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Abstract 

We use relative value to measure limits to arbitrage in fixed-income markets. Relative 
value captures apparent deviations from no-arbitrage relationships. It is simple, intuitive 
and can be computed model-free for any bond. A pseudo-trading strategy based on 
relative value generates higher returns than one based on the well-known noise measure. 
The relative value is therefore a better proxy for limits to arbitrage. We construct relative 
value indices for the US, UK, Japan, Germany, Italy, France, Switzerland and Canada. 
Limits to arbitrage increase with the scarcity of capital: we find that each index is 
correlated with local volatility and funding costs. Limits to arbitrage also exhibit strong 
commonality across countries, consistent with the international mobility of capital. The 
relative value indices are updated regularly and available publicly. 
 
Bank topics: Asset pricing; Financial markets; International financial markets  
JEL code: G12 
 

Résumé 

Nous utilisons la valeur relative pour mesurer les limites à l’arbitrage sur titres à revenu 
fixe. La valeur relative rend compte des écarts apparents par rapport aux relations de non-
arbitrage. Il s’agit d’une valeur simple, intuitive et calculable sans le recours à un modèle, 
quelle que soit l’obligation. Une stratégie de pseudo-négociation se fondant sur la valeur 
relative génère des rendements plus élevés que celle qui s’appuie sur la mesure bien 
connue du bruit statistique. La valeur relative est donc un meilleur indicateur des limites 
à l’arbitrage. Nous élaborons des indices de valeur relative pour les États-Unis, le 
Royaume-Uni, le Japon, l’Allemagne, l’Italie, la France, la Suisse et le Canada. Les 
limites à l’arbitrage augmentent avec la rareté du capital dans chacun des pays. Elles 
présentent aussi de fortes similitudes entre les pays, ce qui cadre avec la mobilité des 
capitaux dans le monde. Les indices de valeur relative sont mis à jour régulièrement et 
rendus publics. 

Sujets : Évaluation des actifs; Marchés financiers; Marchés financiers internationaux 
Code JEL : G12 

 

 
 



 
 

 

Non-Technical Summary 
 

Bonds emitted by the same issuer with the same cash flows should have the same prices 
and yields. This is the law of one price. In practice, however, deviations from the law of 
one price are pervasive in the bond market. For example, at the height of the global fi-
nancial crisis, the difference in yields between very similar bonds issued by the US Treas-
ury exceeded 100 basis points. Such a large difference can persist for extended periods 
of time, even in normal times, despite the fact that it should be perceived as a golden 
opportunity for arbitrageurs. This points to the existence of limits to arbitrage in fixed-
income markets. 
 
In this paper, we propose a new, simple, intuititive and non-parametric measure of limits 
to arbitrage in fixed-income markets. This relative value measure is built to mimic the 
strategy an arbitrageur would adopt. An expensive bond would be shorted, while a cheap 
bond would be purchased. To hedge interest rate risk, arbitrageurs would take an opposite 
position in a portfolio of bonds with the same duration, convexity and par value. Relative 
value is simply the difference in price between the targeted bond and this replicating 
portfolio. 
 
We show that using relative value as a trading signal for a pseudo-trading strategy pro-
duces significant excess returns. This stands in contrast to trading measures based on 
parametric yield curve models, which are shown to produce a large number of false-pos-
itive signals that generate small negative returns. This shows that the noise index, a well-
known measure of limits to arbitrage based on a parametric yield curve, includes a large 
share of statistical noise. 
 
We make available aggregate indices of relative value to sovereign issuers in eight coun-
tries: Canada, France, Germany, Italy, Japan, Switzerland, the United Kingdom and the 
United States. We show that a large share of variations in individual relative value is 
driven by a single factor. We also show that indices are highly correlated internationally 
for Canada, Germany, Switzerland, the UK and the US, while those of France and Italy 
are related to each other. Finally, we show that these indices are highly correlated with 
local measures of stress in bank funding markets and equity market volatility. 
 



Introduction

Bonds from the same issuer and with the same cash flows should have the same

prices. This is the law of one price. But deviations from the law of one price are

pervasive in the bond market in practice. Panels (A) and (B) of Figure 1 show

the yields to maturity of all United States Treasury bonds for a day in 2008 and in

2014, respectively. Deviations can be large—as in 2008—or they can be small—as in

2014—but they are rarely absent.

The most common strategy to exploit these deviations is the so-called relative

value trade. Relative value is based on the idea that bonds with the same risk

should have the same expected returns. For instance, a relative value trade may

involve a portfolio of bonds replicating the duration and convexity of the target bond.

This is different than replicating the cash flows, since exact replication of a coupon

bond is typically much costlier.1 But relative value trading does not always eliminate

these deviations. Instead, these persistent deviations reveal limits of arbitrage due to

funding market frictions and bond market segmentations (Duffie, 1996; Vayanos and

Weill, 2008; Vayanos and Vila, 2009).2 The profit motive of arbitrageurs can reduce

deviations when funding constraints are loose and when arbitrage capital is abundant,

as in 2014. Conversely, deviations will be larger and more persistent when funding

constraints are tight and arbitrage capital is scarce, as in 2008.

These deviations from arbitrage relationships reveal valuable information. For

instance, Longstaff (2004) uses bonds issued by the Resolution Funding Corpora-

tion (Refcorp), which are guaranteed by the US Treasury, to document the flight-to-

liquidity premium in Treasury bond prices. Using a dynamic model, Fontaine and

1Replicating the cash flows of a coupon bond would involve extensive trading in the relatively
illiquid market for stripped securities.

2Note that accounting for direct transaction costs does not eliminate deviations (e.g., Amihud
and Mendelson 1991). See Fontaine and Garcia (2015) for a review.
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Garcia (2012) show that an index of liquidity premia across US Treasury bonds can

predict excess bond returns across a wide range of fixed-income markets. Using a

static parametric yield curve, Hu, Pan and Wang (2013) (HPW thereafter) show that

an index of fitting errors—the “noise” measure—is priced in the cross-section of re-

turns from hedge funds and carry trades. In other words, aggregating these deviations

tends to reveal an important financial risk factor.

We introduce a new measure of deviations based on the relative value of bonds.

This measure is model-free, bypassing the need for preliminary parameter estimation.

It is intuitive and easy to compute. For any bond in our sample, we use a small

number of comparable bonds to form a replicating portfolio with the same duration

and convexity. This bond and its replicating portfolio should have the same expected

return. The relative value for that bond is the difference between its yield and that

of the replicating portfolio.

Existing approaches to measure these deviations rely on parametric models, of

which HPW’s noise index is arguably the most popular. For this class of measures,

preliminary estimates must be obtained for the parameters of a factor yield curve

model to derive an index of fitting errors (relative to curve). Parameter estimation

introduces a layer of complexity. It also introduces sampling uncertainty and potential

model misspecification. In itself, the large variety of curve-fitting methods actively

used by practitioners suggests a certain level of arbitrariness in the estimation process

(Bliss, 1996; Ron, 2000).

In the first part of the paper, we compare relative value with HPW’s measure. Our

criterion to compare these measures is their economic value when used as a signal to

implement a pseudo-trading strategy that doesn’t take into account the limits of arbi-

trage. The returns from trading on this signal correspond to the profits of risk-averse

investors carrying risky convergence trades between bonds (Liu and Longstaff, 2004;
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Fontaine and Garcia, 2015). Higher returns from pseudo-trading strategies mean arbi-

trageurs face greater costs or greater risk when implementing these strategies. Thus,

a measure capable of identifying deviations from limits of arbitrage should generate

positive returns over time. The persistent returns of a pseudo-trading strategy based

on relative value thus validate the measure’s ability to identify limits of arbitrage.

On the other hand, a strategy based on HPW’s measure generates significantly lower

returns and signals a large number of ultimately unprofitable trades; it is therefore

an inferior gauge of limits of arbitrage.

Specifically, we compute relative value and HPW’s noise measure every day and

for each bond and use them as trading signals. Once a bond’s signal exceeds a

predetermined threshold, our strategy enters a convergence trade that carries no

interest rate risk (similar to Duarte et al. (2007)). The trade is exited when the

signal falls to zero or when the duration of the trade exceeds a calendar year. We

aggregate profits and losses across convergence trades to compute monthly returns.

In the US Treasury bond market, relative value produces an average monthly return

of 0.52% between 1988 and 2017. By contrast, the noise measure produces an average

return of 0.16%. Repeating this comparison between 2005 and 2017 in the US, UK,

Japan, Germany, Italy, France and Canada produces similar results. Switzerland

stands as the only exception. Overall, the results show that relative value is a better

measure of funding constraints and capital scarcity faced by arbitrageurs.

Further diagnostics reveal that using HPW’s noise measure produces a large share

of trades that generate small but negative returns, with low variance and that are

largely uncorrelated with returns from other trades. These trades constitute between

one-third and two-thirds of positive trade signals, depending on the sovereign issuer

and sample period. These false-positive signals are generated by fitting errors in the

yield curve estimation process and are not associated with significant deviations from
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arbitrage relationships. Establishing a convergence trade in these cases generates

small negative returns, notably because of transaction costs. The variance is low

because the prices of neighbouring bonds are essentially in line and because the trade

is exited when the fitting errors vanish. Aggregating noise trades produces a portfolio

that produces low returns and low variance, since fitting errors are uncorrelated.

In the second part of the paper, we propose an aggregate relative value index

similar to the one created by HPW and compute it for several large sovereign issuers.

Higher values for the index indicate that deviations from arbitrage relationships are

larger on average (in absolute value). These indices are available publicly and updated

regularly on the Bank of Canada’s website. We find that the index is highly correlated

with local volatility indices (such as the VIX). This is consistent with the mechanism

whereby higher systematic volatility raises the scarcity of arbitrage capital. We also

find that a country-specific relative value index is typically correlated with a local

version of the spread between the overnight index swap (OIS) and the interbank

lending market rates. This is consistent with the mechanism whereby higher funding

costs raise limits of arbitrage. In line with results in Malkhozov et al. (2016), we

find that the index for the US, UK, Canada, Germany and Switzerland are highly

correlated. By contrast, the relative value index for the bond market in France and

Italy diverged from that of other countries during the euro area sovereign crisis. The

case of the bond market in Japan appears to be largely idiosyncratic.

This paper is structured as follows. Section 1 presents the data and details how

relative value is measured for individual bonds. Section 2 compares the performance of

relative value and the noise measure as signals for pseudo-trading strategies. Section 3

describes the construction of the relative value index and presents an analysis of the

results for large sovereign issuers.
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1 Data and Methodology

1.1 Data

We use end-of-day clean prices and yields to maturity for US, British, Canadian,

French, German, Italian, Japanese and Swiss government bonds. For the US, we use

prices and yields of Treasury bonds data between 1987 and March 2017, taken from

the Center for Research in Security Prices database (CRSP). Before 1987, the different

tax treatments of coupon and principal payments affected the relative valuation of

bonds.3

For Canada, we use daily prices between 1994 and March 2017, taken from StatPro

before April 2009 and from FTSE TMX (formerly PC-Bond and DEX) thereafter.

Similar to the US, coupon and capital gains had different tax treatments before

1994. For bonds issued by the British, French, German, Italian, Japanese and Swiss

governments, we use daily data from Bloomberg and Markit Evaluated Bonds between

2005 and March 2017.

Following HPW, we impose the following filters. For every country, we use bonds

with time remaining to maturity between 1 and 10 years and we exclude inflation-

linked bonds, variable-rate bonds and bonds with embedded options. Other restric-

tions and filters are described in the Appendix. Table 1 reports the number of ob-

servations for each country as well as summary statistics for the number of bonds

available on any given day. Japan and the US stand out with having the largest

number of bonds, while Switzerland stands out with the lowest number. To compute

excess returns, we obtain the overnight interest rates from Bloomberg.4

3In the US, equal tax treatment of coupon and principal payments was introduced in the Tax
Reform Act of 1986. Before that, tax deductions for coupon payments made higher coupon bonds
dearer. See Green and Ødegaard (1997) for a complete discussion. In Canada, the lifetime capital
gains deduction was eliminated for property acquired after February 22nd, 1994. Before this date,
tax deductions for the principal payment made higher coupon bonds cheaper.

4For the US, we use the effective Federal funds rate if available. Otherwise, we use the mid-point
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1.2 Methodology

The measure of relative value proposed in this article is model-free. It is based

on the butterfly bond-trading strategy, used by market participants to profit from

deviations of the price of a bond from the valuation of other similar bonds. This

butterfly strategy is a portfolio of bonds combining a position in the target bond and

an opposite position in bonds of similar duration. This opposite position typically

combines two bonds: one with a slightly lower duration and another with a slightly

higher duration. This configuration of bonds on each side of the target bond could

be thought of as the wings of the butterfly.

In our methodology, the wings are chosen to match the duration, convexity and par

value of the target. Matching these three characteristics of the target bond requires

three other bonds. This portfolio essentially replicates the risk of the target bond.

Assuming the absence of arbitrage, the target bond and the replicating portfolio

should have the same expected return: they carry the same interest rate risk and the

same default risk (if any).

However, a difference in yields may not be a pure arbitrage opportunity. An

arbitrage would be available only if investors can profit from this deviation using

risk-free and self-financing trading strategies. Hence, the relative value of a bond

with respect to its replicating portfolio is a proxy for limits that prevents arbitrageurs

from driving these deviations to zero. These frictions can affect the ability to borrow

funds or bonds in the repo market (Duffie, 1996).

of the Federal Reserve official target range when available. For Canada, we use the Bank of Canada
target rate. For the UK, we use the Bank of England’s official Bank rate. For euro area countries,
we use the European Central Bank’s main refinancing operation rate. For Switzerland, we use the
Swiss National Bank’s official London Interbank Offered (LIBOR) target. For Japan, we use the
Bank of Japan’s policy rate.
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1.3 Calculating Portfolio Weights

We construct the replicating portfolio using three bonds from the same issuer. To

select these bonds, we sort outstanding bonds by duration. The first two bonds are

the ones preceding and following the target on the duration axis. We choose the

third bond from the remaining bonds on the same side as the bond with the duration

closest to the target’s. This choice brings the replicating bonds’ average duration

closer to the target’s.

We label the target bond b and label the replicating bonds with i = 1, 2, 3. The

duration and convexity of the bonds are denoted by di and ci respectively. We com-

pute modified duration and convexity using mid yields. The weights wi as a fraction

of par value are chosen to satisfy:

d1w1 + d2w2 + d3w3 = wbdb (1)

c1w1 + c2w2 + c3w3 = wbcb (2)

w1 + w2 + w3 = wb = 1. (3)

Equation 1 means that the duration of the replicating portfolio and that of the target

are the same. Equation 2 means that the convexities of the target and the replicating

portfolio are the same. Equation 3 means that the target bond and the replicating

portfolio have the same par value. Without loss of generality, we normalize the weight

wb to 1.

To eliminate extreme portfolio weights, we impose the following conditions on the

weights:

0 ≤ wi ≤ 2/3 ∀i ∈ {1, 2, 3}. (4)

Non-negative weights prevent the replicating portfolio from including a mixture of
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short and long positions. Weights inferior to two-thirds guarantee that the relative

value incorporates information from the prices of several neighbouring bonds. The

system defined by Equations (1-3) may have no solution if the inequality in Equation 4

is binding. In this case, we relax the equality constraint in Equation 2. Instead, we

minimize the difference in convexity between the target and the replicating portfolio:

argmin
w1,w2,w3

(c1w1 + c2w2 + c3w3 − cb), (5)

subject to Equations 1, 3 and 4.5

1.4 Measurement of Relative Value

Given the weights w1, w2, w3, we compute the yield to maturity of the replicating

portfolio matching the duration and convexity of the target. Given the bid, mid and

ask yields ybidit , ymid
it and yaskit of bond i at time t, the yield of the replicating portfolio

is given by

ÿbidt = ybid1t w1 + ybid2t w2 + ybid3t w3 (6)

ÿmid
t = ymid

1t w1 + ymid
2t w2 + ymid

3t w3 (7)

ÿaskt = yask1t w1 + yask2t w2 + yask3t w3, (8)

where ÿbidt and ÿaskt correspond to the yields to maturity when buying or selling the

replicating portfolio bonds, accounting for transaction costs. When the observed yield

for the target is higher than that of the replicating portfolio, the profitable strategy

is to buy the target and short the replicating portfolio. The opposite strategy is

profitable when the observed yield for the target is lower than that of the replicating

5We use the lsqlin function with the active-set algorithm in MATLAB to solve our constrained
linear least-squares problem. Our initial point for the solution process is a vector of equal weights
(1/3).
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portfolio.

We define

rv+bt = −ybidbt + ÿaskt (9)

rv−bt = yaskbt − ÿbidt . (10)

When the target bond is expensive relative to its replicating portfolio, its relative

value is rv+bt. When the target bond is cheap relative to its replicating portfolio,

its relative value is rv−bt. Note that rv+bt and rv−bt cannot be strictly positive at the

same time. The target cannot be simultaneously expensive and cheap relative to its

replicating portfolio. However, rv+bt and rv−bt can be negative at the same time because

of the bid-ask spread. In this case, rvbt is set to zero since, in this case, the absence

of arbitrage holds once we account for transaction costs. The relative value of a given

target bond b is defined as:

rvbt ≡































rv+bt if rv+bt > 0

0 if rv+bt < 0 and rv−bt < 0

−rv−bt if rv−bt > 0,

(11)

where we use the negative −rv−bt, which means that rvbt takes a negative value when

the target is relatively cheap. An alternative definition simply uses mid yields:

r̃vbt = −ymid
bt + ÿmid

t .

This definition produces larger relative values than our benchmark case and overstates

the presence of limits of arbitrage.
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1.5 The Relative Value Index

We aggregate the relative values of all bonds to produce a relative value index of a

given issuer. This aggregation is similar to that underlying HPW’s noise index. The

relative value index rvt is given by the root mean square of the individual relative

values rvbt:

rvt =

√

√

√

√

1

Nt

Nt
∑

b=1

rv2bt, (12)

where Nt is the number of outstanding securities of the same issuer and with a re-

maining time to maturity of between 1 and 10 years at time t. When computing the

dispersion index, we exclude bonds with a relative value greater than four times the

sample standard deviation. HPW implements the same filter.

2 Relative Value as a Trading Signal

This section assesses the economic value of relative value and of the noise measure.

The results show that relative value provides a better signal than the noise mea-

sure when used to implement pseudo-trading strategies. These are pseudo-trading

strategies, since they may not be profitable in a realistic setting, after accounting for

funding costs and the costs of borrowing bonds to sell short. These may prevent most

investors from entering these trades profitably. Further, capital available to imple-

ment these strategies may be scarce. But this is a feature and not a bug, since the

objective of our methodology is to measure limits of arbitrage. Trading profits from

the quasi-arbitrage strategy demonstrate that deviations from arbitrage relationships

are persistent and fluctuate over time.

The returns from these strategies can be volatile. A strategy that benefits from

bond mispricing is essentially a bet that limits of arbitrage will diminish. A “good”
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signal is expected to underperform when limits of arbitrage increase; for example,

during a period of worsening funding conditions or capital availability. It is the long-

term profitability of these trading strategies that provides the relevant measure of

economic value. Indeed, Duarte et al. (2007) show that these strategies amount to

more than “picking up nickels in front of a steamroller.”

2.1 Implementing the Trading Strategy

We use relative value or the noise measure to decide whether to implement our trading

strategy. Every day, we consider bonds with a remaining time to maturity of between

1 and 10 years. For each measure, we construct a portfolio of trades and we track the

performance of each portfolio over time.

For relative value, we include a new trade when its relative value (calculated

with mid yields) is greater than ±5 basis points (bps).6 If a bond appears relatively

expensive, a butterfly strategy is implemented, with one unit of the target bond sold

short and the purchase of long positions in the replicating portfolio, with weights

given by Equations 1 to 4. The strategy is inverted when a bond appears cheap.

Following Duarte et al. (2007), positions are held until convergence; that is, when the

signal reaches 0 bps.7 All positions are liquidated after at most one year or at the

end of the sample period. We do not include a new trade when the target bond is

already part of the portfolio; this position must be liquidated before this bond can

be considered again for this portfolio.

We repeat the same procedure for HPW’s noise measure. The noise measure for

an individual bond is given by ǫbt ≡ ỹbt − ybt where ỹbt is the mid yield to maturity

6Trades are initiated when there are more than 5 days of prices on the target bond and each of
the constituents of the replicating portfolio. Results are robust when using a ±10 bps threshold.

7Trades are also liquidated at the end of the sample period, on the last day of price availability
for the target bond and each of the constituents of the replicating portfolio, and when the target
bond has less than 3 months remaining until maturity (as bond prices become increasingly unreliable
close to maturity).
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implied by a curve estimated using the Svensson (1994) model.8 We estimate the

parametric curve daily for each country. Trades are initiated when the noise measure

for a given bond is greater than ±5 bps.

2.2 Computing Returns

Each trade initially has zero duration and zero convexity and thus carries little inter-

est rate risk. To minimize transaction costs, we do not continually adjust portfolio

weights, since the duration and convexity drifts are small. However, the computa-

tion of returns must account for the cost of carrying each trade. The costs of carry

vary over time and across trades (either positive or negative) because of the initial

investment as well as differences between coupon payments.

To compute returns, it is useful to think of a specialized fund implementing our

strategy for a single bond. The equity value Et of this fund at time t is given by

Et = E0 +Bt + Pt, (13)

where E0 is the initial equity or margin set aside to cover for potential losses; Bt is

the fund’s borrowing, including the initial cash outlay, coupon payments and interest

earned or paid; and Pt is the marked-to-market value of the bonds bought or sold

short for this strategy, accounting for the bid-ask spread.

Duarte et al. (2007) choose the initial equity E0 such that the sample volatility

of returns is 10% on average across funds. In our sample, E0 = 10 yields a volatility

slightly below 10%. For simplicity, we choose E0 = 10. We also checked that setting

the E0 = 10 is enough to cover any loss recorded in our sample. The evolution of net

8We also use Grkaynak et al. (2007) parameter estimates for from the Federal Reserve Board’s
website, at http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. The results are
similar.

12



borrowing Bt is given by:

Bt+1 = Bt(1 + rft) + Ct+1, (14)

where B0 = P0 is the initial cash outlay, rft is the borrowing rate, and Ct+1 are

subsequent coupon payments.9 The marked-to-market value Pt is computed as if the

positions were liquidated at end-of-day bid and ask prices, accounting for accrued

interest.

Given the evolution of the equity value for a given fund Ei,t, the daily returns

Ri,t+1 between t and t + 1 is given by

Ri,t+1 =
Ei,t+1

Ei,t

− 1. (15)

Following Duarte et al. (2007), for each signal we create an equally weighted portfolio

of funds trading individual bonds. The return for the portfolio is the equally weighted

average of returns across funds. If no fund is active on a given day, the index return

for that day is zero. We then construct an index of arbitrage excess returns based on

each signal. The index returns R̄t across all funds on day t is given by:

R̄t+1 =
1

I

I
∑

i

Rst+1 ifI > 1 (16)

R̄t+1 = 0 ifI = 0. (17)

For convenience, the initial index value is set to V0 = 100. At time t + 1, the

9We use the Actual/360 basis to calculate the daily interest paid. For simplicity, we use the
policy interest rate in each country when computing the cost of borrowing. In the US, we use the
effective Fed funds rate if available. Otherwise, we use the mid-point of the Federal Reserve official
target range when available. For Canada, we use the Bank of Canada target rate. For the UK, we
use the Bank of England’s official Bank rate. For euro area countries, we use the European Central
Bank’s main refinancing operation rate. For Switzerland, we use the Swiss National Bank’s official
LIBOR target. For Japan, we use the Bank of Japan’s policy rate.
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arbitrage index is simply Vt+1 = Vt × (1 + R̄t+1). The index can be interpreted as

equally weighted investments across funds that are rebalanced daily.

2.3 Trade Convergence

This section compares the performance of these trade portfolios for US Treasuries

since 1988. Panel (A) of Figure 2 shows the distribution of autocorrelations across

bonds in our sample for each measure, respectively. The average autocorrelation of

each measure is around 0.6 and the distributions are similar.10 Both trading signals

are mean-reverting, which is consistent with bond arbitrage strategies converging over

time. Panel (B) of Figure 2 reports the histogram of duration across all trades in

the US. Most trades are short-lived and liquidated within 30 days. A larger number

of trades based on the noise measure are liquidated at the end of one year, without

having converged. Overall, trades based on relative value converge faster and have

higher mean reversion.

2.4 Evaluating Economic Value

Panel (A) of Figure 3 shows the histograms of total gains or losses across all relative

value and noise trades, respectively. Using the noise measure produces a much higher

number of trades with returns that are close to zero but negative. By contrast, using

relative value produces a larger number of trades with positive returns. Panel (B)

reports the histograms for the variance of daily trade returns, showing that the noise

measure produces a large number of trades with very low variance.

The means and variances are correlated in the cross-section of trades. This is

shown in Figure 4, which reveals the joint distribution of means and variances in

our sample. The contour map reports the number of trades for each square on a

10We compute the autocorrelation estimates for each measure before accounting for the bid-ask
spread.
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grid defined by the mean and standard deviation of daily trade returns. Panels (A)

and (B) show this contour map for trades using the noise measure in the long and

short sample, respectively. The results show that the noise measure generates a

large number of trades with low variance and small but negative returns (because of

transaction costs). These trades are initiated when fitting errors of the parametric

yield curve produces false-positive signals.11 These trades are liquidated when the

fitting errors are reversed. Panels (C) and (D) show the contour map for trades

using relative value in the long and short sample, respectively. By contrast with the

noise measure, the results show that relative value does not generate this type of

false-positive signal. Most trades have positive returns and higher variance.

2.5 Mean and Variance in the Cross-Section of Trades

Panel (A) of Table 2 provides summary statistics in the cross-section of total returns

across individual trades, reported in weekly percentage terms. The results show

that trades implemented using relative value generate higher returns than trades

implemented using the noise measure. The median confirms that the typical trade

implemented with the noise measure has a small negative return. But the cross-

sectional distribution is very wide: the standard deviation is 7.4% for relative value

trade and 17.2% for noise trades. These statistics are consistent with the visual

representation in Figure 4.

We perform the following exercise to confirm that noise trades perform poorly

owing to fitting errors of the parametric yield curve model. These errors occur when

the yield curve does not fit a number of neighbouring bonds. The noise measure for

these bonds may be large, but the valuation of these bonds is consistent with the

11Parametric yield curve models are built on the assumption that mispricing is absent. The curve’s
parameters are estimated in order to minimize the fitting errors between the curve and the bond
prices used as inputs. For a more thorough discussion, see Bolder and Gusba (2002).
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absence of arbitrage. These are type-I false-positive errors, where the expected profit

is small or negative. To confirm this hypothesis, we construct another portfolio that

includes only trades where the difference between the yield of a target bond and its

replicating portfolio exceeds 5 bps. We use the label “filtered” to distinguish this

new portfolio of noise trades, with “unfiltered” referring to the original specification.

This filter identifies trades that have a similar economic value to those identified by

relative value, albeit in significantly smaller numbers.

Panel (A) of Table 2 also reports cross-sectional statistics for the noise trade,

once we impose the additional filter removing type-I errors. This filter removes a

large number of false-positive signals generating trades with low variance and nega-

tive returns, making the average trade more profitable. However, the cross-sectional

variance increases even more. This confirms that the mass of trades with small neg-

ative ex-post returns and low variance in Figure (A) also had small expected profits

(ex-ante). Strikingly, almost half of the trades (2,249 out of 5,957) are discarded

based on this filter. In other words, the noise measure includes a large amount of

statistical noise that has little or no economic value.

2.6 Cumulative Returns

Panel (B) of Table 2 reports the summary statistics of the time series of index returns,

in monthly percentage terms. In the time series, the passage from the cross-section

of trades to the index portfolio returns of trades depends on the correlations between

trades. Yet, the core message does not change. Using the noise measure produces

much lower returns than using relative value, unless we filter the noise measure to

remove false-positive signals. The monthly returns of the portfolio of trades based

on relative value and unfiltered noise measures are on average 0.52% and 0.16%,

respectively. This translates to average annualized returns of 6.5% and 1%. This
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difference largely disappears once we impose the additional filter for false-positives.

To show this, Figure 5 reports the cumulative index returns for each portfolio in

the long and short sample in Panel (A) and Panel (B), respectively. The unfiltered

noise signals have little economic value, with cumulative returns that are dominated

by those of the other two trade portfolios. The filtered noise signal exhibits a small

advantage over relative value trades early in the sample, but falls behind starting

around the 2008 crisis.

Figure 6 reports the number of trades that are active over time when following

different strategies. Panel (A) shows that the number of active trades is roughly the

same using either relative value or the noise measure. However, Panel (B) shows

that the number of trades can differ significantly when using filtered noise signals; for

instance, around 1990-1994 and around 1998-2004. But the difference is particularly

startling after 2010. The number of unfiltered noise trades is similar to the number

of relative value trades during this period, but once the filter is applied the number

of active trades drops significantly. A potential explanation for this result is the low

level of bond yields and the smallness of the slope of the yield curve, which may lead

parametric curve models to generate more fitting errors.

2.7 International Trading Performance

In this section, we compare the economic value of the relative value and noise signal for

sovereign bond markets in the US, UK, Canada, Germany, France, Italy, Switzerland

and Japan. The data cover the period between January 2005 and March 2017. Table 3

reports summary cross-sectional statistics for total returns across individual trades

in weekly percentage terms. Relative value trades have higher median and higher

average returns than noise trades in all countries except Switzerland.12 For the US,

12Unreported results show the noise signal performs well in Switzerland precisely because it does
not generate a large number of trades with small negative returns and small variance. Switzerland
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Panels (B)-(D) in Figure 4 report the contour map of returns and volatility in the

2005-2016 sample. Again, imposing the additional filter produces noise trades with

average or median returns close to or even higher than relative value trades. However,

this excludes between one-third and two-thirds of trades depending on the country.

This is an important result. For all these countries, the noise measure includes a large

amount of statistical noise that has little or no economic value.

Table 4 reports summary statistics for the time series of index returns in different

countries, reported in monthly percentage terms. The relative value strategy out-

performs the unfiltered noise strategy in all countries except for Switzerland. The

difference in average monthly returns ranges from 0.3% to 0.7%. As expected, impos-

ing the additional filter raises the returns from the noise strategy but, in almost all

cases, this is not enough to outperform the relative value strategy. Overall, the results

confirm that using relative value identifies economically meaningful price deviations,

but that using the noise measure generates a large share of false-positive signals.

3 International Relative Value Indices

We aggregate relative values to construct an index of the dispersion of yields across

bonds issued by a given entity. For international comparisons, we compute relative

value indices using daily data between 2005 and 2016 for bonds issued by Canada,

France, Germany, Italy, Japan, Switzerland, the UK and the US. Although not in-

cluded in this analysis, the US and Canadian indices are also available from 1987 and

1994, respectively. These indices are available and updated regularly on the Bank of

Canada’s website.

The relative value index’s construction is similar to that of HPW’s noise index.

has a much smaller number of bond issues populating the yield curve. Together, this suggests that
the parametric curve performs well in that country.
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The relative value index rvt is given by the root mean square of the individual relative

values rvbt:

rvt =

√

√

√

√

1

Nt

Nt
∑

b=1

rv2bt, (18)

where Nt is the number of outstanding securities of the same issuer and with a re-

maining time to maturity of between 1 and 10 years at time t. When computing the

dispersion index, we exclude bonds with a relative value greater than four times the

sample standard deviation. HPW implements the same filter.

3.1 Commonality

We check that individual relative values are highly correlated within each country.

Table 5 reports the share of variations explained by the first two principal compo-

nents in each country.13 Across countries, the first two principal components explain

between 40% and 80% of the variations, justifying the construction of a relative value

index for each country.

Table 6 reports the correlations between the relative value indices of each country.

Indeed, the indices for Germany, Switzerland, the UK and Canada are all correlated

with the US dispersion index (the correlations range between 0.4 and 0.9). On the

other hand, the indices for Italy and France are correlated with each other but not

with the indices of other countries. Panel (A) of Figure 7 reports the relative value

indices for Canada, Germany, Switzerland, the US and the UK. As expected, the

relative value indices exhibit very similar patterns: a calm period with low relative

value before 2007, followed by a gradual increase starting in 2007 with a dramatic peak

in 2009, and with a gradual moderation since the end of the crisis. The correlation of

13We compute the principal components using balanced panels of relative value observations. To
construct a balanced panel, we fix the number of bonds in the panel to the first percentile of the
number of outstanding bonds throughout the sample for each country. Every day we populate the
panel with the bonds with the longest remaining time to maturity, as long as it is under 10 years.
The results are robust to other specifications.

19



the US index is 0.86 with the UK index and 0.48 with Canada’s index. This pattern

suggests that the limits of arbitrage are largely common for these large advanced

economies’ sovereign issuers.

Panel (B) of Figure 7 compares the relative value indices of France and Italy. The

index for Italy exhibits a striking peak at the height of the euro area sovereign debt

crisis. The index for France also increases during that period. Finally, the relative

value index for Japan appears to be largely idiosyncratic (Panel C)

3.2 Relative Value, Funding Costs and Volatility

The relative value index should be correlated with a local proxy for volatility. Figure 8

shows that the relative value indices in the US, UK, Germany and Canada are strongly

related with the equity market volatility index in each country. This is consistent with

arbitrage capital becoming scarcer when financial markets are more volatile in each

country. Table 7 shows the correlations with local and US market volatility. We use

the VIX for equity market volatility in the US, the Euro Stoxx 50 Volatility Index

(VSTOXX) for euro area countries, the FTSE 100 Volatility Index (VFTSE) for the

UK, and the Nikkei Volatility Index (VNKY) for Japan. These volatility indices are

forward-looking. The correlations are very high except for France and Italy, perhaps

because the relative value indices in these countries were not reflected in the euro area-

wide market volatility VSTOXX. Table 7 also shows the correlations of the relative

value indices in each country with local and US interbank-OIS spreads. Again, the

correlations are high, except for France and Italy.
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Conclusion

We introduce the relative value measure of limits of arbitrage in fixed-income mar-

kets. Relative value measures deviations of a bond’s value relative to other similar

bonds. In contrast to existing approaches, relative value does not require the esti-

mation of a parametric model. This offers several benefits. Relative value can be

computed quickly, while parametric methods require non-linear optimization using

many bonds. Relative value requires only a few bonds to compute, while parametric

models require a large sample of bonds. Relative value emphasizes price deviations

that are economically significant, whereas parametric models produce results that are

polluted by fitting errors.

We apply our framework to several sovereign bond issuers. We use the case of the

US Treasury bond market to compare relative value with the existing parametric noise

measure. We show that relative value produces signals that have greater economic

value on average. Between one-third and two-thirds of signals generated by the noise

measure have little or no economic value. They tend to capture fitting errors that are

reversed over time as the estimated curve changes, instead of price deviations that

emerge and reverse over time because of arbitrage activities.

Extending the analysis to several other countries, we find that the relative value

index is correlated with local equity market volatility indices and domestic interbank

lending market conditions. In addition, the relative value indices exhibit a large

degree of commonality across countries. These relative value indices are available

publicly and will be regularly updated. We hope that these indices will help to

answer a number of research questions. In addition, future research could apply

our methodology to create relative value indices for supranational, sub-national or

corporate bond markets.
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A Appendix

A.1 Data Filter

For each country, we include all bullet government bonds with a remaining term to maturity between

1 and 10 years. To calculate the relative value measure for the shortest or longest maturity bonds,

we rely on bonds and bills slightly outside that range. We exclude days where fewer than 4 bonds

report a yield. We also exclude inflation-linked bonds, callable bonds, fungible bonds, strips,

perpetual bonds (UK), retail bonds (Japan) and flower bonds (US).

We also exclude outliers using the following filters:

• We correct for errors in the reported yields of a bond. Every day for every bond, we calculate

the median level of mid yields for the 6 bonds with the nearest remaining term to maturity,

as well as the absolute median deviation from this median. If the reported mid yield of the

bond is larger than 5 bps from the median level and 6 times the median absolute deviation,

we recalculate the bid, ask and mid yields to maturity using the quoted price and replace

their original values if the new values fall within the thresholds.

• We correct for errors in the bid-ask spread. Every day for every bond, we filter for bonds

with a bid-ask spread of more than 30 bps, a bid-ask spread greater than $1 per $100 of par

value or a negative bid-ask spread in terms of yields or price. For bonds breaching one of

these thresholds, we calculate the median level of bid and ask yields for the 6 bonds with

the nearest remaining term to maturity, as well as the absolute median deviation from this

median. We identify if the bid or ask yields are breaching the thresholds of 5 bps from the

median level and 6 times the median absolute deviation. If both bid and ask prices and yields

breach the thresholds, we drop the observation. If only the bid (ask) yield is breaching the

threshold, we replace the bid (ask) yield and price by the ask (bid) yield plus (minus) the

median bid-ask spread of the neighbouring 6 bonds; we also replace the bid (ask) price by

the ask (bid) price minus (plus) the median bid-ask spread of the neighbouring 6 bonds.

• We filter for obvious outliers in yields. Every day for every bond curve, we filter for obvious

outliers in terms of yields or bid-ask spread. First, we calculate a polynomial curve using all

active bonds with greater than 200 days remaining until maturity. This curve is calculated

with a constant, the remaining time to maturity and the square of the remaining time to

maturity of every bond as the regressors and observed median yields to maturity of every

bond as the regressands. We calculate the 90th percentile of absolute regression residuals.

Bonds breach the threshold if the absolute difference between the curve-implied and observed

yield to maturity is more than twice the 90th percentile of regression residuals and that the

yield to maturity is more than 50 bps from the median level of yields of the 4 bonds with the

closest term to maturity. We exclude these observations. Second, we filter for bonds whose

quoted yield bid-ask spread is more than 6 times the 90th bid-ask spread of active bonds

with more than 200 days remaining until maturity, as long as this bid-ask spread exceeds 10

bps. We exclude these observations.
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Figure 1: Dispersion of US Treasury Yields to Maturity

Yields to maturity for US Treasury securities from the CRSP database plotted against each security’s
duration. The Grkaynak et al. (2007) parametric par curve (GSW) is plotted for comparison.
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Figure 2: Persistence and Duration of Trading Signals in the US (1988-2017)

Panel A: histogram of AR(1) parameters estimated from the time series of each bond’s relative
value and noise measures, respectively. Panel B: histogram of the number of days between the
implementation and liquidation of every trade based on the relative value and noise measures,
respectively.

(A) Persistence (B) Duration
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Figure 3: Distribution of Profits and Volatility in the US (1988-2017)

Panel A: histogram of total profits or losses of every trade based on the relative value or noise measures, respectively. Panel
B: histogram of the volatility of daily trade returns for the relative value or the noise measure, respectively. The standard
deviation of daily returns is calculated between the implementation and the liquidation of every trade.

(A) Profits and Losses (B) Volatility
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Figure 4: Distribution of Trade Returns in the US

Contour maps of the number of trades for different values of the mean and standard deviation of daily trade returns. The mean
and standard deviation are calculated between the implementation and liquidation of each trade.
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(A) Noise Measure (1988-2017)
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(B) Noise Measure (2005-2017)
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(C) Relative Value (1988-2017)
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Figure 5: Cumulative Portfolio Returns in the US (1988-2017)

Cumulative returns for the indices of equally weighted portfolios of trades generated using relative
value, unfiltered noise and filtered noise measures, respectively. The indices are set to 100 on
January 1st, 1988.
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Figure 6: Number of Trades in the US (1988-2017)

Number of outstanding trades generated by the relative value and the noise measure (Panel A) or
the filtered noise measure (Panel B), respectively.
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Figure 7: International Relative Value Indices

Aggregate relative value indices for sovereign issuers in different advanced economies. The figures
are computed daily using end-of-day yields for bonds with between 1 and 10 years remaining until
maturity.
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Figure 8: Relative Value Index and Volatility

Comparison of the sovereign issuer’s relative value index and the local stock market volatility index. Daily values.

1991 1994 1997 2000 2003 2006 2009 2012 2015
0

20

40

60

80
V

ol
at

ili
ty

 In
de

x

0

5

10

15

20

25

R
el

at
iv

e 
V

al
ue

 In
de

x 
(b

ps
)

VIX
Relative Value

(A) US

2006 2009 2012 2015
0

20

40

60

80

V
ol

at
ili

ty
 In

de
x

0

5

10

15

20

25

R
el

at
iv

e 
V

al
ue

 In
de

x 
(b

ps
)

VFTSE
Relative Value

(B) UK

1997 2000 2003 2006 2009 2012 2015
0

20

40

60

80

In
de

x

0

5

10

15
R

el
at

iv
e 

V
al

ue
 (

bp
s)

VIX
Relative Value

(C) CA

2006 2009 2012 2015
0

20

40

60

V
ol

at
ili

ty
 In

de
x

0

5

R
el

at
iv

e 
V

al
ue

 In
de

x 
(b

ps
)

VSTOXX
Relative Value

(D) DE

29



Table 1: Summary Statistics for Sovereign Issuers
Summary statistics by sovereign issuer. Sample period is 1987-2017 for the US, 1994-2017 for Canada, and
2005-2017 for other countries.

US GB CA CH DE FR IT JP
# Obs. 462605.00 56356.00 88571.00 33811.00 109137.00 79626.00 120932.00 447604.00
# Bonds, Median 159.00 18.00 29.00 11.00 35.00 29.00 40.00 139.00
# Bonds, 25th Perc. 102.00 16.00 26.00 10.00 28.00 17.00 25.00 131.00
# Bonds, 75th Perc. 202.00 19.00 30.00 11.00 39.00 31.00 50.00 146.00
Avg. Duration 3.62 4.27 3.55 4.93 4.16 4.51 3.91 4.37
Avg. Std. Dev. of Duration 1.91 2.03 1.95 2.23 2.20 2.17 2.09 2.42
Avg. Coupon 3.39 4.91 4.80 2.97 3.21 4.00 3.85 1.33
Avg. Std. Dev. of Coupon 2.00 1.95 2.90 0.86 1.17 1.75 1.30 0.86

Table 2: Returns Summary Statistics for US Treasuries (1988-2017)
Panel (A): summary statistics for the cross-section of total trade returns (weekly percentage terms).
Panel (B): summary statistics for the time series of monthly portfolio returns, in percentage terms.

Panel (A) Cross-Section of Trade Total Returns

Mean Median Std. Dev. # Trades

US
Relative Value 0.88 0.03 7.44 6650
Noise (unfiltered) 0.55 -0.02 17.18 5957
Noise (filtered) 1.65 0.03 25.46 2708

Panel (B) Time Series of Portfolio Returns

Mean Std. Dev. Min Max Skew Kurt

US
Relative Value 0.52 1.79 -8.76 7.55 -0.35 6.56
Noise (unfiltered) 0.16 0.62 -3.44 2.94 -0.33 10.53
Noise (filtered) 0.46 1.07 5.75 6.37 -0.00 11.30
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Table 3: Summary Statistics – Cross-Section of Trade Returns for All Countries (2005-2017)
Mean, median and standard deviation in the cross-section of trade returns, from implementation to liqui-
dation. Weekly returns, in percentage terms.

Mean Median Std. Dev. # Trades

US
Relative Value 0.46 0.09 3.19 2231
Noise (unfiltered) 0.02 -0.01 1.71 2281
Noise (filtered) 0.36 0.04 2.53 871

UK
Relative Value 1.09 0.14 3.08 343
Noise (unfiltered) 1 0.14 2.9 229
Noise (filtered) 0.83 0.14 1.94 173

CA
Relative Value 0.55 0.04 3.19 244
Noise (unfiltered) -0.07 -0.03 1.78 300
Noise (filtered) 1.09 0.06 3.98 102

DE
Relative Value 2.93 0.27 7.86 400
Noise (unfiltered) 3.84 0.12 10.08 298
Noise (filtered) 5.67 0.83 11.99 195

CH
Relative Value 1.24 0.13 5.56 112
Noise (unfiltered) 1.16 0.24 4.79 126
Noise (filtered) 2.17 0.46 5.5 78

FR
Relative Value 4.23 0.23 17.94 461
Noise (unfiltered) 6.49 0.47 17.29 394
Noise (filtered) 10.66 1.71 20.78 222

IT
Relative Value 5.99 0.62 27.85 2257
Noise (unfiltered) 2.75 0.18 16.13 1824
Noise (filtered) 5.96 0.54 19.75 1261

JP
Relative Value 0.62 0.07 3.96 417
Noise (unfiltered) 0.34 0.05 2.34 543
Noise (filtered) 0.38 0.07 2.94 162
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Table 4: Summary Statistics–Monthly Index Returns (2005-2017)
Summary statistics for the time series of monthly portfolio returns, in percentage terms.

Mean Std. Dev. Min Max Skew Kurt

US
Relative Value 0.54 2.30 -8.76 7.55 -0.51 4.93
Noise (unfiltered) 0.12 0.70 -3.44 2.94 -0.94 12.28
Noise (filtered) 0.42 1.24 -5.75 4.1 -1.09 9.46

UK
Relative Value 0.49 1.50 -4.87 5.25 0.12 4.93
Noise (unfiltered) 0.17 1.33 -3.08 5.09 0.58 4.87
Noise (filtered) 0.14 1.46 -4.15 4.76 0.18 4.64

CA
Relative Value 0.42 2.81 -10.03 9.95 -0.7 6.93
Noise (unfiltered) 0.14 1.51 -7.82 7.05 -0.28 12.19
Noise (filtered) 0.45 1.93 -9.76 7.15 -1.38 12.81

DE
Relative Value 0.94 2.82 -11.06 14.77 0.03 11.04
Noise (unfiltered) 0.66 1.16 -1.89 6.03 2.38 10.45
Noise (filtered) 1.21 2.33 -2.55 14.62 2.98 13.78

CH
Relative Value 0.61 1.92 -6.34 10.14 0.78 11.19
Noise (unfiltered) 0.64 2.01 -7.41 9.96 1.56 10.42
Noise (filtered) 0.74 2.12 -4.48 10.4 2.15 9.41

FR
Relative Value 2.11 5.11 -10.55 28.49 2.44 12.89
Noise (unfiltered) 1.94 4.32 -7.38 24.08 2.39 10.66
Noise (filtered) 3.09 7.14 -4.22 42.12 2.83 11.93

IT
Relative Value 1.52 3.16 -4.21 27.32 4.75 35.70
Noise (unfiltered) 0.81 1.72 -8.02 9.15 0.5 13.41
Noise (filtered) 1.35 2.41 -4.1 13.31 2.4 10.74

JP
Relative Value 0.49 1.39 -4.07 7.96 0.96 9.69
Noise (unfiltered) 0.19 0.77 -4.5 2.44 -1.39 13.85
Noise (filtered) 0.21 1.41 -6.81 8.4 0.77 16.52

Table 5: Principal Components of Relative Value Measures
Share of the variations in a balanced panel of individual bonds’ relative value measures explained by the
first two principal components, in each country. The sample period is from 2005 to 2017.

US GB CA CH DE FR IT JP
1st 0.29 0.40 0.23 0.72 0.26 0.27 0.31 0.13
2nd 0.06 0.15 0.16 0.11 0.11 0.16 0.13 0.06
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Table 6: International Relative Value Indices–Correlations
Correlation between the daily relative value indices in each country. The sample period is from 2005 to
2017.

US GB CA CH DE FR IT JP
US 1.00 0.79 0.53 0.63 0.68 0.15 0.04 -0.18
GB 0.79 1.00 0.59 0.51 0.51 0.16 0.01 -0.12
CA 0.53 0.59 1.00 0.56 0.71 0.29 0.02 -0.32
CH 0.63 0.51 0.56 1.00 0.49 -0.11 -0.32 -0.37
DE 0.68 0.51 0.71 0.49 1.00 0.34 0.28 -0.19
FR 0.15 0.16 0.29 -0.11 0.34 1.00 0.63 0.21
IT 0.04 0.01 0.02 -0.32 0.28 0.63 1.00 0.44
JP -0.18 -0.12 -0.32 -0.37 -0.19 0.21 0.44 1.00

Table 7: International Relative Value Indices, Money-Market Rates and Volatility
Correlation between the daily value of different sovereign issuers’ relative value indices and local or inter-
national measures of volatility or funding stress. Local interbank rates are USD LIBOR for the US, GBP
LIBOR for the UK, Canadian Dollar Offered Rate (CDOR) for Canada, CHF LIBOR for Switzerland,
JPY LIBOR for Japan and Euribor for euro area countries. OIS rates are USD OIS for the US, Sterling
Overnight Index Average (SONIA) for the UK, CAD OIS for Canada, CHF OIS for Switzerland, Tokyo
Overnight Average Rate (TONAR) for Japan and Euro OverNight Index Average (EONIA) for euro area
countries. Local volatility indices are VIX for the US, VFTSE for the UK, VNKY for Japan and VSTOXX
for the euro area countries. International averages are the daily mean values for available Interbank-OIS
Spreads and Volatility Indices, respectively. The sample period is from 2005 to 2017.

US GB CA CH DE FR IT JP
3M Local Interbank-OIS spread 0.71 0.73 0.03 0.58 0.51 0.13 0.25 -0.26
3M US LIBOR-OIS spread 0.71 0.62 0.26 0.58 0.31 0.03 0.06 -0.04
3M Interbank-OIS spread (intl average) 0.31 0.35 0.03 0.23 0.00 0.02 0.07 0.08
Volatility Index (local) 0.82 0.72 N/A N/A 0.51 0.04 0.11 0.05
VIX 0.82 0.66 0.46 0.57 0.59 0.09 0.11 -0.08
Volatility Index (intl average) 0.76 0.64 0.40 0.55 0.51 0.04 0.11 -0.02
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