameters are discussed in Section 6.1
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Next, draws of the loading and autoregressive parameters require simulating f(θ−σ2 |y, z,σ2).

The latter, however, is not of a known form that one can readily sample from. To circumvent

this issue, we introduce a Metropolis-Hastings step to our algorithm. To do so, note first that

combining the likelihood function in (16) with a joint prior density f(θ−σ2) yields:

log f(θ−σ2 |y, z,σ2) ∝ log

(
− ỹ′∗Σ

−1
ε ỹ∗
2

)
+ log f(θ−σ2),

where ỹ∗ = ỹ −X0z0 −X1ζ̃ −X2η̃. The expression above can be quickly evaluated using sparse

routines implemented in most statistical packages.21 More specifically, draws from f(θ−σ2|y, z,σ2)

are obtained using an independence-chain Metropolis-Hastings step (see, e.g., Tierney (1994))

with proposal density given by N
(
θ̂−σ2 , G−1

)
where a Newton-Raphson method is adopted to

numerically compute the mode (θ̂−σ2) and the negative Hessian (G−1) evaluated at the mode of

f(θ−σ2 |y, z,σ2).

6 Evaluation

In this section we empirically evaluate the effects on forecasting performance that stem from

allowing for different state correlation structures. Even though our focus is on forecasting, we also

present (i) results for trend inflation measures that arise from different correlation structures and

(ii) computational efficiency results for the MCMC algorithm developed in Section 5.

6.1 Data and Priors

Our data set consists of quarterly annualized series for CPI and the implicit price deflators of

real GDP and personal consumption expenditure (PCE). All series range from 1947Q1 to 2015Q2.

Remember that for I(1)-UC and I(2)-UC models, observations correspond to the inflation rate and

(log) price level respectively. Inflation series are constructed using the first difference in logs of

price levels. Figure 2 shows the data used in our empirical exercise.

Priors are selected to balance three criteria: (i) to facilitate comparison across models; (ii) to be

relatively uninformative; and (iii) to follow recommendations from previous studies. For example,

in keeping with previous forecasting studies (e.g., Stock and Watson (2007), Chan (2013) and Clark

21Depending on the UC model specification, parameters in θ−σ2 show up in different parts of the measurement
equation in (13). In the CLARK-MSOE model, for example, recall from our previous discussion that θ−σ2 =

{φ1, φ2}, X0 = ((HH)
−1

HφHι0 (HH)
−1

Hφι0), and X1 = X2 = Hφ. Nonetheless, regardless of the specification,
all such matrices are banded. Once again, the interested reader is referred to technical Appendix A.5, for a detailed
description of the exact structures underlying the matrices in the disturbance-based parameterization of all UC
models employed in this paper.
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Figure 2: U.S. Quarterly Measures of Annualized Price Level and Inflation from 1947Q1 to 2015Q2
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Note: Shaded regions indicate recessions as recorded by the NBER

and Doh (2014)) we follow the practice of using inverse-gamma priors for variance parameters with

hyperparameters calibrated to reflect reasonably uninformative priors. An exception to that is σ2
η

for I(2)-UC models. In particular, we follow the recommendation in Zarnowitz and Ozyildirim

(2006), who suggest filtering I(2) processes with a UC representation that assigns quite small

conditional variance of the trend level state (i.e., τt).
22 In addition, for the AR coefficients, we

follow Garnier et al. (2015), who parameterize the joint prior density of φ1 and φ2 tightly around

zero to forecast inflation. Table 2 summarizes prior densities for each model.

22In fact, such an assumption leads to a UC model that approximates a parametric representation of the widely
used (non-parametric) Hodrick-Prescott filter (see Harvey and Jaeger (1993) for details).
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Table 2: Priors

Model σ2
ε σ2

η σ2
ζ κτ κµ φ1 φ2

Local Level-SSOE IG(10, 9) – – N (0, 10) – – –
Local Level-MSOE IG(10, 9) IG(10, 9) – – – – –
MNZ-SSOE IG(10, 9) – – N (0, 10)I(ψ∈Aψ) – N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(φ∈Aφ)
MNZ-MSOE(UR) IG(10, 9) IG(10, 9) – N (0, 0.49) – N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(φ∈Aφ)
MNZ-MSOE IG(10, 9) IG(10, 9) – – – N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(φ∈Aφ)
Local Linear Trend-SSOE IG(10, 9) – – N (0, 10)I(ψ∈Aψ) N (0, 10)I(ψ∈Aψ) – –
Local Linear Trend-RSOE IG(10, 9) – IG(10, 9) N (0, 10)I(ψ∈Aψ) – – –

Local Linear Trend-MSOE IG(10, 9) IG(10, 9−10
6
) IG(10, 9) – – – –

CLARK-SSOE IG(10, 9) – – N (0, 10)I(ψ∈Aψ) N (0, 10)I(ψ∈Aψ) N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(ψ∈Aφ)
CLARK-RSOE IG(10, 9) – IG(10, 9) N (0, 10)I(ψ∈Aψ) – N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(φ∈Aφ)
CLARK-MSOE IG(10, 9) IG(10, 9−10

6
) IG(10, 9) – – N (0, 0.01)I(φ∈Aφ) N (0, 0.01)I(φ∈Aφ)

6.2 The Forecasting Algorithm

We now use all models listed in Table 1 to carry out a recursive forecasting exercise for the series

in Figure 2.23 Inflation forecasts are generated for the periods from 1971Q1 through 2015Q2 and

assessed on their k-step-ahead point and density prediction performance for k = 1, 2, 4, 8, 12, 16.

To measure point forecast accuracy we compute the root mean square forecast error (RMSFE)

associated with each model. Density forecasts are evaluated in terms of predictive log-scores.

To gauge the statistical significance of the differences in forecasting performance and in keeping

with recent studies (see, e.g., Bauwens et al. (2014), Clark and Doh (2014), Clark and Ravazzolo

(2014) and Garnier et al. (2015)) we report results for the Diebold and Mariano (1995) t-test based

on a quadratic loss function that, under the null hypothesis, postulates equivalent forecasting

accuracy between competing models. Such a test is applied for both RMSFE and predictive log-

score results.24 To control for serial correlation in forecast errors, as in Clark and Doh (2014),

standard errors of t-statistics for the Diebold and Mariano (1995) test are computed using a

heteroskedasticity and autocorrelation-consistent with pre-whitened quadratic spectral estimator.

To generate inflation forecasts we conduct a predictive simulation exercise along the lines of

Cogley et al. (2005) adapted to the disturbance-based parametrization discussed in Section 5.

To illustrate, let yt denote the log of a price level measure, such that ∆yt+k denotes the k-step-

ahead inflation forecast (i.e., yt+k − yt+k−1). Also, let y1:t and z1:t = {η1:t, ζ1:t} denote vectors

containing data and state innovations up to time t, respectively. Therefore, using standard results

for conditional probability, a k-step-ahead predictive density for ∆yt+k can be expressed as:

f(∆yt+k|y1:t) =

∫
F

k∏
s=1

f(∆yt+s|y1:t+s−1, z1:t+k,θ)f(zt+1:t+k|y1:t, z1:t,θ)f(z1:t,θ|y1:t)dF ,

23See Marcellino et al. (2006) for details on the benefits of using iterated rather than direct step-ahead forecasting
methods.

24See, e.g., Clark and Doh (2014), Clark and Ravazzolo (2014) and Garnier et al. (2015) for recent applications
of the Diebold and Mariano (1995) test to assess differences in density forecasting performance.
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where

F =

{z1:t+k,θ} if k = 1,

{yt+1:t+k−1, z1:t+k,θ} if k > 1.

In practice, however, it is not possible to analytically evaluate the high-dimensional integral above.

A common approach to circumvent this issue is to apply Monte Carlo integration techniques to

approximate f(∆yt+k|y1:t) numerically. Specifically, a central limit theorem can be evoked (see,

e.g., Geweke (1992)) to generate the following Rao-Blackwellized estimator of f(∆yt+k|y1:t):

f̂(∆yt+k|y1:t) =
1

R

R∑
r=1

f(∆yt+k|y1:t,F (r))
d−→

∫
F

Step 3︷ ︸︸ ︷
k∏
s=1

f(∆yt+s|y1:t+s−1, z1:t+k,θ)

Step 2︷ ︸︸ ︷
f(zt+1:t+k|y1:t, z1:t,θ)

Step 1︷ ︸︸ ︷
f(z1:t,θ|y1:t) dF .

Therefore, f̂(∆yt+k|y1:t) can be constructed by averaging values of the predictive likelihood inside

the summation above over R replications of our predictive simulator. In our forecasting exercise

we set R = 25000 and discard the first 5000 burn-in draws. Importantly, since ∆yt+k|y1:t,F is

normally distributed, then for every r-th MCMC draw of F (i.e., F (r)) one can readily evaluate

f(∆yt+k|y1:t,F (r)) to approximate f(∆yt+k|y1:t). Our predictive sampler can be summarized as

follows:

Given information up to time t we (sequentially):

Step 1: Simulate parameters (θ) and the vector of innovations (z1:t) from the posterior density,

f(z1:t,θ|y1:t), at each r-th iteration of the MCMC algorithm discussed in Section 5.

Step 2: Simulate innovations in zt+1:t+k from the normal predictive density, f(zt+1:t+k|y1:t, z1:t,θ),

using second moment parameters obtained in Step 1.

Step 3: Simulate forecasts, ∆yt+1:t+k = {∆yt+1, ...,∆yt+k}, from the normal predictive likelihood,

f(∆yt+1:t+k|y1:t, z1:t+k,θ) =
∏k

s=1 f(∆yt+s|y1:t+s−1, z1:t+k,θ), using innovations and parameters

generated in Steps 1 and 2.

Once the algorithm above is performed R times, post burn-in draws of ∆yt+k (stored in Step

3) provide an approximation of the predictive density f(∆yt+k|y1:t). Such draws can then be used

to construct point and density forecasts that account for data up to point t. Moving forward

one period and repeating Steps 1 through 3 R times produces a new set of (point and density)

forecasts, except now using information up to point t + 1. We keep iterating in this fashion until

point T − 1 to generate RMSFE and predictive log-scores results reported below.

25



Importantly, note that Step 3 can be carried out using a forecasting specification expressed

in terms of innovations. For concreteness, consider again the CLARK-MSOE model. Remember

from Section 2.2 that µt = µt−1 + ζt, c̃t = (1−L)ct+ηt and φ(L)ct = εt, then pre-multiplying both

sides of the measurement equation in (3a) by φ(L) and moving it t+ k periods forward gives:

φ(L)∆yt+k = φ(L)µt+k + φ(L)c̃t+k

= φ(1)µ0 + φ(L)
t+k∑
j=1

ζj + φ(L)ηt+k + (1− L)εt+k.

The second expression above indicates that (point and density) forecasts for ∆yt+k can be obtained

from an ARIMA process written in terms of UC model innovations. In particular, {ηj, ζj}tj=1

and φ(L) are obtained from our MCMC sampler (Step 1);25 {ηt+s, ζt+s}ks=1 are simulated from

ηt+s ∼ N (0, σ2
η) and ζt+s ∼ N (0, σ2

ζ ) (Step 2). Therefore, ∆yt+s for s = 1, ..., k can be generated

sequentially by simulating εt+s ∼ N (0, σ2
ε) and treating {ηj, ζj}t+sj=1 as predetermined variables

(Step 3).

It is easy to see that analogous algebraic steps can be applied to all other UC models to obtain

a predictive parameterization in terms of innovations. Of course, in-sample correlation structure

between states is preserved out-of-sample. In other words, only innovations entering the model are

simulated in Step 2 of the predictive sampler described above.

6.3 Results: Point Forecasts

To compare point forecast accuracy across models we compute the RMSFE for each k-step-ahead

prediction defined as

RMSFE =

√√√√∑T−k
t=t0

(
∆yot+k − Ê(∆yt+k|y1:t)

)2
T − k − t0 + 1

,

where ∆yot+k denotes the actual value of inflation that is known at time t+ k, while t0 and T − k
denote the first and last forecast generated respectively.26 In particular, we set t0 =1971Q1 and

T =2015Q2. An estimate of the mean of f(∆yt+k|y1:t), Ê(∆yt+k|y1:t), is constructed by averaging

over R draws of ∆yt+k generated using the predictive simulation algorithm described in Section

25Again, initial conditions (τ0, µ0), as discussed previously, are obtained using the exponential smoothing ap-
proach of Winters (1960).

26To keep the discussion in Sections 6.3 and 6.4 consistent with the presentation of the forecasting algorithm in
Section 6.2 we refer to ∆yt+k as an inflation forecast. Of course, for forecasts based on I(1)-UC models there is no
need to take first differences of yt to construct the RMSFE and predictive log-score metrics since such specifications
model yt as inflation directly.
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6.2.27

To make comparison of forecast performance across models easier, Table 3 reports RMSFE

results relative to the local level-MSOE model. Specifically, entries in Table 3 denote the ratio of

RMSFE between two competing models, where the RMSFE value in the denominator is always

associated with the local level-MSOE model. Therefore, values less than one represent superior

forecasting performance relative to the benchmark model. For simplicity, and when applicable,

statistical significance results are reported only for models that outperform the local level-MSOE

model. Also, numbers in bold denote the best performing model for a specific forecast horizon.

Overall, results in Table 3 indicate that the orthogonality assumption seems suitable for short

horizons. In particular the baseline local level-MSOE model is the best performing model for

both CPI and PCE inflation at one-, two- and four-quarter-ahead forecasts. When inflation is

measured using the GDP deflator, the MNZ-MSOE model (i.e., with uncorrelated innovations)

fares slightly better than the benchmark model at one- and two-quarter-ahead predictions. Albeit

small, improvements are statistically significant at the 5% level. In contrast, allowing for correlation

improves point forecast results at longer horizons for all measures of inflation we investigate. In

particular, the local linear trend-RSOE model (i.e., when innovations to yt and τt are perfectly

correlated, but µt is still orthogonal) emerged as the best model for long-run (point) forecasting.

Such a result is likely to reflect the usefulness of smoother measures of trend inflation (see Figure

3) in capturing long-run inflation dynamics, as discussed in, e.g., Chan (2013) and Clark and Doh

(2014). Notably, best performing models generate improvements that are statistically significant

at the 5% level relative to the orthogonal local level model. Also, I(2)-UC models that allow for

some or all innovations to be correlated, such as the local linear trend-SSOE and CLARK-RSOE

variants, outperform both the baseline model and their orthogonal counterparts at two-, three-

and four-year-ahead forecast horizons.

To summarize, results in Table 3 point to two main recommendations: (a) parsimonious UC

models with orthogonal innovations seem appropriate for short-horizon point forecasts; and (b)

for longer horizons, however, forecasting performance can be improved by relaxing the assumption

of orthogonality between innovations. In particular, when looking exclusively at I(2)-UC models,

RSOE and SSOE variants improve forecasting performance upon their orthogonal counterparts at

longer horizons, regardless of the measure of price inflation used.

27Alternatively, one could use other statistics from the simulated f̂(∆yt+k|y1:t) (e.g., median and mode) to
construct the RMSFE. We have also produced RMSFE values based on the posterior median. Results are, however,
broadly unchanged and available upon request.
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Table 3: Relative RMSFEs for U.S. Quarterly Inflation Measures

CPI Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 1.030 1.048 1.040 1.024 1.024 1.035
Local Level-MSOE 1.000 1.000 1.000 1.000 1.000 1.000
MNZ-SSOE 1.030 1.051 1.040 1.023 1.026 1.036
MNZ-MSOE 1.007 1.002 1.001 1.001 1.001 0.998
MNZ-MSOE(UR) 1.055 1.089 1.066 1.042 1.045 1.061
Local Linear Trend-SSOE 1.121 1.008 1.021 0.995 0.979 0.945
Local Linear Trend-RSOE 1.205 1.058 1.021 0.897* 0.869* 0.851*
Local Linear Trend-MSOE 1.164 1.035 1.052 1.036 1.023 0.991
CLARK-SSOE 1.781 1.457 1.307 1.211 1.021 0.977
CLARK-RSOE 1.167 1.032 1.028 0.936 0.906 0.878
CLARK-MSOE 1.401 1.321 1.551 1.301 0.998 0.995

GDP Deflator Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 1.013 1.012 0.991 1.016 1.018 1.021
Local Level-MSOE 1.000 1.000 1.000 1.000 1.000 1.000
MNZ-SSOE 1.012 1.013 0.993 1.019 1.020 1.026
MNZ-MSOE 0.997 0.998 1.000 1.001 1.000 1.001
MNZ-MSOE(UR) 1.044 1.032 0.997 1.030 1.030 1.035
Local Linear Trend-SSOE 1.183 1.106 1.088 0.993 0.983 0.970
Local Linear Trend-RSOE 1.457 1.279 1.156 0.977* 0.956* 0.950*
Local Linear Trend-MSOE 1.183 1.111 1.132 1.048 1.030 1.031
CLARK-SSOE 2.376 1.851 1.559 1.187 1.116 1.134
CLARK-RSOE 1.374 1.220 1.146 0.989 0.969 0.965
CLARK-MSOE 1.431 1.231 1.222 1.200 1.003 0.999

PCE Deflator Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 1.017 1.030 1.023 1.020 1.022 1.026
Local Level-MSOE 1.000 1.000 1.000 1.000 1.000 1.000
MNZ-SSOE 1.020 1.030 1.024 1.016 1.018 1.025
MNZ-MSOE 1.003 1.003 1.004 1.002 1.008 0.999
MNZ-MSOE(UR) 1.041 1.059 1.047 1.036 1.040 1.051
Local Linear Trend-SSOE 1.179 1.063 1.037 0.994 0.990 0.970
Local Linear Trend-RSOE 1.283 1.106 1.021 0.912* 0.910* 0.892*
Local Linear Trend-MSOE 1.196 1.082 1.061 1.029 1.025 1.006
CLARK-SSOE 2.098 1.538 1.331 1.106 1.104 1.038
CLARK-RSOE 1.242 1.079 1.025 0.933 0.931 0.908
CLARK-MSOE 1.401 1.321 1.551 1.301 0.998 0.995

* indicates superior forecast performance relative to the local level-MSOE model at the 5%

level of significance using a Diebold and Mariano (1995) test for equivalence in squared

forecast errors.
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6.4 Results: Density Forecasts

As seen in Table 3, while the choice of the correlation structure affects point forecast accuracy,

differences induced by such different structures are in many cases small. This is, perhaps, un-

surprising since point forecasts overlook the uncertainty surrounding such type of estimates. A

simple way to illustrate this point is to think of two Gaussian predictive densities that display

equivalent means but differ in terms of their variances. In an RMSFE sense, predictions from

both densities are equivalent. On the other hand, when using forecast metrics that incorporate

uncertainty around the prediction location, then the predictive accuracy between such densities

would differ commensurate with their difference in variances.

Now, recall from our discussion in Section 3 that in a Bayesian setting there is a direct con-

nection between the length (or volume) of the support of a predictive density and the amount of

parameter uncertainty a UC model accommodates, as measured in terms of the restrictions a UC

model specification imposes over its corresponding reduced form ARIMA parameter space. Since

changes in the correlation structure alter the parameter space over that f(∆yt+k|y1:t) is defined,

then forecast metrics that incorporate information within the full support of f(∆yt+k|y1:t) are,

in principle, more likely to reflect implications between out-of-sample performance and the error

correlation structure that may be silent in a point forecasting framework.

A natural candidate to evaluate density forecasts is the sum of log predictive likelihoods:28

T−k∑
t=t0

log f̂(∆yot+k|y1:t),

where f̂(∆yot+k|y1:t) is computed using the predictive algorithm in Section 6.2. The rationale

underlying the metric above is that if actual inflation outcome, ∆yot+k|y1:t, is unlikely under the

density forecast, f(∆yot+k|y1:t), then the value of log(f(∆yot+k|y1:t)) will be small. Therefore, larger

values of the sum of log predictive likelihoods indicate superior forecast performance. As before,

for easy comparison, we present density forecast results relative to a baseline model given by the

local level-MSOE model. Specifically, entries in Table 4 denote the difference between the sum of

log predictive likelihoods from a competing model relative to the sum of log predictive likelihoods

from the baseline model. Therefore, positive numbers denote superior forecasting performance

relative to the local level-MSOE model.

Overall, results in Table 4 reinforce the idea that modeling state correlation unambiguously

affects density forecast performance at all horizons. In particular, the local level-SSOE is the best

model for 1Q-ahead forecast, while the local linear trend-RSOE emerged as the best model for

28See, e.g., Geweke and Amisano (2011) for a discussion on the predictive likelihood and its usefulness as a model
comparison device.
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medium to longer forecasting horizons. As in the point forecast context, improvements for the

best performing models are also statistically significant at the 5% level relative to the orthogonal

local level baseline.

6.5 Correlation and Measures of Trend Inflation

In this section we report measures of trend CPI inflation (posterior median) for all models. All

results presented in this section and the next are based on 250000 posterior draws after a burn-in

step of 25000 using the MCMC algorithm described in Section 5.

Figure 3 shows that differences in trend inflation between MSOE and SSOE variants are minor.

Trend inflation measures based on SSOE models are slightly more erratic than MSOE variants.

Such a result most likely reflects the fact that latent components in the SSOE case are recovered

from a unique source of randomness that encompasses all explained variability in inflation (or the

price level). When comparing measures of trend inflation between MNZ-MSOE(UR) (which allows

for imperfect correlation between ct and τt) and its SSOE counterpart, differences are virtually

imperceptible. One possible explanation for this result is presented in Figure 4, which shows that

the implied posterior correlation between τt and ct piles up near the (positive) perfect correlation

region.

Another result is the fact that RSOE variants produce quite different measures of trend inflation

relative to all other UC models. In particular, RSOE models produce measures of trend inflation

that are quite smooth. As such, to the extent that smoother measures of trend inflation are

preferable for policy analysis (see, e.g., Castelnuovo et al. (2014)), RSOE UC models can be

perceived to provide more suitable correlation structures. From a statistical viewpoint (or in terms

of the signal to noise ratio), such smoothness suggests that treating unexplained variability in the

price level and in trend price level as purely measurement errors (which is essentially what RSOE

variants do) provides a filtering strategy such that µt (i.e., trend inflation for I(2)-UC models)

reflects only strong signals from changes in the price level.

6.6 Computation Efficiency

To assess the performance of an MCMC sampler, a common approach is to verify its mixing

properties. In this sense, an MCMC algorithm with good mixing properties is one that allows

the researcher to interpret parameter draws as independent realizations of a random variable.

Consequently, an algorithm that produces strongly autocorrelated draws provides a clear indication

of sampling inefficiency (or, equivalently, slow mixing).
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Table 4: Sum of Log Predictive Likelihoods for U.S. Quarterly Inflation Measures

CPI Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 31.5* 29.1 26.6 19.1 16.4 17.8
Local Level-MSOE 0.0 0.0 0.0 0.0 0.0 0.0
MNZ-SSOE 7.7 5.1 9.3 9.2 6.1 4.3
MNZ-MSOE(UR) 13.6 16.1 18.7 18.1 20.3 11.1
MNZ-MSOE -7.3 -10.2 -26.1 -13.1 9.1 5.2
Local Linear Trend-SSOE 14.3 12.1 13.2 10.4 9.7 15.6
Local Linear Trend-RSOE 11.7 13.5 49.0* 40.8* 30.1* 29.1*
Local Linear Trend-MSOE -12.4 -10.1 -16.4 -20.4 -28.9 -41.4
CLARK-SSOE 27.1 40.1* 41.1 39.1 27.4 26.1
CLARK-RSOE 29.1 39.8 24.9 29.6 38.8 39.1
CLARK-MSOE -15.5 11.2 12.6 19.1 6.1 10.8

GDP Implicit Price Deflator Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 33.1* 24.2 23.1 21.9 19.1 19.8
Local Level-MSOE 0.0 0.0 0.0 0.0 0.0 0.0
MNZ-SSOE 7.4 7.2 8.1 8.3 7.7 5.1
MNZ-MSOE(UR) 14.1 17.2 15.9 18.5 19.3 11.7
MNZ-MSOE -9.1 -13.6 -25.8 -18.2 3.1 2.0
Local Linear Trend-SSOE 14.3 14.7 11.9 20.1 17.4 13.1
Local Linear Trend-RSOE 10.1 18.9 28.5 38.9* 35.0* 32.7*
Local Linear Trend-MSOE -9.4 -12.4 -11.7 -16.5 -18.4 -30.8
CLARK-SSOE 29.1 37.7* 36.5* 34.1 29.1 24.9
CLARK-RSOE 22.5 29.1 25.4 21.5 30.3 29.5
CLARK-MSOE -8.9 4.2 6.9 15.7 9.3 11.4

PCE Implicit Price Deflator Inflation

Forecast Horizon

Model 1Q 2Q 1 Year 2 Years 3 Years 4 Years

Local Level-SSOE 35.1* 25.3 23.1 29.4 19.1 20.9
Local Level-MSOE 0.0 0.0 0.0 0.0 0.0 0.0
MNZ-SSOE 6.1 6.5 10.9 11.2 8.3 9.1
MNZ-MSOE(UR) 11.3 18.2 15.7 18.7 21.9 20.2
MNZ-MSOE -8.9 -11.1 -16.5 -17.3 8.2 7.1
Local Linear Trend-SSOE 11.4 19.9 41.9* 34.1 37.1 33.1
Local Linear Trend-RSOE 19.1 23.1 34.5 37.9* 41.4* 44.6*
Local Linear Trend-MSOE -10.1 -18.9 -11.3 -12.1 -18.9 -36.4
CLARK-SSOE 17.9 33.3* 36.1 35.3 29.1 30.6
CLARK-RSOE 17.9 16.7 22.1 26.1 37.4 38.9
CLARK-MSOE -5.1 3.2 4.6 9.6 6.1 7.2

* indicates superior forecast performance relative to the local level-MSOE model at the 5%

level of significance using a Diebold and Mariano (1995) test for equivalence in squared

forecast errors.
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Figure 3: U.S. Quarterly Measures of Annualized Trend (CPI) Inflation
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Figure 4: Kernel Smoothed Density for the Correlation between τt and ct under MNZ-MSOE(UR)
Model
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In the context of state space models, the high dimensionality associated with the conditional

posteriors in the state (or disturbance) smoothing steps can lead to poor mixing performance.

Inefficient sampling can also be encountered when the conditional variance for any of the latent

components is close to zero (see e.g., Frühwirth-Schnatter (2004) and Frühwirth-Schnatter and

Wagner (2010)). The latter can particularly be an issue for I(2)-UC models since the conditional

variance of yt is decomposed into three stochastic processes with (at least) one of them typically

exhibiting near-zero conditional variance.

In practice, one alternative to improve MCMC simulation efficiency for UC models is to repa-

rameterize the standard state-based representation given in Section 2.29 Therefore, although UC

models are reparameterized in this paper to address rank-reduction issues, a natural question is

whether or not the disturbance-based parameterization combined with precision sampling tech-

niques – discussed in Section 5 – lead to an MCMC sampler with good mixing properties. To

address such questions we report inefficiency factors of the posterior draws for all parameters and

innovations using a common metric (see, e.g., Chib (2001)) given by:

1 + 2
J∑
j=1

ρj,

where ρj is the sample autocorrelation at lag j through lag J . In our empirical application we set J

to be large enough until autocorrelation tapers off. Clearly, in an ideal setting where MCMC draws

are virtually independent draws, inefficiency factors should be one. As a rule of thumb, inefficiency

factors around twenty based on the metric above are typically interpreted as an indication of fast

mixing.30 Table 5 reports the inefficiency factors for parameter draws associated with each of the

eleven models. Figure 5 and Figure 6 report inefficiency factors for the T × 1 disturbance vectors

η and ζ for I(1) and I(2)-UC models, respectively, when disturbance smoothing is required (i.e.,

RSOE and MSOE variants). Notably, for disturbance smoothing, instead of reporting inefficiency

factors for each one of the T elements in η and ζ, we follow Chan (2015) and use boxplots to

summarize inefficiency factor results. In particular, the middle line denotes the median inefficiency

factor based on a sample of inefficiency factors for each element in η and ζ constructed using post

burn-in MCMC draws. Similarly, lower and upper lines respectively represent the 25 and 75

percentiles, while whiskers extend to the maximum and minimum inefficiency factors. All in all,

our results below suggest that the algorithm developed in Section 5 is quite efficient in terms of

generating parameters and innovations draws that are not strongly autocorrelated.

29For example, Papaspiliopoulos et al. (2003), Frühwirth-Schnatter (2004) and Frühwirth-Schnatter and Wagner
(2010) discuss how MCMC sampling efficiency improvements can be achieved by parameterizing UC models with
variance parameters in the measurement rather than state equations.

30Another way to interpret the inefficiency factor adopted here is to think that an inefficiency factor of 100 means
that approximately 10000 posterior draws are required to convey the same information as 100 independent draws.
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Figure 5: Inefficiency Factors for Disturbance Smoothing (I(1)-UC Models)
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Figure 6: Inefficiency Factors for Disturbance Smoothing (I(2)-UC Models)
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Table 5: Inefficiency Factors for Parameter Sampling

Model σ2
ε σ2

η σ2
ζ κτ κµ φ1 φ2

Local Level-SSOE 1.99 – – 1.27 – – –
Local Level-MSOE 7.33 10.17 – – – – –
MNZ-SSOE 2.11 – – 2.05 – 1.73 1.22
MNZ-MSOE(UR) 2.49 17.15 – 10.06 – 4.56 5.21
MNZ-MSOE 8.21 13.23 – – – 8.41 5.27
Local Linear Trend-SSOE 3.11 – – 3.10 13.17 – –
Local Linear Trend-RSOE 1.77 – 11.32 6.41 – – –
Local Linear Trend-MSOE 9.91 18.41 3.82 – – – –
CLARK-SSOE 1.85 – – 5.19 6.01 3.01 1.73
CLARK-RSOE 3.14 – 13.34 5.08 – 1.45 2.10
CLARK-MSOE 7.11 1.99 20.77 – – 6.10 6.31

In addition to inefficiency factors, other metrics of interest to assess MCMC sampling perfor-

mance are the acceptance ratio on the proposal density in the Metropolis-Hastings step as well

as computational speed of our algorithm. Acceptance rates range from 70% to 90% depending on

the model, thus suggesting that the Gaussian proposal well approximates the conditional posterior

density of θ−σ2 |ỹ, z,σ2. In terms of computational speed, estimation of all eleven UC models —

where 10000 draws are sampled for each model — takes less than 180 seconds.

7 Concluding Remarks and Extensions

In this paper we have studied the relationship between state correlation and out-of-sample perfor-

mance within a Bayesian framework. Given the recent interest in the literature on UC models to

forecast inflation, we focused on such class of state space models. In our empirical application we

used inflation measures based on the CPI and the real GDP and PCE price deflators.

Following a substantial forecasting exercise, we demonstrated that modeling state correlation

has relevant effects with regard to forecasting performance. Specifically, allowing for correlated

state variables generated statistically significant improvements in both point and density forecasts

relative to the usual orthogonal UC model counterparts. In particular, a new approach to model

state correlation that combines features from orthogonal as well as perfectly correlated states

emerged as one of the best performing models in terms of both point and density forecasts. Such

a variant also generates smooth measures of trend inflation, which is typically a desirable feature

for policy analysis.
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Another contribution from this paper was to develop a new algorithm based on precision

sampling techniques and properties of Toeplitz matrices to conduct fast MCMC simulation of UC

models with full and reduced rank covariance matrices. In our study, rank reduction stemmed

from allowing for perfect correlation between two or more states. For future research, it would be

interesting to extend the models and algorithms developed here to incorporate other important

features for forecasting, such as stochastic volatility, as well as to formulate multivariate versions

of the UC models entertained in this study.
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A Appendix

A.1 Proof of Proposition 3.1

To prove part 3.1(a), recall first that the local linear trend-MSOE model in section 2.2 can be

represented as a sum of three MA processes:

∆2yt = ζt + ηt − ηt−1 + εt − 2εt−1 + εt−2.

To obtain the RSOE variant we set ηt = κτεt. Therefore the expression above can be recast as:

∆2yt = ζt +
[
κτ (1− L) + 1− 2L+ L2

]
εt. (18)

The existence of a reduced form ARIMA(0,2,2) representation follows from Granger’s lemma (see

Granger and Newbold (1986), p. 28-30). To be precise, note that the expression in the right-hand

side of (18) denotes the sum of two independent MA processes, namely an MA(0) (i.e., ζt) and

an MA(2) (i.e., [κτ (1− L) + 1− 2L+ L2] εt) process. Granger’s lemma, thus, ensures that the

resulting process will be an MA(q) polynomial such that q = max(0, 2) = 2.

Next, to show that the resulting reduced form ARIMA specification is invertible, we apply

Corollary 1.2. to Theorem 1 in Teräsvirta (1977), which states that the sum of seemingly unrelated

MA polynomials is invertible if at least one of the polynomials is a white noise process. The latter

is satisfied by the assumption: ζ
i.i.d.∼ N (0, σ2

ζ ).

The proof of claim 3.1(b) follows an analogous strategy. Akin to the local linear trend model,

straightforward algebraic manipulations to the CLARK-MSOE model in Section 2.2 yield an equiv-

alent representation in terms of MA polynomials:

φ(L)∆2yt = φ(L)ζt + φ(L)(1− L)ηt + (1− L)2εt.

Using the fact that ηt = κτεt gives us:

φ(L)∆2yt = φ(L)ζt +
[
κτφ(L)(1− L) + (1− L)2

]
εt.

By virtue of Granger’s lemma, the right-hand side in the expression above has an MA(3) reduced

form representation. Note that the AR polynomial in the left-hand side of the representation above

is identical to an AR polynomial of an otherwise reduced form ARIMA representation. Therefore,

ensuring that the roots of φ(L) = (1 − φ1L − φ2L
2) lie outside the unit circle ensures that the

CLARK-RSOE model has a stationary ARIMA (2,2,3) representation.

To ensure the resulting MA polynomial is invertible, we use Theorem 1 in Teräsvirta (1977),
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which states that the sum of two or more (possibly correlated) MA polynomials is invertible if and

only if such polynomials do not share common roots of modulus one. The latter is satisfied by not-

ing that the stationarity condition of the AR polynomial precludes φ(±1) = 0. Therefore, as long

as ct is a stationary state, the MA polynomials above, φ(L)ζt and [κτφ(L)(1− L) + (1− L)2] εt,

do not share such type of roots.

A.2 Proof of Proposition 4.1

First, note that simple application of Bayes’ rule (and omitting initial conditions to make notation

less cumbersome) yields:

f(z|y,θ) =
f(y, z|θ)

f(y|θ)
,

f(θ|y, z) =
f(y, z|θ)f(θ)

f(y, z)
,

where f(y, z|θ) denotes the complete-data likelihood function. Clearly, f(y, z|θ) enters the kernel

of both conditional posterior densities above. Thus, showing that the covariance matrix associated

with the complete-data likelihood function is not invertible validates the claim in Proposition 4.1.

To do so, we prove Proposition 4.1 by contradiction. Since all models entertained in this paper are

linear Gaussian, let y, z|θ ∼ N (a, A) and assume A denotes a nonsingular covariance matrix.

Therefore, using standard results in matrix algebra (see, e.g., Anderson (1984)) we partition A,

such that:

A =

(
A11 A12

A21 A22

)
,

where A11 and A22 are symmetric submatrices denoting covariance matrices corresponding to

some partition of the elements in z. Moreover, matrix inversion results (see, e.g., Theorem A.3.3

in Anderson (1984)), yield:

A−1 =

(
(A11 −A12A22

−1A21)−1 −(A11 −A12A22
−1A21)−1A12A22

−1

−A22
−1A12(A11 −A12A22

−1A21)−1 A22
−1A21(A11 −A12A22

−1A21)−1A12A22
−1 + A22

−1

)
.

Now, recall that z = {τ ,µ}. Since y, τ and µ are exchangeable random vectors, then a feasible

partition of A describing the same joint density, y, τ ,µ|θ ∼ N (a, A), is one that assigns the joint

covariance matrix of µ|θ to A11 and the joint covariance matrix of y, τ |θ to A22. To complete

the proof, it suffices to remember that perfect correlation between y|θ and τ |θ, which occurs in

both SSOE and RSOE variants, introduces singularity to A22 through row and column-wise linear

dependence, which in turn makes A non-invertible (since A22
−1 cannot be constructed), thus,
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contradicting A being nonsingular. Since A cannot be inverted, it is rank-deficient.

A.3 Derivation of the Restrictions Over the MA Parameter Space

Shown in Figure 1

In this section we show how to obtain the nonlinear restrictions over the MA parameter space as

shown in Figure 1. To that end, for the MSOE and RSOE variants we take a similar approach

to that in, e.g., Watson (1986) and Harvey (1989), thereby comparing the autocorrelation func-

tion generated by the local linear trend model with its corresponding (unrestricted) reduced form

counterpart. Remember, underpinning such comparison is the fact that UC models can also be

perceived as structural representations of an ARIMA model. Hence, let ρ(s) denote the autocor-

relation function associated with the reduced form ARIMA (0,2,2) in (6) and its corresponding

representation given in (5), i.e., in terms of the local linear trend model parameters. Thus, we

have:

ρ(s) =


ϕ1(1+ϕ2)

1+ϕ2
1+ϕ

2
2

= − σ2
η+4σ2

ε+4σηε+2σζε+σηζ
2σ2
η+6σ2

ε+σ
2
ζ+2σηζ+6σηε+2σζε

if s = 1,

ϕ2

1+ϕ2
1+ϕ

2
2

=
σ2
ε+σηε+σζε

2σ2
η+6σ2

ε+σ
2
ζ+2σηζ+6σηε+2σζε

if s = 2,

0 if s ≥ 3,

(19)

where σi,j = Cov(i, j), for i 6= j and i, j = ηt, ζt, and εt. Next, we apply the correlation restrictions

implied by the local linear trend-MSOE and -RSOE variants to the system above to derive the

restrictions (over the MA space) associated with these two models.

• Local Linear Trend-MSOE

Setting σηε = σηζ = σζε = 0 in the 1st and 2nd autocorrelations expressions in (19) and

rearranging terms yields:

ϕ1 = − (4 + q)
ϕ2

1 + ϕ2

, (20a)

ϕ2 = g1σ
2
ε , (20b)

where q =
σ2
η

σ2
ε
> 0 and g1 =

1+ϕ2
1+ϕ

2
2

2σ2
η+6σ2

ε+σ
2
ζ
> 0. Using these two positive constraints, then, from

(20b) it is to easy verify that the local linear trend-MSOE model can only generate values of ϕ2

such that ϕ2 > 0. Next, using ϕ2 > 0 and −(4 + q) < 0 in (20a) yields ϕ1 < 0. Therefore, the

local linear trend-MSOE model is compatible with reduced form MA parameters located only in

the ϕ1 < 0 and ϕ2 > 0 quadrant. To pin down the exact restrictions, note that equation (20a)

describes a hyperbola in the (ϕ1, ϕ2) space with eccentricity (i.e., degree of flatness) controlled by

−(4+ q) ∈ (−∞,−4). Consequently, one can numerically evaluate (20a) for a wide range of values
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of −(4 + q) ∈ (−∞,−4) to construct the space denoted by all such hyperbolas that intersect

with the ϕ1 < 0 and ϕ2 > 0 quadrant and the invertibility space (i.e., the triangular region).

The resulting region is the admissibility region of MA parameters for the local linear trend-MSOE

model as shown in the bottom panel in Figure 1.

• Local Linear Trend-RSOE

First, recall that the local linear trend-RSOE model imposes the following: ηt = κτεt;σηε =

κτσ
2
ε ; σ

2
η = κ2τσ

2
ε and σηζ = σζε = 0. Plugging these into (19) and rearranging terms yields:

ϕ1 = −(2 + κτ )
2

1 + κτ

ϕ2

1 + ϕ2

, (21a)

ϕ2 = g2 (1 + κτ )σ
2
ε , (21b)

where g2 =
1+ϕ2

1+ϕ
2
2

(2κ2τ+6+6κτ )σ2
ε+σ

2
ζ
> 0 and κτ ∈ R such that κτ 6= −1. Since the loading parameter,

κτ , can take both negative and positive values, from (21b) one can see that (unlike the MSOE

variant) ϕ2 can now take both negative and positive values. More precisely, it is easy to check that:

ϕ2 < 0 (> 0) if κτ < −1 (> −1). Next, from (21a), again, we have a hyperbola in the (ϕ1, ϕ2)

space. Noting that the eccentricity of such hyperbola is now controlled by − (2+κτ )
2

1+κτ
, such that

− (2+κτ )
2

1+κτ
∈ R+ if κτ < −1 and − (2+κτ )

2

1+κτ
≤ −4 if κτ > −1, numerical evaluation of such function

for a wide range of eccentricity values generates the compatibility region presented in the center

panel of Figure 1. In particular, the negative constraint to ϕ1 is preserved, since positive values of

ϕ2 coincide with negative values of − (2+κτ )
2

1+κτ
and vice-versa.

• Local Linear Trend-SSOE

SSOE models provide a direct mapping between UC and reduced form ARIMA parameters. We

explore this fact to readily derive the parameter space restrictions for the local linear trend-SSOE

case. Recall first that for such a model we set: ηt = κτεt and ζt = κµεt. Plugging these into (5)

yields:

∆2yt = (κτεt + εt) + (κµεt−1 − εt−1 − 2εt−1) + εt−2,

∆2yt = (1 + κτ ) εt + (κµ − 3) εt−1 + εt−2,

∆2yt = ut + ϕ1ut−1 + ϕ2ut−2,

such that ut = (1 + κτ ) εt, i.e., ut ∼ N (0, (1 + κτ )
2 σ2

ε); ϕ1 = (κµ−3)
(1+κτ )

; and ϕ2 = 1
(1+κτ )

. In other

words, the local linear trend-SSOE model allows one to back out MA coefficients by simply using

estimates of the loading parameters, κτ and κµ. In particular, it is easy to verify that there is a

one-to-one mapping between ϕ2 and κτ as well as between ϕ1 and κµ (for any given value of κτ ).
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Consequently, the SSOE variant opens the (ϕ1, ϕ2) parameter space relative to the restrictions in

the RSOE and MSOE variants. Specifically, as shown in the top panel of Figure 1, the local linear

trend-SSOE model is compatible with the full invertibility space, except for the horizontal axis,

since ϕ2 = 1
(1+κτ )

is not defined at zero.

A.4 Invertibility and Stationarity for SSOE and MSOE Models

Stationarity and invertibility conditions for MSOE models are straightforward. In particular, pos-

itive definiteness of the covariance matrix for the error terms in the MSOE case ensures that the

UC model has a corresponding invertible reduced form ARIMA representation (see e.g., Teräsvirta

(1977) and Harvey (2006)). Stationarity conditions follow — as in Appendix A.1 — from not-

ing the equivalence of the AR polynomial for both the reduced form and UC innovations-based

ARIMA representations. Therefore, the stationarity conditions presented below for SSOE models

are equivalent for MSOE models.

To derive the invertibility and stationarity conditions for SSOE models, once again, we explore

the explicit mapping that exists between such models and their ARIMA representation.

•Local Level-SSOE

Taking first differences of the measurement equation of the local level-SSOE model yields:

∆yt = (1 + κτ )εt − εt−1,

∆yt = ut + ϕ1ut−1,

where ut = (1 +κτ )εt and ϕ1 = − 1
1+κτ

. Therefore, to ensure invertibility we keep draws of κτ that

satisfy
∣∣∣− 1

1+κτ

∣∣∣ < 1.

•Local Linear Trend-SSOE

Taking second differences of the measurement equation of the local linear trend-SSOE model

yields:

∆2yt = (1 + κτ + κµ)εt − (κτ + 2)εt−1 + εt−2,

∆2yt = ut + ϕ1ut−1 + ϕ2ut−2,

where ut = (1 + κτ + κµ)εt, ϕ1 = − κτ+2
1+κτ+κµ

and ϕ2 = 1
1+κτ+κµ

. Therefore, noting that the local

linear trend-SSOE model is observationally equivalent to a reduced-form MA(2) process implies
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that invertibility of the former is ensured by keeping draws of κτ and κµ such that:
− κτ+2

1+κτ+κµ
+ 1

1+κτ+κµ
< 1,

− κτ+2
1+κτ+κµ

− 1
1+κτ+κµ

< 1,∣∣∣ 1
1+κτ+κµ

∣∣∣ < 1,

in other words, the standard invertibility conditions for a reduced form MA(2) process.

•MNZ-SSOE

Recall that we set φ(L) = 1−φ1L−φ2L
2. Taking first difference of the measurement equation

for the MNZ-SSOE model and rearranging terms yields:

φ(L)∆yt = (1 + κτ )εt − (κτφ1 + 1)εt−1 − κτφ2εt−2, (22)

φ(L)∆yt = ut + ϕ1ut−1 + ϕ2ut−2, (23)

where ut = (1 + κτ )εt, ϕ1 = −κτφ1+1
1+κτ

and ϕ2 = − κτφ2
1+κτ

. Therefore, invertibility is ensured by

keeping draws of κτ , φ1 and φ2, such that:
−κτφ1+1

1+κτ
− κτφ2

1+κτ
< 1,

− κτ+2
1+κτ+κµ

+ κτφ2
1+κτ

< 1,∣∣∣− κτφ2
1+κτ

∣∣∣ < 1.

To ensure stationarity of φ(L) note that the AR part in (22) and (23) are the same. Hence, keeping

draws of φ1 and φ2 such that φ1 + φ2 < 1, φ2 − φ1 < 1 and |φ2| < 1 ensures stationarity of the

AR(2) polynomial, φ(L).

•CLARK-SSOE

Taking second differences of the measurement equation of the CLARK-SSOE model yields:

φ(L)∆2yt = (1 + κτ + κµ)εt − (κτφ1 + κµφ1 + κτ + 2)εt−1 + (−κτφ2 − κµφ2 + κτφ1 + 1)εt−2 + κτφ2εt−3,

φ(L)∆2yt = ut + ϕ1ut−1 + ϕ2ut−2 + ϕ3ut−3,

where ut = (1 + κτ + κµ)εt, ϕ1 = − (κτφ1+κµφ1+κτ+2)

1+κτ+κµ
, ϕ2 = −κτφ2−κµφ2+κτφ1+1

1+κτ+κµ
and ϕ3 = κτφ2

1+κτ+κµ
.

Therefore, invertibility is ensured by keeping draws of κτ , κµ, φ1 and φ2 such that the roots of

the MA polynomial, 1 + φ1L + φ2L + φ3L
3, lie outside the unit circle. Also, note that, as in the

MNZ-SSOE case, the AR polynomial for the ARIMA(2,2,3) process above is the same regardless

of whether it is presented in terms of εt (i.e., the SSOE representation of the ARIMA model) or
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ut. Hence, keeping draws of φ1 and φ2 such that φ1 + φ2 < 1, φ2 − φ1 < 1 and |φ2| < 1 ensures

stationarity of the AR(2) polynomial, φ(L).

A.5 Disturbance-Based Parameterization for I(1) and I(2)-UC Models

In this section we show, as claimed in Section 5, that all eleven UC models entertained in this paper

can be recast into a general framework where innovations are moved to the measurement equation

and state equations become white noise processes. Importantly, such a general parameterization

allows one to estimate all models using the algorithm developed in Section 5 for appropriately

defined expressions underlying reduced form matrices and vectors (see below).

In what follows, we adopt a derivation strategy similar to the one presented in (12a)–(12d),

i.e., we apply the commutative property of lower triangular Toeplitz matrices to construct a

disturbance-based parameterization that is conducive to quick MCMC estimation. In the in-

terest of brevity, we do not repeat the algebra for the CLARK-MSOE model here. Also, note that

the derivation starting point for I(2)-UC models is equation (12b). For I(1)-UC models, a slightly

modified version of (12b) is applied:

Hy = ι0τ0 + η + Hc.

It is easy to check that the latter can be seen as the (matrix notation of the) measurement equation

for all I(1)-UC models with both sides pre-multiplied by H and prior to any state correlation

adjustments.

With these ideas in mind and letting \ denote the generalized inverse operator, then adjusting

each UC model according to its correlation structure, as discussed in Section 2, entails straight-

forward algebraic manipulations presented below.

I(2)-UC Models

•CLARK-RSOE

HHy = Hι0τ0 + ι0µ0 + ζ + κτHε+ HHc,

HφHHy = HφHι0τ0 + Hφι0µ0 + Hφζ + (κτHφH + HH) ε,

HφHH(A \ y) = (HφH(A \ ι0) Hφ(A \ ι0)) (τ0 µ0)
′ + Hφ(A \ ζ) + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

44



s.t.



A = κτHφH + HH,

X0 = (HφH(A \ ι0) Hφ(A \ ι0)) ,

X1 = Hφ,

X2 = 0T×T ,

z0 = (τ0 µ0)
′,

ỹ = HφHH(A \ y),

ζ̃ = A \ ζ,

η̃ = 0T×1.

•CLARK-SSOE

HHy = Hι0τ0 + ι0µ0 + κµε+ κτHε+ HHc,

HφHHy = HφHι0τ0 + Hφι0µ0 + (κµHφ + κτHφH + HH) ε,

HφHH(A \ y) = (HφH(A \ ι0) Hφ(A \ ι0)) (τ0 µ0)
′ + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = κµHφ + κτHφH + HH,

X0 = (HφH(A \ ι0) Hφ(A \ ι0)) ,

X1 = 0T×T ,

X2 = 0T×T ,

z0 = (τ0 µ0)
′,

ỹ = HφHH(A \ y),

ζ̃ = 0T×1,

η̃ = 0T×1.

•Local Linear Trend-MSOE

HHy = Hι0τ0 + ι0µ0 + ζ + Hη + HHε,

y = (H \ ι0 (HH) \ ι0) (τ0 µ0)
′ + (HH)\ζ + H\η + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,
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s.t.



A = 0T×T ,

X0 = (H \ ι0 (HH) \ ι0) ,

X1 = I(T×T ),

X2 = I(T×T ),

z0 = (τ0 µ0)
′,

ỹ = y,

ζ̃ = (HH)\ζ,

η̃ = (H)\η.

•Local Linear Trend-RSOE

HHy = Hι0τ0 + ι0µ0 + ζ + κτHε+ HHε,

HHy = Hι0τ0 + ι0µ0 + ζ + (κτH + HH) ε,

HH(A \ y) = (H(A \ ι0) (A \ ι0)) (τ0 µ0)
′ + A \ ζ + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = κτH + HH,

X0 = (H(A \ ι0) (A \ ι0)) ,

X1 = I(T×T ),

X2 = 0T×T ,

z0 = (τ0 µ0)
′,

ỹ = HH(A \ y),

ζ̃ = A \ ζ,

η̃ = 0T×1.

•Local Linear Trend-SSOE

HHy = Hι0τ0 + ι0µ0 + κµε+ κτHε+ HHc,

HHy = Hι0τ0 + ι0µ0 +
(
κµI(T×T ) + κτH + HH

)
ε,

HH(A \ y) = (H(A \ ι0) (A \ ι0)) (τ0 µ0)
′ + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,
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s.t.



A = κµI(T×T ) + κτH + HH,

X0 = (H(A \ ι0) (A \ ι0)) ,

X1 = 0T×T ,

X2 = 0T×T ,

z0 = (τ0 µ0)
′,

ỹ = HH(A \ y),

ζ̃ = 0T×1,

η̃ = 0T×1.

I(1)-UC Models

•MNZ-MSOE

Hy = ι0τ0 + η + Hc,

HφHy = Hφι0τ0 + Hφη + Hε,

H−1HφHy = Hφ(H \ ι0)τ0 + Hφ(H \ η) + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = 0T×T ,

X0 = Hφ(H \ ι0),

X1 = 0T×T ,

X2 = Hφ,

z0 = τ0,

ỹ = Hφy,

ζ̃ = 0T×1,

η̃ = H \ η.

•MNZ-MSOE(UR)

Recall from Section 2.1 that when we do not restrict the correlation between τt and ct we specify

ηt = η∗t + κτεt, such that η∗t ∼ N (0, σ2
η) and Cov(εt, η

∗
t ) = 0. Therefore, using matrix notation we
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have:

Hy = ι0τ0 + η∗ + κτε+ Hc,

HφHy = Hφι0τ0 + Hφη
∗ + (κτHφ + H)ε,

HφH(A \ y) = Hφ(H \ ι0)τ0 + Hφ(A \ η∗) + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = κτHφ + H,

X0 = Hφ(H \ ι0),

X1 = 0T×T ,

X2 = Hφ,

z0 = τ0,

ỹ = HφH(A \ y),

ζ̃ = 0T×1,

η̃ = A\η∗.

•MNZ-SSOE

Hy = ι0τ0 + κτε+ Hc,

HφHy = Hφι0τ0 + (κτHφ + H) ε,

HφH(A \ y) = HφH(A \ ι0)τ0 + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = κτHφ + H,

X0 = HφH(A \ ι0),

X1 = 0T×T ,

X2 = 0T×T ,

z0 = τ0,

ỹ = HφH(A \ y),

ζ̃ = 0T×1,

η̃ = 0T×1.
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•Local Level-MSOE

Hy = ι0τ0 + η + Hε,

y = H \ ι0τ0 + H\η + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = 0T×T ,

X0 = H \ ι0,

X1 = 0T×T ,

X2 = I(T×T ),

z0 = τ0,

ỹ = y,

ζ̃ = 0T×1,

η̃ = H\η.

•Local Level-SSOE

Hy = ι0τ0 + κτε+ Hε,

Hy = ι0τ0 +
(
κτI(T×T ) + H

)
ε,

H(A \ y) = H(A \ ι0)τ0 + ε,

ỹ = X0z0 + X1ζ̃ + X2η̃ + ε,

s.t.



A = κτI(T×T ) + H,

X0 = H(A \ ι0),

X1 = 0T×T ,

X2 = 0T×T ,

z0 = τ0,

ỹ = H(A \ y),

ζ̃ = 0T×1,

η̃ = 0T×1.
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