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Abstract 

The increasing importance of risk management in payment systems has led to the 
development of an array of sophisticated tools designed to mitigate tail risk in these 
systems. In this paper, we use extreme value theory methods to quantify the level of tail 
risk in the Canadian retail payment system (ACSS) for the period from 2002 to 2015. Our 
analysis shows that tail risk has been increasing over the years, but the pace of growth has 
been reduced towards the end of our data sample, which suggests a slower rate of growth 
of collateral required to cover that risk. 

 

Bank topics: Econometric and statistical methods; Financial stability; Payment clearing 
and settlement systems 
JEL codes: G21, G23, C58 

 
Résumé 

L’importance croissante que revêt la gestion des risques dans les systèmes de paiement a 
mené à l’élaboration d’un éventail d’outils destinés à atténuer le risque extrême dans ces 
systèmes. Nous utilisons des méthodes fondées sur la théorie des valeurs extrêmes pour 
quantifier l’ampleur du risque extrême dans le Système automatisé de compensation et de 
règlement (SACR) pour la période allant de 2002 à 2015. Selon notre analyse, le risque 
extrême s’est accru au fil des ans, mais à un rythme qui a ralenti vers la fin de la période 
étudiée, ce qui dénote une diminution du rythme de croissance de la valeur des garanties 
nécessaires pour couvrir ce risque. 

Sujets : Méthodes économétriques et statistiques; Stabilité financière; Systèmes de 
compensation et de règlement des paiements 
Codes JEL : G21, G23, C58 



1 Introduction

Payment systems and other financial market infrastructures (FMIs) are crucial for the smooth

functioning of a financial system. Because of their importance, FMIs must comply with risk man-

agement standards that ensure the financial system operates without any disruptions and that any

potential loss from a default is covered with a high degree of confidence. As such, it is critical that

regulators and policy-makers have confidence when applying risk-management tools.

Currently, central banks and regulators are implementing a set of international risk-management

standards being implemented by central banks and regulators that are designed to improve the

safety and soundness of systemically important payment, clearing and settlement systems. The

Principles of Financial Market Infrastructures (PFMIs) from the Committee on Payments and

Market Infrastructures (CPMI) of the Bank for International Settlements (BIS 2012) serve as

important risk management principles for systemically important FMIs that are being used in nu-

merous countries. In Canada, an additional set of standards has been developed specifically for

prominent payment systems (PPS).1 These standards adopt aspects from the PFMI but are appro-

priately calibrated for PPS. Canada’s retail payment system, the Automated Clearing Settlement

System (ACSS) has been designated by the Bank of Canada as a PPS and, as such, will need to

meet the standards for PPS. For this study, we focus on the PPS standard for credit risk, which

states "A PPS should effectively measure, monitor and manage its credit exposures to participants

and those arising from its payment, clearing and settlement processes. A PPS should maintain

suffi cient financial resources to cover its credit exposure arising from the default of the participant

and its affi liates that would generate the largest aggregate credit exposure for the PPS." 2

Our goal is to provide a forward-looking tool that supplies an estimate of how large exposures

can become in extreme but plausible circumstances so that policy-makers or system operators can

choose the appropriate level of collateral for the system with a high degree of confidence. Extreme

events may not be observed historically but may arise and therefore should be considered when

designing a safe and sound policy on collateral.

In addition, Canada is currently undergoing an initiative aimed to modernize the Canadian

payments ecosystem. This paper will provide important insight on potential future exposures that

may arise in Canada’s retail system in extreme but plausible events to properly inform system

designers of the potential credit risks that may be exhibited in the future.

Our analysis follows the literature that studies the extreme value methods, which has gained

impetus among commercial banks, FMIs and other financial institutions to comply with various

regulations (Christoffersen 2012). Our approach also complements the collateral schemes shown

1PPS, while not systemically important, are critical for economic activity. In these systems, disruptions or failures
could have the potential to pose risks to the economic activity and affect general confidence in the payment system.

2For more information about criteria for PPS, see http://www.bankofcanada.ca/wp-
content/uploads/2016/02/criteria-risk-management-standards.pdf.



in Perez Saiz and Xerri (2016) that use historical data to calculate the optimal level of required

collateral by estimating the largest exposure within a time window. For our analysis, we use a Peak

Over Threshold method to fit the tail using a Generalized Pareto distribution.

Using the entire sample of exposures for the period 2002-15, we are able to model the tail

distribution and show that tail risk has been increasing over the years, but the rate of growth has

been diminishing in the end of our data sample, which suggests a slower rate of growth of collateral

required to cover tail risk.

2 The Automated Clearing Settlement System

2.1 Description

The Automated Clearing Settlement System (ACSS) is a deferred net settlement system for retail

payments in Canada and was designated by the Bank of Canada to be overseen as a PPS on May

2, 2016. The ACSS was introduced in 1984 and is owned and operated by Payments Canada. The

majority of retail payment items in Canada are cleared through the ACSS (approximately 73 per

cent of retail payment value on average each business day at the end of 2016). The core of the

ACSS is an information system used to track the volume and value of payment items exchanged

between participants of ACSS and determine the final balances. The ACSS is used to process a high

volume of lower value, less time-sensitive payments that do not require intra-day finality provided by

Canada’s Large Value Transfer System (LVTS). Settlement for ACSS takes place on the settlement

accounts of direct participants on the books of the Bank of Canada using LVTS payments, on a

deferred (next day) multilateral net settlement basis after final positions are determined.

2.2 Regulatory environment

Oversight and regulation responsibilities for payment systems in Canada are shared between the

Bank of Canada and the Department of Finance. The Department of Finance has broad respon-

sibility for the financial system in Canada, including payment systems, and also has authority to

make regulations. The Bank of Canada has responsibility for the oversight of payment, clearing

and settlement systems it has designated as having the potential to pose systemic or payments

system risk to the Canadian financial system.
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3 Data

3.1 Data sources and patterns

In this section we describe the nature of the data we use in our analysis. The data used consists of

daily payments received and sent between participants in the ACSS. Using total received and sent

payments, we construct the final daily multilateral net settlement obligation of each participant

with ACSS at the end of each cycle (day) for 2002—15. This is the amount that each participant

owes to the system (or is owed by the system) at the end of each cycle, and it can be described

as the exposure for the ACSS if a participant defaults and cannot meet its end-of-day payment

obligations.

Participant-specific patterns The final net obligation for each participant exhibits a bell-

shaped distribution (see figures 1 and 2). In these figures, we have the following sign convention:

A positive sign means a debit settlement obligation for the participant, and a negative sign means

a credit settlement obligation for the participant. Generally, the mean/mode of the distribution is

not too far away from zero. However, this depends on whether the participant tends to be a net

receiver or a net sender in the system. If the participant tends to be a net sender, the distribution

will be skewed to the right (meaning more often there is a net debit settlement obligation) and if

the participant tends to be a net receiver then the distribution will be skewed to the left (meaning

more often there is a net credit net settlement obligation). As we can see from Figure 2, the

distribution of payments of every participant has a relatively small mean and median, on the order

of few million. The participants can have relatively large extreme values, with the largest observed

debit and credit positions for 2002—15 on the order $2 billion.

We test the distribution of exposures for each participant as well as the full sample for normality

using an Anderson-Darling test. We find that we can reject the null hypothesis that the data

follows a normal distribution (see Table 1). Visually it is also clear that this data is not normally

distributed. A histogram with a fitted normal distribution (see Figure 1) shows that the data is

not normally distributed but rather that the distribution exhibits many more observations tightly

centered around the mean as well as fatter tails than the normal distribution. Because the data

is not normally distributed, certain extreme value approaches, such as the variance-covariance

method, that rely on assumptions of normality, would underestimate the tails of this distribution.

These methods would thus not be appropriate for our estimation.

Time patterns We also analyze the evolution of the distribution of net settlement obligations

over the sample period. We consider all net obligations in a given month for every participant, and

we obtain several key statistics. Figure 3 provides a broad overview of the evolution of payment

patterns in ACSS over the years. Figures 3a and 3b show the mean and median of the absolute value
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of net positions across quarters for 2002—15. The median shows a constant growth over the years,

and the mean shows a slightly curved and increasing growth. Figures 3c and 3d show the standard

deviation of the absolute value of net positions and net positions across quarters for 2002—15.

3.2 Credit risk in the Automated Clearing Settlement System

The motivation for our analysis stems from the existence of credit risk exposures in the system.

With the current configuration of the ACSS, net settlement obligations that are incurred at time

T are not settled until T + 1. This delay in settlement increases the potential for participants to

default on their net settlement obligation and exposes the system and its participants to credit

risk. In this article, we propose a methodology to estimate future exposures that have not been

observed in the past. The goal will be to provide more confidence that the chosen level of required

collateral for the system is suffi cient.

We define a net settlement obligation, npb,t, as the end-of-day net settlement obligation of

participant b in period t with ACSS, with the following sign convention: npb,t > 0 if participant

b owes funds to the system (debit position), and npb,t < 0 if ACSS owes funds to participant b.

Because we are concerned with the exposure of the ACSS to the default of a participant, we define

the exposure of the ACSS to the default of a participant b in period t, eb,t, as

eb,t ≡ max(npb,t, 0). (1)

4 Methodology

4.1 Motivation

The methodology presented in this paper complements the collateral schemes shown in Perez Saiz

and Xerri (2016) to account for future possible exposures that are not observed in the data.Perez

Saiz and Xerri (2016) propose a collateral scheme that is based on the creation of a collateral pool

with contributions from all participants. Following risk management standards provided in the

Bank of Canada’s standards for PPS,3 the size of the collateral pool is determined by the single

largest debit settlement obligation (exposure) within the window across all ACSS participants,

K
W
pool = max

b,t∈W
(eb,t), (2)

where eb,t is the exposure of participant b in given day t, and W is the rolling time window

considered. Perez Saiz and Xerri (2016) show that the size of the window determines the size of the

collateral pool, and a very large window incorporates the largest historical values of eb,t observed

3http://www.bankofcanada.ca/wp-content/uploads/2016/02/criteria-risk-management-standards.pdf
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in the time period considered.

A disadvantage of this approach is the reliance on historical values to control risk. This method-

ology uses historical simulation to cover the largest exposure among participants rather than some

arbitrary large confidence level (e.g., 99 per cent), as it is usually done by extreme-value methods

in the risk-management literature. As discussed in Kuster, Mittnik and Paolella (2006) and others,

this historical approach ignores predictions extending beyond the extreme returns observed in the

time window considered. In addition, this approach ignores the non-stationary nature of the data.

Figure 3 shows a clear increasing trend of eb,t over the years resulting from the increasing rate

of substitution of cash payments to other electronic means of payment, population increases, and

other factors. We are interested in estimating the probability of having extreme but plausible credit

exposures, and what would be the required collateral to cover the risk associated with these tail

events would be.

In this paper, we provide an alternative approach to the historical method. We estimate the

net settlement obligations that are not present in the historical data and therefore estimate the

tail probabilities of these occurrences. This would represent extreme but plausible events that we

would like to consider when determining the optimum level of collateral that is required to cover

the single largest exposure created in the system on any given day. The estimated tail settlement

obligations would represent the single largest settlement obligation in the system and therefore

would represent the size of the collateral pool that members will contribute to.

For our analysis and estimation we use a peaks-over-threshold method to fit a GPD to model the

tail distribution of our data. We chose this method over the classical extreme-value theory method

of using block maxima to model extreme events due to its more effi cient use of data. Classical

extreme-value theory uses only the maximum value observed over blocks of time to estimate a

generalized extreme-value distribution. However, the maximum value in each time period may not

be truly indicative of extreme behaviour. We instead use the peaks-over-threshold method, which

uses only observations exceeding a certain threshold, defined as extreme, to model extreme events.

This allows us to more accurately model the tail of this distribution.

4.2 Threshold selection

We define the random variable exposure, e, as the exposure of an ACSS participant in a given

day. The first step in estimating the distribution of the tails would be to determine an optimum

threshold e to analyze the exceedances over this selected threshold. These exceedances, i.e., values

e > e, will be used to estimate the distribution of the tail and ultimately provide us with estimates

for the optimum required collateral. Choosing a threshold e involves a trade-off between bias and

variance. Choosing too low a threshold will skew the parameters towards lower observations and

not accurately reflect the behaviour of extreme events. However, choosing too high of a threshold

leaves too few observations to accurately estimate the parameters.
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A method discussed in Coles et al. (2001) for choosing an optimum threshold e would be to

estimate the parameters using maximum likelihood estimation with a series of given thresholds.

Once the parameters are estimated for a series of given thresholds, we could seek linearity of the

estimated parameter σ̂ in e, and stability in the estimated shape parameter ξ̂ to choose the optimal

threshold.

4.3 Tail estimation

As explained by Coles et al. (2001), we assume that random variable Y (exceedances over large

threshold e) is asymptotically distributed following a GPD with cumulative density function equal

to

H(y; e, ξ, σ) ≡ Pr(Y ≤ y|e > e; ξ, σ)= 1− (1+ξy
σ
)−1/ξ, (3)

where σ is a scale parameter and ξ is a shape parameter to be estimated with maximum likelihood.

The GPD can be divided in three different types of distributions depending on the value of the

shape parameter ξ:

1. Gumbel distribution: If ξ = 0, H(y; e, ξ, σ) = 1− exp (−1 yσ ) exhibits an exponential tail

2. Frechet distribution: If ξ > 0, 1−H(y; e, ξ, σ) ≈ ay−1/ξ exhibits a polynomial tail, where a

is some constant

3. Weibull distribution: If ξ < 0, distribution H(y; e, ξ, σ) has an upper end point wf=
σ
|ξ|

Once the threshold e is selected, we estimate the parameters using maximum likelihood. From

our data, we observe a set {y1, ..., yn} of values of exceedances for a given time period and threshold
e. For ξ 6= 0 the log likelihood is derived from equation (3) as follows:

L(σ, ξ;n) = −n log(σ)− (1 + 1
ξ
)
n∑
i=1

log(1 +
ξyi
σ
). (4)

This expression in equation (4) is maximized with respect to the parameters ξ and σ, so the

maximum likelihood estimators of the parameters, σ̂ and ξ̂ are obtained by maximizing the likeli-

hood,

max
σ,ξ

L(σ, ξ;n). (5)

The estimated parameters σ̂ and ξ̂ are obtained by solving this optimization problem. Using

these estimates, we can model the distribution of exposures e where the tail over the threshold

level is distributed following the assumed distribution in equation (3). With this, we can calculate

the optimum collateral levels for a given high confidence level c (e.g., 99.9 per cent). The optimum
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collateral using the this extreme value methodology would be defined as the level KEV such that

Pr(e ≤KEV ; σ̂, ξ̂) ≤ 1− c. (6)

Confidence intervals to KEV can be calculated using the profile likelihood method suggested in

the literature (see Davidson 2003). The idea is to obtain confidence regions for the parameters by

using the profile likelihood that maximizes the likelihood with respect to one parameter conditional

on the rest of the parameters being constant.

5 Results

5.1 Threshold selection

We estimate the parameters using maximum likelihood for a series of selected threshold levels. In

Table 2, we have values of the estimated parameters ξ̂ and σ̂ within a given range of thresholds

from the 0.95 quantile to the 0.9999 quantile, i.e., we look at thresholds ranging from the largest 5

per cent of exposures to the top .01 per cent of exposures. As we discussed previously, this provides

a secondary method of selecting the optimal threshold e for our tail estimation. We are looking to

select a threshold where σ shows linearity in e and ξ stability. We observe that around a threshold

of the 0.99 quantile there is relative stability around ξ̂ and linearity in σ̂ around this same point.

Since the 0.99 quantile corresponds to a threshold just below 0.6 billion, this threshold falls within

the area where the mean residual life plot exhibits near linearity, as desired. Therefore, using these

two methods to select e as inputs to our selection choice, we can say that the 0.99 quantile is a good

choice of threshold for this data set. It is important to note that at thresholds from the 0.9995

to 0.9999 quantiles there are very few exceedences beyond the threshold, and thus the estimate

provided can be considered unreliable.

5.2 Tail estimation

Using a threshold of the 0.99 quantile (the largest 1 per cent of exposures in our sample), we

use maximum likelihood estimation as shown in equation (5) to estimate the distribution of the tail.

Figure 4 shows the probability density function at a threshold of the 0.99 quantile. Also, Figure

5 shows the fitted quantiles of the GPD against the empirical quantiles for exposures beyond a 99

per cent threshold. Figure 5 shows a reasonable fit of the estimated distribution.

We perform an Anderson-Darling test and a Kolmogorov-Smirov test to check if our data came

from our fitted GPD. For both tests we find that we cannot reject the null hypothesis that the

data came from a GPD with parameters as fitted (Table 3). For this threshold we estimate a

value approaching zero for our shape parameter, ξ̂. This indicates our sample follows a Gumbel
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distribution with an exponential tail.

We express our results in terms of the level of collateral that would provide different levels of

daily confidence. A 99 per cent confidence level would represent a level of exposure we would only

expect to see surpassed once every 100 business days. When examining Table 2, at the threshold

of the 0.99 quantile, we can observe at the 99 per cent level of confidence the required collateral

would be approximately $1.2 billion, at the 99.9 per cent level of confidence (one surpass every

1,000 business days) the required collateral would be approximately $1.8 billion and at the 99.99

per cent confidence level (one surpass every 10,000 business days) the required collateral would be

approximately $2.3 billion. In Figure 6 we plot the fitted generalized Pareto cumulative distribution

function to visually compare with the empirical cumulative distribution function to see how close

the fit is.

Note that when comparing the results using a 0.99 quantile threshold to other thresholds in

Table 2 we can see that the level of required collateral is relatively stable under most levels of

confidence. The level of collateral only becomes unstable around very high thresholds such as the

0.9995 and 0.9999 quantiles that do not have enough exceedences to make reliable estimates of ξ̂

and σ̂. We choose to discard these results for any analysis or policy decision, but we use them to

show that as the amount of exceedences reduces past a certain point, the robustness and confidence

of the Pareto estimation breaks down.

5.3 Projections ahead

The analysis shown in the previous section does not take into account possible structural changes

in the payment patterns in the ACSS that create non-stationary changes in the distribution of

exposures. As we discussed before, Figure 3 shows a clear pattern in the evolution of net settlement

obligations over the years. This figure suggests that the ACSS exposures are constantly growing

over the years, but the distribution is getting more compressed because the standard deviation does

not increase at the same pace as the mean or median of the distribution from years 2010 or 2011.

This compression of the distribution could be due to a more deterministic pattern of payments that

causes a significant reduction of the extreme values of the distribution. As the distribution gets

compressed, the tails of the distribution decrease, which has relevant consequences in terms of the

risk management analysis and optimum collateral.

Motivated by these facts, we extend our previous static analysis to take into account the changes

in the distribution of exposures over the years. We use a four-year rolling window to calculate the

parameters of our extreme-value model to try to identify any significant changes in the parameter

estimates over the years, and the implications for risk management and collateral. The parameters

are re-estimated over four-year windows. Since each four-year window has fewer observations than

the full sample used previously we use a lower threshold for the rolling window analysis. Following

a process similar to that used in our full sample analysis, we use a combination of mean residual life
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plots and testing a series of thresholds for stability in ξ and linearity of σ in e to choose a threshold.

We find a threshold of the 0.97 quantile to be a good choice for a four-year window. This choice of

threshold leaves 360 observations in each window with which to estimate our parameters ξ̂ and σ̂

using maximum likelihood.

We estimate our parameters using maximum likelihood and use the scale parameter σ̂ from

each window, and the mean shape parameter ξ̂ across all windows to calculate return levels for

each window. Coles et al. (2001) note that it is diffi cult to estimate ξ̂ precisely and recommend

against estimating this parameter as a function of time. Accordingly, we do not use the shape

parameter ξ̂ from each window when estimating return levels as these diffi culties in estimating

this parameter precisely introduce high volatility in ξ̂ when re-estimating on each window. The

ξ̂ calculated over then entire sample gives a more accurate representation of the shape of this

distribution.

Figure 7 shows the results of our analysis using the rolling window analysis for three levels of

confidence intervals (99 per cent, 99.9 per cent and 99.99 per cent). Consistent with the patterns

shown in Figure 3, we observe that the needs for collateral increased dramatically from 2006 to

2010 before leveling off. Required collateral even tends to decrease in 2015. We plot a linear fit

curve for 2010—15 and we observe a negative but very small slope. It is hard to predict what will

be the future evolution of the distribution of exposures, but we do not discard that this trend of

the compression in the distribution continues over the medium term.

Figure 8 shows the return level plot of our results from the final window in our sample, the

period from 2012—2015. Figure 8 shows that if exposures remain distributed as they were over the

four years from 2012—2015, a collateral pool of approximately $2 billion should cover exposures

with a 99.9 per cent level of daily confidence. In other words, we would expect to see an exposure

larger than $2 billion only once every 1000 business days. However, it is important to note that the

95 per cent confidence interval on these estimates is relatively large, ranging from approximately

$1.5 billion to $2.5 billion. This suggests that a very conservative collateral scheme that takes

into account statistical inaccuracies in our methodology, for a confidence level of 99.95 per cent or

above, could be imply an optimum collateral level close to $3 billion.

6 Conclusion

In this paper, we complement previous analysis found in Perez-Saiz and Xerri (2016) to quantify

the level of tail risk in the Canadian retail payment system (ACSS) for period from 2002—15. Our

analysis allows us to take a forward-looking approach to quantify the optimum level of collateral

in the ACSS. We show that tail risk has been increasing over the years, but the pace of growth

has been reduced towards the end of our data sample, which suggests a slower rate of growth of

collateral required to cover that risk over time.
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Our results will help us refine the existing methodologies used to control credit risk in payment

systems so we can have a higher level of confidence such that the collateral pledged in the payment

system would be suffi cient to cover loses in the event of a future default. These results should be

useful for a more effi cient design of the future generation of payment systems in Canada and in

other countries, which should ultimately lead to a safer and sound financial system.
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Appendices

Figure 1: Histogram of exposures across all participants
This histogram shows the distribution of all end-of-day exposures across all participants for the 2002-15 period.
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Figure 2: Distribution of net settlement obligations
In the next figure we show the distribution of net settlement obligations for every participant in the ACSS for the
2002-15 period. A positive sign means a net payment obligation of the bank with ACSS (debit position of the bank).
A negative sign means a net payment obligation of the ACSS with the bank (credit position of the bank). Source:
Bank of Canada calculations using Payments Canada data.
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Figure 3: Statistical patterns in ACSS over the years
This figure shows several key statistics of ACSS over the years. Source: Bank of Canada calculations using Payments
Canada data.

(a) Mean of absolute value of net po-
sitions

(b) Median of absolute value of net
positions

(c) Standard deviation of absolute
value of net positions

(d) Standard deviation of net posi-
tions
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Figure 4: 0.99 threshold probability density function
This graph shows fitted generalized Pareto distribution against the empirical PDF for exposures beyond a 99 per
cent threshold on the entire sample period (2002 to 2015).
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Figure 5: 0.99 threshold quantile-quantile plot
This graph shows fitted quantiles of the generalized Pareto distribution against the empirical quantiles for exposures
beyond a 99 per cent threshold over the entire sample period (2002 to 2015).
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Figure 6: 0.99 threshold cumulative density function
This graph shows fitted generalized Pareto distribution against the empirical CDF for exposures beyond a 99 per
cent threshold on the entire sample period (2002 to 2015).
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Figure 7: Collateral estimates using rolling window
Collateral required for 99 per cent, 99.9 per cent, and 99.99 per cent daily confidence levels estimated using a 4 year
rolling window. Dotted lines show the OLS estimates of the trend from 2009 to 2015.
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Figure 8: Optimum collateral
Optimum collateral as a function of daily confidence levels using the final window in our sample (2012 to 2015). We
include confidence intervals for the collateral.
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Table 1: Results of Anderson-Darling normality tests

This table shows results of Anderson-Darling tests for normality for the entire sample as well as each individual
participant. The null hypothesis is that the data follows a normal distribution. Value gives the value of the Anderson-
Darling test statistic. Critical Value gives the cutoff critical value for a 1% level of confidence.

Participant Value 1% Critical Value P-Value

All Participants Inf 1.0935 0.0000
P1 6.5733 1.1189 0.0000
P2 60.9279 1.0467 0.0000
P3 55.1032 1.0380 0.0000
P4 35.9552 1.0237 0.0000
P5 21.3282 0.9774 0.0000
P6 19.1270 0.9174 0.0000
P7 11.0131 1.0248 0.0000
P8 30.6748 0.9397 0.0000
P9 46.3911 1.0457 0.0000
P10 17.4861 1.0511 0.0000
P11 99.9256 1.0880 0.0000
P12 Inf 1.0975 0.0000
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Table 3: Results of tests for generalized Pareto distribution

This table shows results of Anderson-Darling and Kolmogorov-Smirov tests for a generalized Pareto distribution over
the entire sample. The null hypothesis is that the data follows a generalized Pareto distribution with our estimated
parameters. Value gives the value of the test statistic. Critical Value gives the cut-off critical value for a 5 per cent
level of confidence.

Test Statistic Value 5% Critical Value P-Value

Anderson-Darling 0.4470 2.4928 0.8011
Kolmogorov-Smirov 0.0279 0.0656 0.8875
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Table 4: Estimates using .99 quantile threshold

This table shows results of maximum likelihood estimates on the full sample using a .99 quantile threshold. Results are
given for our estimated shape and scale parameters as well as the inverse cumulative distribution values representing
exposures which we would not expect to be exceeded on 99 per cent, 99.9 per cent and 99.99 per cent of days
respectively. σ̂ and the collateral values are in billions of Canadian dollars. Lower and Upper confidence interval give
the 95 per cent confidence interval for our estimates.

Lower CI Estimated Value Upper CI

ξ̂ -0.1096 -0.0097 0.0903
σ̂ 0.2173 0.2495 0.2864

99% Collateral 1.1682 1.2238 1.2924
99.9% Collateral 1.6242 1.7782 2.0437
99.99% Collateral 1.9861 2.3204 3.0015
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