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Abstract 

This paper proposes a novel asymptotic least-squares estimator of multi-country Gaussian 

dynamic term structure models that is easy to compute and asymptotically efficient, even 

when the number of countries is relatively large—a situation in which other recently 

proposed approaches lose their tractability. We illustrate our estimator within the context 

of a seven-country, 10-factor term structure model. 

Bank topics: Asset pricing; Econometric and statistical methods; Exchange rates; 

Interest rates 

JEL codes: E43, F31, G12, G15 

 

Résumé 

Nous proposons un nouvel estimateur des modèles dynamiques gaussiens de la structure 

par terme des taux d’intérêt à plusieurs pays. Cet estimateur fondé sur la méthode des 

moindres carrés ordinaires est facile à calculer et asymptotiquement efficient, même avec 

un assez grand nombre de pays, un cas pour lequel d’autres méthodes proposées 

récemment perdent leur simplicité. Nous illustrons l’emploi de l’estimateur dans un 

modèle de structure par terme à sept pays et dix facteurs. 

Sujets : Évaluation des actifs ; Méthodes économétriques et statistiques ; Taux de 

change ; Taux d’intérêt  

Codes JEL : E43, F31, G12, G15 

 

 

 



 

Non-Technical Summary 

In the wake of the financial crisis of 2007-08 and its transmission around the world, both academics and 

market practitioners have found a renewed interest in understanding the links among the yield curves 

denominated in different currencies. At the heart of this literature is the Gaussian dynamic term 

structure model (GDTSM), thanks to its tractability and relationship with the Gaussian vector 

autoregressive (VAR) model, a widely used empirical tool in macro-finance studies. 

However, the estimation of these models in a multi-country setup tends to be problematic and 

researchers often face a myriad of numerical challenges when working with these models because of: 

(i) the large number of parameters involved in these models, 

(ii) the highly non-linear nature of the likelihood function, and/or 

(iii) the existence of multiple local optima.  

In fact, these issues are magnified in the case of multi-country models due to the increased number of 

parameters and factors needed to properly describe the joint dynamics of yield curves across different 

currencies. For example, the number of parameters one needs to jointly estimate in the case of a seven-

country and 10-factor model, as in our empirical illustration, is 213, which renders traditional methods 

to estimate these models un-implementable. 

In this paper, we overcome these issues by extending the linear estimator of Diez de los Rios (2015a) to 

the case of multi-country term structure models with unspanned exchange rate risk. This method 

completely avoids numerical optimization methods whenever yields on adjacent maturities are directly 

observed (i.e., whenever the researcher observes yields on both 16-quarter and 17-quarter bonds).  

For illustrative purposes, we estimate a seven-country and 10-factor model and decompose 10-year 

zero-coupon bond yields into expectations and term premium components. Using this decomposition to 

analyze the covariation of the term premia across yield curves denominated in different currencies 

within a unified framework, we find that only 2 factors might be needed to explain most of the 

(economically interesting) variation in term premia: a result in line with studies in the United States. 



1 Introduction

In the wake of the financial crisis of 2007-08 and its transmission around the world, both

academics and market practitioners have found a renewed interest in understanding the

links among the yield curves denominated in different currencies (see, e.g., Diebold, Li

and Yue, 2009; Sarno, Schneider and Wagner, 2012; Dahlquist and Hasseltoft, 2013;

Jotikasthira, Le and Lundblad, 2015; Meldrum, Raczko and Spencer, 2016). At the heart

of this literature is the Gaussian dynamic term structure model (GDTSM), thanks to

its tractability and relationship with the Gaussian vector autoregressive (VAR) model, a

widely used empirical tool in macro-finance studies (see Ang and Piazzesi, 2003, for an

extended discussion on this relationship).

The maximum likelihood (ML) approach has been traditionally considered as the most

natural way to estimate GDTSMs, since such models provide a complete characterization

of the joint distribution of yields. However, even in one-country studies, researchers often

face a myriad of numerical challenges when using ML methods to estimate these models

because of (i) the large number of parameters involved in these models, (ii) the highly

non-linear nature of the likelihood function, and/or (iii) the existence of multiple local

optima (e.g., the discussions in Duffee and Stanton, 2012; Hamilton and Wu, 2012). In

fact, these issues are magnified in the case of multi-country models because of the in-

creased number of parameters and factors needed to properly describe the joint dynamics

of yield curves across different currencies. Consequently, the literature has been restricted

to mainly two-country models (e.g., Backus, Foresi and Telmer, 2001), needed very com-

putationally intensive methods for estimation (e.g., Sarno, Schneider and Wagner, 2012),

used only domestic factors to fit the term structure of interest rates (e.g., Dahlquist and

Hasseltoft, 2013), or even excluded exchange rate data from the analysis of these models

(e.g., Jotikasthira, Le and Lundblad, 2015).

In this paper, we overcome these issues by extending the linear estimator of Diez de los

Rios (2015a), which completely avoids numerical optimization methods whenever yields on

adjacent maturities are directly observed (i.e., whenever the researcher observes yields on

both 16-quarter and 17-quarter bonds), to the case of multi-country term structure models

with unspanned exchange rate risk.1 Importantly, we show how to overcome Golinski and

1A variable is unspanned if its value is not linearly related to the contemporaneous cross-section of
bond yields.
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Spencer’s (2017) recent finding that this estimator tends to diverge when the number

of bond pricing factors is larger than three, thus paving the way for its application to

international term structure models with a large number of countries, exchange rates and

bond pricing factors.

Specifically, our proposed estimator is an asymptotic least squares (ALS) estima-

tor that exploits three features that characterize GDTSMs. First, these models have

a reduced-form representation whose parameters can be easily estimated using ordi-

nary least squares (OLS) regressions. Second, the no-arbitrage assumption upon which

GDTSMs are built can be characterized as a set of implicit constraints between these

reduced-form parameters and the parameters of interest. Third, this set of restrictions

is linear in the parameters of interest. Consequently, we propose a two-step estimator,

in which we first estimate the reduced-form parameters by OLS. In the second step, the

parameters of the GDTSMs are inferred by forcing the no-arbitrage constraints, evaluated

at the first-stage estimates of the reduced-form parameters, to be as close as possible to

zero in the metric defined by a given weighting matrix. Note that, since the constraints

are linear in the parameters of interest, the solution to the estimation problem in this

second step is known in closed form. More importantly, our proposed estimator is as-

ymptotically equivalent to maximum likelihood (ML) estimation under a suitably chosen

weighting matrix.

While some recent approaches to the estimation of one-country GDTSMs have sub-

stantially lessened some of the numerical challenges faced by researchers, we argue that

such approaches cannot really handle models where the number of countries is large. In

particular, we derive a multi-country version of the canonical representation of Joslin,

Singleton and Zhu (2011) (JSZ) and note that the ML estimator based on such represen-

tation still implies a numerical search over a very large dimensional space when either the

number of countries or the number of factors is moderately large (e.g., 213 parameters in

the case of a seven-country and 10-factor model as in our empirical illustration). This ren-

ders the MLE un-implementable in such cases, leaving the ALS methods proposed in this

paper as the only reliable alternative for the estimation of international term structure

models with either a large number of countries or factors.

For illustrative purposes, we estimate a seven-country and 10-factor model and decom-

pose 10-year zero-coupon bond yields into expectations and term premium components.

Furthermore, using this decomposition to analyze the covariation of the term premia
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across yield curves denominated in different currencies within a unified framework, we

find that only two factors might be needed to explain most of the (economically inter-

esting) variation in term premia: a result in line with those in Duffee (2010) and Joslin

Priebsch and Singleton (2014) for the U.S. case.

The structure of article is as follows. In section 2, we describe the class of multi-

country GDTSMS with unspanned foreign exchange risk, and discuss its estimation using

the ALS framework in section 3. In section 4, we discuss the relationship of our proposed

approach with ML estimation. Our empirical illustration is presented in section 5. Section

6 concludes.

2 International Gaussian Term Structure Models

2.1 Basic Framework

We start by considering a world with J+1 countries and currencies where, without loss of

generality, we consider the J + 1st currency to be the numeraire (U.S. dollar in our case).

Let sj,t be the (log) U.S. dollar price of a unit of foreign currency j and ∆sj,t ≡ sj,t−sj,t−1
be the rate of depreciation of currency j against the U.S. dollar, which we collect in the

(J × 1) vector ∆st = (∆s1,t, . . . ,∆sJ,t)
′.

For each country j, there is a set of n-period default-free discount bonds with prices

in local currency given by P (n)j,t for n = 1, ..., N, and (log) yields given y(n)j,t = − 1
n

logP
(n)
j,t .

Let yj,t = (y
(1)
j,t , ..., y

(N)
j,t )′ be a (N × 1) vector that collects all yields in country j, and let

yt =
(
y′$,t,y

′
1,t, ...,y

′
J,t

)′
be a (N × 1) vector, with N = N × (J + 1), that collects all

yields in the (global) economy.2

The state of the global economy is summarized by the following two vectors of state

variables: (i) a (F × 1) vector xb,t, with F ≤ N , of bond pricing factors that completely
describe the correlation structure of bond yields, and (ii) the (J×1) vector ∆st collecting

the rates of depreciation of the J currencies against the U.S. dollar. Further, the joint

dynamic evolution of these state variables under the physical measure, P, is governed by

a VAR(1) process with Gaussian innovations:(
xb,t+1
∆st+1

)
=

(
µb
µs

)
+

(
Φbb Φbs

Φsb Φss

)(
xb,t
∆st

)
+

(
vb,t+1
vs,t+1

)
, (1)

2Note that, for simplicity and without loss of generality, we have assumed that the number of bonds
in each country is the same.
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which can be represented in compact form as xt+1 = µ+Φxt+vt+1, where xt = (x′b,t,∆s′t)
′

is a (M × 1) vector with M = F + J, and vt ∼ iid N(0,Σ).

Let rj,t be the continuously compounded one-period interest rate in country j (i.e.,

the short rate), which is related to the set of bond pricing factors through the following

affi ne relation:

rj,t = δ
(0)
j + δ

(1)′
j xb,t, j = $, 1, . . . , J. (2)

Collecting the short rates into the [(J+1)×1] vector rt = (r$,t, r1,t, . . . rJ,t)
′, we can repre-

sent equation (2) in compact form as rt = ∆(0)+∆(b)xb,t, where∆(0) = (δ
(0)
$ , δ

(0)
1 , . . . , δ

(0)
J )′

and ∆(b) = (δ
(b)
$ , δ

(b)
1 , . . . , δ

(b)
J )′.3

Lastly, the model is completed by specifying the dynamics of the state variables under

the risk-neutral probability measure, Q, for the numeraire currency (i.e., the U.S). Specif-

ically, we assume that the joint evolution of the bond and exchange rate factors under Q

is characterized by the following VAR(1) process with Gaussian innovations:(
xb,t+1
∆st+1

)
=

(
µQb
µQs

)
+

(
ΦQ
bb 0

ΦQ
sb ΦQ

ss

)(
xb,t
∆st

)
+

(
vQb,t+1
vQs,t+1

)
, (3)

which can be represented in compact form as xt+1 = µQ + ΦQxt + vQt+1 with vQt ∼ iid

N(0,Σ) and where 0 is a conformable matrix of zeros. Under the assumption of absence

of arbitrage opportunities, this risk-neutral measure can be used to price any traded asset

denominated in U.S. dollars using the following relation:

Pt = EQt [exp(−r$,t)Xt+1] , (4)

where Pt is the value of a claim to a stochastic cash flow of Xt+1 U.S. dollars one period

later.

Our specification of the Q-measure has three ingredients. First, given that we focus

on models where the exchange rate risks are unspanned, we assume that the bond pricing

factors, ft, follow an autonomous Gaussian VAR(1) process under the risk-neutral measure

(i.e., ΦQ
bs = 0). In the absence of this restriction, no-arbitrage pricing would imply that

bond yields would be affi ne functions of all xb,t, and ∆st (cf equations 9 and 13 below),

which is contrary to our assumption that only the bond pricing factors, ft, are needed to

3We assume that there are no redundant factors. That is, for every factor xb,k,t, there is at least one
country j for which its loading with respect to this factor is different from zero, δ(1)jk 6= 0. Otherwise, we
would be contradicting our assumption of an F -factor structure for bond yields.
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adequately represent the correlation structure of bond yields.4

Second, we note that the nominal expected return to currency speculation, conditional

on the available information, must be equal to zero under the risk-neutral measure. This is

a consequence of the pricing of a foreign one-period bond by a U.S. investor. In particular,

using equation (4), we have that P (1)j,t × St = EQt (e−r$,t × St+1 × 1) , which in its log form

implies that the uncovered interest parity must be satisfied under the Q-measure:

EQt ∆sj,t+1 = −1

2
V arQt (∆sj,t+1) + (r$,t − rj,t), j = 1, . . . , J,

where −1
2
V art (∆sj,t+1) is a Jensen’s inequality term which, in turn, pins down the coef-

ficients in µQs , ΦQ
sb, and ΦQ

ss:

e′jµ
Q
s = −1

2
e′jΣssej +

[
δ
(0)
$ − δ

(0)
j

]
, (5)

e′jΦ
Q
sb =

[
δ
(b)
$ − δ

(b)
j

]′
, (6)

e′jΦ
Q
ss = 0′, (7)

for j = 1, . . . , J, where ej is a conformable vector of zeros with a one in the j-th position.

Third, consistent with the literature on risk-neutral valuation, we have assumed that

the conditional variance-covariance matrices of the innovations to the pricing factors,

xt, are the same under both the physical and risk-neutral distribution (see Monfort and

Pegoraro, 2012, for a relaxation of this hypothesis): V art(vt+1) = V art(v
Q
t+1) = Σ.

Bond pricing in the numeraire country We can now use risk-neutral valuation to

price zero-coupon bonds by specializing equation (4) to the case of zero-coupon bonds in

the numeraire country. Specifically:

P
(n)
$,t = EQt

[
exp(−r$,t)P (n−1)$,t+1

]
, (8)

where P (n)$,t is the price of a U.S. zero-coupon bond of maturity n periods at time t. Note

that, by recursive substitution of equation (8), we find that:

P
(n)
$,t = EQt

[
exp

(
−

n−1∑
i=0

r$,t+i

)]
,

4We note that, while the evidence on macro risk (un)spanning is mixed (see, e.g., Bauer and Hamilton,
2015, and Bauer and Rudebusch, 2017), there is clear evidence that foreign exchange risk is not spanned
by interest rates. For example, Brandt and Santa-Clara (2002) introduce an exchange rate factor that
is orthogonal to both interest rates and the SDFs in order to match the high degree of exchange rate
volatility.
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That is, one can price a zero-coupon bond as if agents were risk neutral by using the

(local) expectations hypothesis once the law of motion of the state variables has been

modified to account for the fact that agents are not risk neutral.

Solving (8), we show in Appendix A.1 that the continuously compounded yield on an

n-period zero-coupon bond denominated in U.S. dollars at time t, y(n)$,t = − 1
n

logP
(n)
$,t , is

given by

y
(n)
$,t = a

(n)
$ + b

(n)′
$ xb,t, (9)

where a(n)$ = −A(n)$ /n and b
(n)
$ = −B

(n)
$ /n, and A(n)$ and B

(n)
$ satisfy the following set of

recursive relations:

B
(n)′
$ = B

(n−1)′
$ ΦQ

bb + B
(1)′
$ , (10)

A
(n)
$ = A

(n−1)
$ + B

(n−1)′
$ µQb +

1

2
B
(n−1)′
$ ΣbbB

(n−1)
$ + A

(1)
$ , (11)

for n = 2, ..., N . The recursion is started by exploiting the fact that the affi ne pricing

relationship is trivially satisfied for one-period bonds (i.e., y(1)t = rt), which implies that

A
(1)
$ = −δ(0)$ and B

(1)
$ = −δ(b)$ .

Bond pricing in the foreign country In a similar fashion, we can use again the

risk-neutral approach to price the zero-coupon bonds in the rest of the countries:

P
(n)
j,t = EQt

[
exp(−r$,t)

St+1
St

P
(n−1)
j,t+1

]
, (12)

where P (n)j,t ×St is the price in U.S. dollars of the zero-coupon bond of maturity n periods
at time t in country j, and P (n−1)j,t+1 × St+1 is the payoff in U.S. dollars that a U.S. investor
will obtain by selling the n-period zero-coupon bond one period later.

Specifically, we show in Appendix A.2 that, solving (12), the continuously compounded

yield on a foreign n-period zero-coupon bond at time t, y(n)j,t , is also affi ne in the set of

bond pricing factors, xb,t:

y
(n)
j,t = a

(n)
j + b

(n)′
j xb,t, (13)

where a(n)j = −A(n)j /n and b
(n)
j = −B

(n)
j /n, and the scalar A(n)j and vector B

(n)′
j satisfy a

set of recursive relations similar to those for the numeraire country:

B
(n)′
j = B

(n−1)′
j ΦQ

bb + B
(1)′
j , (14)

A
(n)
j = A

(n−1)
j + B

(n−1)′
j

[
µQb + Σbsej

]
+

1

2
B
(n−1)′
j ΣbbB

(n−1)
j + A

(1)
j , (15)
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for n = 2, ..., N . Once again, the recursion is started by exploiting the fact that the affi ne

pricing relationship is trivially satisfied for one-period bonds (n = 1), which implies that

A
(1)
j = −δ(0)j , and B

(1)
j = −δ(b)j .

2.2 A reduced-form representation

As noted by Hamilton and Wu (2012), GDTSMs have a reduced-form representation that

can be exploited to estimate the parameters of interest of the model. In particular, our

model admits the following state-space representation of the observed bond yields:

yot = a + bxb,t + ηt, (16)(
xb,t+1
∆st+1

)
=

(
µb
µs

)
+

(
Φbb Φbs

Φsb Φss

)(
xb,t
∆st

)
+

(
vb,t+1
vs,t+1

)
, (17)

where yt is the vector of model-implied yields that stack the affi ne mappings in equations

(9) and (13), for all maturities and countries, yot is the corresponding vector of observed

yields and ηt is a zero-mean measurement error that is i.i.d. across time and that has a

covariance matrix Ω. Note that a = a(µQb ,Φ
Q
bb,Σbb,Σbs) and b = b(ΦQ

bb) are non-linear

functions of µQb ,Φ
Q
bb,Σbb,Σbs.

The parameters of this reduced-form representation can be trivially estimated when

the bond pricing factors are observable. Specifically, we follow Joslin, Singleton and Zhu

(2011) in working with bond state variables that are linear combinations (i.e., portfolios)

of the observed yields, xb,t = P′yot , where P is a (N × F ) full-rank matrix of weights,

and by further assuming that xb,t is observed perfectly. That is, P′(yot − yt) = P′ηt = 0

∀t. Since the errors of the model are conditionally homoskedastic, this assumption allows
us to obtain maximum likelihood (ML) estimates of the reduced-form parameters via a

set of OLS regressions (see Sentana, 2002, Hamilton and Wu, 2012, and Diez de los Rios,

2015a): (i) the (cross-sectional) coeffi cients a and b could be estimated from the OLS

regression of yot on a constant and xb,t; (ii) the (time-series) coeffi cients µ and Φ could

be estimated from the OLS regression of ft on a constant and its lag.5

Then, similar to the case of one-country GDSTMs in Diez de los Rios (2015a), one

can use Gourieroux, Monfort and Trognon’s (1982, 1985) (GMT hereafter) ALS estima-

tion framework to obtain estimates of the model parameters by trying to force the pricing

5We further assume that Ω = σ2η × (P⊥P′⊥) where P′⊥ is a basis for the orthogonal component of
the row span of P′. This guarantees that P′ΩP = 0 and allows concentrating σ2η from the likelihood

function through σ̂2η =
∑T
t=1

∑J
j=$

∑N
n=1(y

o
t,n − yt,n)2/(T × J × (N −M)).
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recursions in (10), (11), (14), (15), evaluated at the estimates of the reduced-form parame-

ters, to be as close as possible to zero. We discuss such an ALS estimator of multi-country

GDTSMs in the next section.

3 Asymptotic least squares estimation of international
GDTSMs

3.1 The asymptotic least squares estimation framework

As noted by GMT, many empirical models can be formalized as a set of G implicit

equations g(π,θ) = 0 between a set of parameters of interest θ ∈ Θ ⊂ RK and a set of
auxiliary parameters π ∈ Π ⊂ RH .6 In the case of the estimation of GDTSMs, we advance
that θ is related to the parameters of the no-arbitrage model in equations (1), (2), and

(3); π is related to the set of parameters from the reduced-form model in equations (16)

and (17); the set equations g(π,θ) = 0 is related to the pricing recursions in equations

(10), (11), (14) and (15); and g(π,θ) is linear in θ.

Further, we assume the existence of a strongly consistent and asymptotically normal

estimator of the auxiliary parameters π̂, such that as T →∞, π̂ → π0, Pθ0 almost surely;

and
√
T (π̂ − π0) d−→ N

[
0,Vπ(θ0)

]
, where T denotes the number of observations in the

sample and θ0 and π0 denote the true value of the parameters of interest and auxiliary

parameters respectively, i.e., g(π0,θ0) = 0.

The ALS estimation principle consists of minimizing a quadratic form in the distance

function evaluated at the estimates of the auxiliary parameters, π̂:

θ̂ALS = arg min
θ
Tg(π̂,θ)′WTg(π̂,θ), (18)

where WT is a positive semi-definite weighting matrix that possibly depends on the

observations. In other words, GMT propose forcing the G implicit equations evaluated

at π̂ to be as close as possible to zero in the metric defined by WT . Further, notice that,

when the distance function is linear in the set of parameters of interest (as in the case of

the estimation of GDTSMs), the solution to the optimization problem in (18) is known

in closed form.
6To be more specific, we assume that the set of G implicit equations g(π,θ) = 0 has a unique solution

for θ given π so that the parameters of interest can be determined without ambiguity from the auxiliary
parameters.
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Further, assuming that (i) g(π,θ) is twice continuously differentiable, (ii) WT con-

verges Pθ0 almost surely to W, a non-stochastic semi-definite weighting matrix of size G,

and rank greater or equal than K, (iii) the true values of the parameters of interest and

auxiliary parameters, θ0 and π0, both belong to the interior of Θ and Π, respectively,

(iv) and ∂g′

∂θ
W ∂g

∂θ′ evaluated at θ
0 and π0 is non-singular (which implies that the rank of

∂g/∂θ′ = K and that K ≤ G), then (see GMT for the proof) θ̂ALS is strongly consistent

for every choice of WT , and its asymptotic distribution is given by

√
T (θ̂ALS − θ0)

d−→ N

[
0,

(
∂g′

∂θ
W

∂g

∂θ′

)−1
∂g′

∂θ
W

∂g

∂π′
Vπ

∂g′

∂π
W

∂g

∂θ′

(
∂g′

∂θ
W

∂g

∂θ′

)−1]
,

(19)

where the various matrices in this equation are evaluated at θ0 and π0.

3.2 The case of GDTSMs

In the specific example of GDTSMs, we have that the vector of auxiliary parameters is

given by π = (π′1,π
′
2,π

′
3)
′ (i.e., the reduced-form parameters), where π1 = vec

[
(a b)′

]
,

π2 = vec
[
(µ Φ)′

]
, and π3 = vech

(
Σ1/2

)′
. In order to guarantee the positivity of the

covariance matrix Σ, we focus on its Cholesky decomposition, Σ = Σ1/2Σ1/2′ rather than

on Σ itself. Thus, we have a total of H = N × (M + 1) + (M + J)× (M + J + 1) + (M +

J)× (M + J + 1)/2 auxiliary parameters.

As previously noted in section 2.2, the maximum likelihood estimation of the reduced-

form parameters coincides with OLS estimation equation-by-equation, and therefore there

is a consistent and asymptotically normal estimate π̂ available. Specifically, we have that

√
T

 π̂1
π̂2
π̂3

−
 π01
π02
π03

 d−→ N

 0
0
0

 ,

 Vπ1 0 0
0 Vπ2 0
0 0 Vπ3

 , (20)

√
T
(
π̂ − π0

) d−→ N (0,Vπ) ,

where Vπ1 = Ω⊗E(x̃b,tx̃
′
b,t)
−1, Vπ2 = Σ⊗E(x̃tx̃

′
t)
−1, Vπ3 = 2E(Σ⊗Σ)E′; with x̃b,t = (1

x′b,t)
′, x̃t = (1 x′t)

′, E =
[
LM(I + KMM)(Σ1/2 ⊗ I)L′M

]−1
D+
M , where LM is an “elimination

matrix” such that vech (Σ) = LMvec (Σ), KMM is a “commutation matrix” such that

KMMvec(F) = vec(F′) for any (M×M) matrix F, and D+
M = (D′MDM)−1D′M where DM

is a “duplication matrix”satisfying DMvech (Σ) = vec (Σ) (see Lütkepohl, 1989).

Next, we consider the pricing recursions in equations (10), (11), (14) and (15). Let

ΘQ be a matrix that collects the parameters driving the dynamics under the risk-neutral

9



measure in the following way:

ΘQ′ =

(
∆(0) ∆(b)

µQb ΦQ
bb

)
,

and let θ be the vector of parameters of interest such that θ = (θ′1,θ
′
2,θ

′
3)
′ with θ1 =

vec(ΘQ), θ2 = vec
[
(µ Φ)′

]
, and θ3 = vech

(
Σ1/2

)
. Thus, we have a total of K =

(J +M)× (M + 1) + (M + J)× (M + J + 1) + (M + J)× (M + J + 1)/2 parameters of

interest.

Then, by stacking equations for all bond yields and countries, we can express the

restrictions implied by the no-arbitrage model in compact form as

G(π,θ)′ = Y(π)−X(π)ΘQ′ = 0, (21)

where Y(π) =
[
Y$(π)′,Y1(π)′, ...,YJ(π)′

]′
and X(π) =

[
X$(π)′,X1(π)′, ...,XJ(π)′

]′
with

Y$(π) =



A
(1)
$ B

(1)′
$

A
(2)
$ − A

(1)
$ −

1
2
B
(1)′
$ ΣbbB

(1)
$ − A

(1)
$ B

(2)′
$ −B

(1)′
$

...
...

A
(n)
$ − A

(n−1)
$ − 1

2
B
(n−1)′
$ ΣbbB

(n−1)
$ − A(1)$ B

(n)′
$ −B

(1)′
$

...
...

A
(N)
$ − A(N−1)$ − 1

2
B
(N−1)′
$ ΣbbB

(N−1)
$ − A(1)$ B

(n)′
$ −B

(1)′
$


,

X$(π) =



−1 0 0

0 0 B
(1)′
$

...
...

...
0 0 B

(n−1)′
$

...
...

...
0 0 B

(N−1)′
$


,
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for the numeraire country and

Yj(π) =



A
(1)
j B

(1)′
j

A
(2)
j − A

(1)
j −B

(1)′
j Σbsej − 1

2
B
(1)′
j ΣbbB

(1)
j − A

(1)
j B

(2)′
$ −B

(1)′
$

...
...

A
(n)
j − A

(n−1)
j −B

(n−1)′
j Σbsej − 1

2
B
(n−1)′
j ΣbbB

(n−1)
j − A(1)j B

(n)′
$ −B

(1)′
$

...
...

A
(N)
j − A(N−1)j −B

(N−1)′
j Σbsej − 1

2
B
(N−1)′
j ΣbbB

(N−1)
j − A(1)j B

(N)′
$ −B

(1)′
$


,

Xj(π) =



0 −e′j 0

0 0 B
(1)′
j

...
...

...
0 0 B

(n−1)′
j

...
...

...
0 0 B

(N−1)′
j


,

for the rest of the countries, i.e., j = 1, ..., J .

Then, vectorizing equation (21) and adding the set of identities θ2 = π2 and θ3 = π3,

we arrive at the following expression for g(π,θ):

g(π,θ) = γ(π)− Γ(π)θ, (22)

where γ(π) =
{
vec
[
Y(π)′

]′
,π′2,π

′
3

}
and

Γ(π) =

 X(π)⊗ I 0 0
0 I 0
0 0 I

 .

Thus, we have that, in total, there are G = N × (M + 1) + (M +J)× (M +J + 1) + (M +

J) × (M + J + 1)/2 distance functions. Further, we have that the number of distance

functions is equal to the number of auxiliary parameters, that is, G = H.

Specializing equation (18) to the case of the distance functions given by equation (22)

and an identity weighting matrix, WT = I, we obtain the following OLS estimator:

θ̂OLS =
(
Γ̂′Γ̂

)−1 (
Γ̂′γ̂
)
, (23)

where γ̂ ≡ γ(π̂) and Γ̂ = Γ(π̂). Asymptotic standard errors for θ̂OLS can be obtained by

specializing equation (19) to the case of W = I and ∂g/∂θ′ = −Γ(π0).

Note, however, that θ̂OLS does not deliver a self-consistent model in the sense that

the model-implied yields will not reproduce the bond pricing factors. In other words,

one should guarantee that, when choosing state variables that are linear combinations

11



(portfolios) of the yields, ft = P′yot , the state variables that come out of the model need

to be the same as the state variables that we started with (Cochrane and Piazzesi, 2005).

Therefore, it is necessary to ensure that the pricing of portfolios of yields in equations (9)

and (13) is consistent with xb,t = P′yt = P′a(θ) + P′b(θ)xb,t, which amounts to imposing

the following set of constraints when estimating the model:

P′a(θ) = 0, P′b(θ) = I. (24)

Let r(θ) = 0 denote the set of S = M × (M + 1) self-consistency restrictions implicit in

equation (24). We analyze the implications of these restrictions for the optimality of our

estimator in the next section.

3.3 Optimal asymptotic least squares of GDTSMs

As in the case of generalized method of moments (GMM) estimation, an identity weight-

ing matrix is not necessarily optimal and (asymptotic) effi ciency gains can be achieved

by selecting an appropriate weighting matrix. In particular, GMT show that when
∂g
∂π′Vπ

∂g′

∂π
and ∂g′

∂θ

(
∂g
∂π′Vπ

∂g′

∂π

)−1
∂g
∂θ′ are non-singular when evaluated at θ

0 and π0 (which

implies that the rank of ∂g/∂π′ = G and that G ≤ H), then an optimal estimator

exists. Such an estimator is optimal in the sense that the difference between the asymp-

totic variance of the resulting ALS estimator and another ALS estimator based on any

other quadratic form in the same distance function is negative semidefinite. In partic-

ular, the optimal ALS estimator corresponds to the choice of a weighting matrix WT

that converges to W =
(
∂g
∂π′Vπ

∂g′

∂π

)−1
. Note that, by the delta method, we have that

Vg(θ
0) = avar

[√
Tg(π̂,θ0)

]
=
[
∂g(π0,θ0)

∂π′ Vπ(π0)∂g(π
0,θ0)
∂π

]−1
, so the optimal weight-

ing matrix is simply the inverse of the asymptotic covariance of the distance function.

Similarly, given that r(θ0) = 0, one would expect effi ciency gains by imposing the self-

consistency restrictions in (24) when estimating the parameters of interest. Therefore,

optimal ALS estimation should, in principle, involve both choosing an optimal weighting

matrix and simultaneously imposing the self-consistency constraints when estimating the

model.

However, the self-consistency restrictions combined with the assumption that the bond

state variables are observed perfectly imply that Ω, the covariance of the measurement

errors in equation (16) is singular. In particular, note that Ω appears in the expression

of the asymptotic covariance matrix of the estimator of π̂1 in equation (20). Thus, the

12



reduced rank structure in Ω translates into a reduced-rank structure in Vπ, which can

be seen by the fact that the OLS estimates of the reduced-form coeffi cients automatically

satisfy the set of self-consistent restrictions:

P′â = 0, P′b̂ = I. (25)

More important, given that ∂g/∂π′ is a non-singular H × H matrix, the singularity in

Vπ also carries over to Vg.

To overcome this problem, we follow Peñaranda and Sentana (2012), who study the

problem of obtaining an optimal GMM estimator when the asymptotic variance of the

moment conditions is singular in the population. Specifically, we (i) replace the ordinary

inverse ofVg(θ
0) by any of its generalized inverses V̂+

g (θ0) and, (ii) simultaneously, impose

the self-consistency restrictions in equation (24) when estimating the model.

In order to provide intuition on the optimality of this approach (see Diez de los Rios,

2015b, for a formal proof), let the spectral decomposition of Vg(θ
0) be written as

Vg(θ
0) =

(
T1 T2

)( Λ 0
0 0

)(
T′1
T′2

)
= T1ΛT′1,

where Λ is a (G − S) × (G − S) positive definite diagonal matrix. Therefore, we can

split our set of distance functions into two groups: (i) the set of K −S distance functions
T′1g(π̂,θ) whose asymptotic long-run variance is the non-singular matrix Λ, and (ii) the

set of degenerate S distance functions T′2g(π̂,θ) that converge in mean square to zero

due to the fact that the set of parameters of interest satisfy the self-consistent restrictions

r(θ) = 0.

Focus now, for convenience and without loss of generality, on the Moore-Penrose gen-

eralized inverse of Vg(θ
0), such that

VMP+
g (θ0) = T1Λ

−1T′1.

Then, the optimal ALS estimator in this singular setup is equivalent to the constrained

ALS estimator that works with the reduced set of K−S distance functions T′1g(π̂,θ) and

the restrictions r(θ) = 0. However, note that the ALS estimator that uses the generalized

inverse of Vg(θ
0) alone without the self-consistency restrictions will not likely be optimal,

since it drops the S asymptotically degenerate, i.e., most informative, linear combinations

of
√
Tg(π̂,θ). In fact, it might even be the case that θ is not identified from the set of

reduced implicit relations T′1g(π̂,θ). This will occur, for example, if K > G− S.

13



Consequently, we have that the optimal estimator of the parameters of interest is

θ̂CGLS = arg min
θ
T [γ(π̂)− Γ(π̂)θ]′ V̂+

g [γ(π̂)− Γ(π̂)θ] s.t. r(θ) = 0, (26)

where, by stacking and vectorizing (24), we have that r(θ) =vec (P′ ⊗ I) p1(θ)− r1, with

p1(θ) =vec
{

[a(θ) b(θ)]′
}
, and r1 = vec

[
(0 I)′

]
. We refer to this (optimal) estimator as

the constrained generalized least squares (CGLS) estimator. The asymptotic distribution

of this estimator is given by:

√
T (θ̂CGLS − θ0)

d−→ N

[
0,J−1 − J−1

∂r′

∂θ

(
∂r

∂θ′
J−1

∂r′

∂θ

)−1
∂r

∂θ′
J−1

]
, (27)

where J = Γ′V+
g Γ and ∂r/∂θ′ are both evaluated at θ0 and π0 (see chapter 10 in Gourier-

oux and Monfort, 1995). Further, as in the case of GMM, the optimized value of the ALS

criterion function has an asymptotic χ2 distribution with degrees of freedom equal to the

number of overidentifying restrictions (G−K).
Unfortunately, the solution to the optimal ALS (i.e., the CGLS) estimator in equation

(26), θ̂CGLS, is not known in closed form because r(θ) is not linear in the set of parameters

of interest, θ. Still, as noted by Newey and McFadden (1994) and Gourieroux and Monfort

(1995) among others, estimating the model subject to a linearized version of the constraint

(around a consistent estimate of θ) delivers an estimator that is asymptotically equivalent

to the one that uses the non-linear constraint.

For this reason, we focus instead on the (feasible) linearized constrained GLS estima-

tor, θ̃LCGLS, defined as:

θ̃LCGLS = arg min
θ
T [γ(π̂)− Γ(π̂)θ]′ V̂+

g [γ(π̂)− Γ(π̂)θ] , (28)

s.t. r(θ̂OLS) =
∂r(θ̂OLS)

∂θ′
(θ̂OLS − θ),

where, as a difference with Diez de los Rios (2015a), the constraint r(θ) = 0 has been

linearized around the unconstrained OLS estimate of θ defined above in equation (23).

The main advantage of such linearization is that, since the objective function is quadratic

and the restrictions are now linear in the parameters of interest, the solution of the

estimation problem is known in closed form:

θ̃LCGLS = θ̂GLS − Ĵ−1
∂r(θ̂OLS)′

∂θ

(
∂r(θ̂OLS)

∂θ′
Ĵ−1

∂r(θ̂OLS)′

∂θ

)−1
r(θ̂OLS), (29)
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where θ̂GLS =
(
Γ̂′V̂+

g Γ̂
)−1 (

Γ̂′V̂+
g γ̂
)
is the (suboptimal) ALS estimator that uses a

consistent estimate of the generalized inverse of Vg(θ) as weighting matrix, but that does

not impose the restrictions r(θ) = 0, and Ĵ =
(
Γ̂′V̂+

g Γ̂
)
.

However, θ̃LCGLS still does not satisfy the constraint r(θ) = 0 exactly, even though

θ̃LCGLS is asymptotically equivalent to the estimator that uses the non-linear constraint.

This is why we follow Bekaert and Hodrick (2001) in iterating equation (29) when con-

structing our constrained estimates. Specifically, we start by obtaining a first restricted

estimate of θ using equation (29) and linearizing the constraint r(θ) = 0 around θ̂OLS.

Denote this first restricted estimate θ̃
(1)

LCGLS. Then, we obtain a second restricted esti-

mate, θ̃
(2)

LCGLS, by linearizing r(θ) = 0 around θ̃
(1)

LCGLS. We repeat this process until the

resulting constrained estimate satisfies the self-consistency restrictions, r(θ̃
(n)

LCGLS) = 0

within a given tolerance.

While the results in Diez de los Rios (2015a) suggest that only a few iterations of

equation (29) might be required for this estimator to converge, Golinski and Spencer

(2017) have recently noted that this estimator tends to diverge when the number of bond

pricing factors is larger than three. This occurs because the GLS estimator, θ̂GLS, by

using the generalized inverse of Vg(θ
0) alone without the self-consistency restrictions,

drops the S most informative linear combinations of
√
Tg(π̂,θ), and therefore there

might not be not enough information on the reduced set of K − S distance functions

T′1g(π̂,θ) to identify θ. This renders θ̂GLS numerically unstable and the algorithm to

compute θ̃LCGLS to diverge. This is a problem because the number of factors needed to

adequately capture the cross-sectional variability of yields in more than one country is

usually larger than three. In the appendix, we provide an alternative way of solving (28)

that avoids this issue and allows us to estimate multi-country models with a large number

of bond pricing factors. Specifically, our new method directly imposes the self-consistent

restrictions implicit in r(θ) = 0 by reparameterizing the model in terms of K − S free

parameters and linearizing r(θ) around θ̂OLS.7

7The reader is referred to Diez de los Rios (2015a) for a discussion of several extensions of this
regression framework, including (i) the estimation subject to equality constraints, (ii) the existence of
unspanned macro risks, (iii) how to deal with situations where only a subset of bonds is available, and
(iv) how to compute small-sample standard errors and implement bias corrections.

15



4 Relationship with maximum likelihood estimation

In this section, we now discuss the relationship of our ALS estimator to the ML approach.

However, as a difference with the literature on the ML estimation of one-country GDTSMs,

where the canonical representation of Joslin, Singleton and Zhu (2011) has substantially

lessened many of the numerical challenges faced by researchers, there is no accepted

canonical representation for multi-country models. For this reason, we start by deriving

a canonical version of a multi-country GDTSM by adapting the methodology of Joslin,

Singleton and Zhu (2001) to the international setup.

4.1 The canonical model

As noted in the previous sebsection, self-consistency of the model implies that not all the

parameters of the generic representation of a multi-country GDTSM are free. For this

reason, we now focus on providing normalizations for the general representation outlined

above that ensure that the model-implied yields reproduce the bond pricing factors, xb,t.8

In particular, we follow Dai and Singleton (2000) and JSZ in employing the affi ne

transformations of the state variables outlined in Appendix C to show that our generic

representation of a multi-country term structure model above is observationally equivalent

to a canonical model with latent state variables and restrictions on both the parameters

that govern the dynamic evolution of the state variables under the risk-neutral measure

and the loadings of the short rates across the different countries. We collect such a result

in Lemma 1.

Lemma 1 The generic representation of a multi-country term structure model in equa-

tions (1), (2), and (3) is observationally equivalent to a model where: (i) the short rates

are linear in a set of latent “bond”factors zt
r$,t
r1,t
r2,t
...
rJ,t

 =


rQ$,∞
rQ1,∞
rQ2,∞
...

rQJ,∞

+


1−

∑J
j=1 γj,1 1−

∑J
j=1 γj,2 . . . 1−

∑J
j=1 γj,F

γ1,1 γ1,2 . . . γ1,F
γ2,1 γ2,2 . . . γ2,F
...

...
. . .

...
γJ,1 γJ,2 . . . γJ,F




zb,1,t
zb,2,t
...

zb,F,t

 ,

(30)

rt = rQ∞ + Γ(b)zb,t,

8The results in this subsection originally appeared in Bauer and Diez de los Rios (2012).
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where rQ∞ = (rQ$,∞, r
Q
1,∞, ..., r

Q
J,∞)′ and Γ(b) is a matrix that stacks the short-rate loadings

on each of the factors and satisfies that the sum of each of the columns of Γ(b) is equal

to one; (ii) the joint dynamic evolution of the latent bond factors, and exchange rates,

zt = (z′b,t,∆s′t)
′, under the risk-neutral measure is given by the following VAR(1) process:(
zb,t+1
∆st+1

)
=

(
0

θQs

)
+

(
ΨQ
bb 0

ΨQ
sb ΨQ

ss

)(
zb,t
∆st

)
+

(
uQb,t+1
uQs,t+1

)
, (31)

which can be represented in compact form as zt+1 = θQ + ΨQzt + uQt+1, where uQt ∼
iid N(0,Ω), the matrix ΨQ

bb is in ordered real Jordan form with relevant elements (i.e.,

eigenvalues) collected in the vector ψ, and θQs and ΨQ
s• satisfy restrictions analogous to

(5) and (6) which guarantee that uncovered interest parity holds under the risk-neutral

measure; and (iii) zt follows an unrestricted VAR(1) process under the historical measure:

zt+1 = θ + Ψzt + ut+1, where ut ∼ iid N(0,Ω).

Proof. See Appendix D.

Remark 1 When the eigenvalues in ΨQ
bb are real and distinct, ΨQ

bb is a diagonal matrix.

Furthermore, as noted by Hamilton and Wu (2012), in such a case the elements of ΨQ
bb

have to be in descending order, ψQbb,1 > ψQbb,2 > . . . ψQbb,F , in order to have a globally

identified structure.

Remark 2 Note that we could have alternatively normalized Γ(1) such that the loadings

of the U.S. short rate on the factors are all equal to one, which would then resemble the

JSZ normalization for the domestic setup. However, such an approach is not maximal

given that it does not allow the existence of (country-specific) factors that could drive the

term structure of some of the countries without affecting the U.S. yield curve.

Remark 3 The representation in Lemma 1 nests the models proposed by Graveline and

Joslin (2011) and Jotikasthira, Le and Lundblad (2015) in which the jth economy’s short

rate is driven by local factors (i.e., rj,t = rQj,∞ + 1′z
(j)
b,t where 1 is a conformable vector

of ones and z
(j)
b,t collects country j

′s local factors) under appropriate zero restrictions on

Γ(1).

Remark 4 Global and country-specific factors can be accomodated in our setup by im-

posing appropriate zero restrictions on Γ(b) and Ωbb so that the correlation between yields

in two different countries is driven only by the global factors.
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Note, now, that the canonical model in Lemma 1 implies that yields on domestic and

foreign zero-coupon bonds are affi ne in zb,t:

yt = az + bzzb,t. (32)

Thus, state variables that are linear combinations of the yields can simply be understood

as invariant (affi ne) transformations of the latent factors zb,t:

xb,t = P′yt = P′(az + bzzb,t) = c + Dzb,t,

which we can exploit to show the restrictions that parameters of the generic representation

of the multi-country GDTSM above need to satisfy to be self-consistent.

Proposition 2 The multi-country term structure model given by equations (2), (1) and

(3), with state variables that are linear combinations of yields, xb,t = P′yt, is self-

consistent when

∆(b) = Γ(b)D−1,

∆(0) = rQ∞ −∆(b)c,

ΦQ
bb = DΨQ

bbD
−1,

µQb = (I−ΦQ
bb)c,

where c = P′az, D = P′bz and az, bz are implicitly defined in equation (32). The para-

meters under the physical measure remain unrestricted.

Note that, as a result, the risk-neutral dynamics of the yield curve (and therefore, the

cross-section of interest rates) is entirely determined by (a) rQ∞, the long-run mean of the

short rates under Q; (b) the free elements in Γ(b), i.e., the factor loadings, (c) ψ, the

speed of mean reversion of the state variables under Q; and (d) Σ, the covariance matrix

of the innovations from the VAR. On the other hand, the VAR dynamics under P remain

unrestricted.

Given this separation between risk-neutral and physical dynamics, and given the fact

that the VAR dynamics remain unrestricted, one could use a two-step estimator similar

to the one proposed by JSZ. In the first step, one would estimate µ and Φ by OLS

given that, since the VAR dynamics are unrestricted, OLS recovers the estimates of the

conditional mean (Zellner, 1962). In the second step, one would estimate the remaining

18



parameters of the model (rQ∞, Γ(b), ψ, Σ) via numerical maximization of the likelihood

function, taking as given the P-dynamics estimates obtained in the first step.

Note, however, that such an ML estimator still implies a numerical search over a very

large dimensional space when either the number of countries or the number of factors is

moderately large. For example, in the case of a seven-country and 10-factor model, as in

our empirical illustration below, the number of parameters is 213 (7 for rQ∞, 60 for Γ(b),

10 for ψ, and 136 for Σ).9 This renders the ML estimation un-implementable in such

cases, leaving the LCGLS estimator proposed above as the only reliable alternative for

the estimation of international term structure models with a large number of countries.10

4.2 Effi ciency considerations

More importantly, it is possible to prove that the LCGLS estimates are asymptotically

equivalent to MLE. In the standard case, Kodde, Palm and Pfann (1990) present the

conditions under which the optimal ALS estimator is equivalent to the ML estimator.

In particular, these authors note that if (i) the system of relationships g(π,θ) = 0 is

complete, i.e., G = H and the Jacobian ∂g/∂θ′ has full rank; and (ii) π is estimated by

ML, or a method asymptotically equivalent to ML, then the optimal ALS estimator is

asymptotically equivalent to the ML estimator of θ.

Diez de los Rios (2015b) extends the results in Kodde, Palm and Pfann (1990) to the

case of optimal ALS estimation in a singular setup. In such a case, the optimal ALS

estimator is still asymptotically equivalent to the ML estimator as long as π̂ is estimated

9In addition, such an approach requires the analysis of several different subcases depending on whether
all the eigenvalues ΨQ

bb are real and distinct, there are repeated eigenvalues or such eigenvalues are
complex. On the other hand, one does not need to a priori determine whether the eigenvalues are real
and distinct when estimating the model using our linear regression approach given that our method will,
in practice, numerically determine which subcase is most empirically relevant.
10Specifically, should one be interested in the parameters of the canonical representation, these can be

recovered from the LCGLS estimates in the following way. First, note from Proposition 2 that ΨQ
bb is

related to the Jordan decomposition of ΦQ
bb. Therefore, an estimate of Ψ

Q
bb can be obtained by finding the

real Jordan normal form of Φ̂Q
bb. In particular, when the eigenvalues inΨQ

bb are real and distinct, ψ̂
Q
can be

obtained by a simple spectral decomposition of Φ̂Q
bb = D̂diag(ψ̂

Q
)D̂−1bb . Second, given the estimate of D̂

obtained in the previous step, an estimate of Γ(b) is obtained as follows Γ̂(b) =
[
∆̂(b)D̂

]
/diag

[
1′J∆̂(b)D̂

]
.

Note that our estimate of Γ̂(b) satisfies that the sum of each of its columns is equal to one. Third, an
estimate of the long-run mean of the short rate under Q can be obtained from r̂Q∞ = ∆̂(0) + ∆̂(b)′(I−
Φ̂Q
bb)
−1µ̂Qb . Fourth, given the structure of the optimization problems in (23) and (28), the estimates

of the P-dynamics parameters of the state variables implied by our linear framework also coincide with
the OLS estimates of the VAR model in equation (1). Finally, standard errors for the coeffi cients of
the canonical representation can be obtained using the Delta method and the results in Magnus (1985)
regarding differentiation of eigenvalues and eigenvectors.
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by a method that is asymptotically equivalent to constrained ML (i.e., π̂ satisfies the

self-consistency restrictions r(θ) = 0). We note that the (linearized) CGLS estimator

satisfies these two conditions, and, therefore, it is equivalent to the ML estimator.

5 Empirical application

In this section, we use the CGLS estimation method outlined above to estimate a seven-

country, 10-factor model and decompose 10-year zero coupon bond yields into an expec-

tations and a term premium component. This decomposition allows us to analyze the

covariation of the term premia across yield curves denominated in different currencies

within a unified framework.

Our data set consists of end-of-quarter observations over the period March 1988

(1988Q1) to March 2009 (2009Q1) of the U.S. dollar bilateral exchange rates against

the British pound, the German Mark/Euro, the Canadian dollar, the Australian dollar,

the Swiss Franc, and the Japanese Yen, along with the appropriate zero-coupon yield

curves for these countries. Specifically, we consider the full spectrum of maturities from

one quarter to 10 years.11

It is well documented that three principal components (labelled level, slope and cur-

vature) are suffi cient to explain over 95 per cent of the variation in U.S. government bond

yields (Litterman and Scheinkman, 1991). This stylized fact also holds individually in

the four countries examined here (Table 1). Panel A reports the variation in the levels

of yields in each country explained by the first k principal components (PCs) from the

cross-section of yields. In each country, three “domestic”PCs explain 99.9 per cent of

the variation in the yield curve. In fact, given that we do not use data on the yields of

bonds with maturities longer than 10 years, it can be argued that the seven domestic

yield curves can be well approximated by only two PCs each (i.e., local level and slope)

given that, in this case, two “domestic”PCs explain 99.8 per cent of their variation.

Applying a principal component analysis to the cross-section of global yields reveals,

on the other hand, that more than 2 components are required to explain the cross-sectional

11Yield curve data are obtained from the Wright (2011) database, which consists of local currency
zero-coupon government yield curves at the monthly (or higher) frequency for 10 industrialized countries.
We drop New Zealand, Norway and Sweden from our empirical illustration, because for these countries,
the data begin a bit later than March 1988. We choose to work with the 7 countries above as a trade-off
between maximizing the sample size and keeping a balanced panel of yields. Exchange rate data are
obtained from Bloomberg.
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variation in the combined 40 interest rates. Panel B of Table 1 shows that 10 “global”

PCs are needed to explain 99.8 per cent of the variation (the same amount as with two

domestic PCs per country). This fact is confirmed by looking at the root-mean-squared

pricing errors (RMSPE) from fitted values of a regression of the yield levels on k PCs,

which are given in Panel C of Table 1. Two domestic PCs in each country deliver RMSPE

close to 10 basis points in each of the four countries. To obtain a similar RMSPE we again

need to use the first 10 global PCs. Against this backdrop, we use 10 PCs to capture the

cross-sectional variation of our panel of international bond yields.

5.1 Fitting yields

Figure 1 presents both the estimated bond yield loadings implied by the affi ne term struc-

ture model, as well as the regression coeffi cients that one would obtain from projecting

bond yields on the first 10 PCs (i.e., the loadings from a principal components analy-

sis). The latter coeffi cients are from a linear factor model that minimizes the sum of

the squared differences between model predictions and actual yields, and thus provide a

natural benchmark to compare the pricing errors implied by our no-arbitrage model. Im-

portantly, Figure 1 shows that the multi-country term structure model is flexible enough

to replicate the shapes of the loadings on individual bond yields obtained from a principal

component analysis.

We confirm the model’s fit by providing RMSPE and mean-absolute pricing errors

(MAPE) in Table 2. The column labelled “Affi ne”provides estimates of the goodness-

of-fit measures for the affi ne term structure model; the column “Unrestricted”gives the

results for an unrestricted regression of bond yields on the global PCs; while “Difference”

characterizes the difference between the two quantities. The loss from imposing the no-

arbitrage conditions is around 5 basis points at either the country or global level. While

the loss is bigger than in one-country models (e.g., the loss in the Canadian yield curve

illustration in Diez de los Rios (2015a) is less than one basis point), it is still economically

small.12

In fact, we can use the fact that the minimized value of the ALS criterion function

has an asymptotic χ2 distribution to test the validity of the model. Specifically, we have

that the dimensionality of the distance function is 3488 and the number of parameters
12While unreported for the sake of space, it is worth noting that OLS estimates of the no-arbitrage

parameters do not deliver a good cross-sectional fit. Specifically, the loss from imposing the no-arbitrage
conditions using the OLS estimates of the model is close to 17 bps.
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of interest is 595. This leaves 2893 degrees of freedom. The 1% (5%) critical value for

a χ2(2893) is 3072.9 (3019.2), while the minimized value of the ALS criterion is 2202.6.

Therefore, there is no evidence that the no-arbitrage restrictions imposed by the affi ne

term structure model on the reduced-form model are inconsistent with the data.

5.2 Prices of risk

It is possible to show that the one-period expected excess return for holding an n-period

bond is given by

Etrx
(n)
j,t+1 = Et

[
log

P
(n−1)
j,t+1

P
(n)
j,t

]
− rj,t = JIT + B

(n−1)′
j (λb0 + λbbxb,t + λbs∆st),

where JIT is a (constant) Jensen’s inequality term and

λb0 = µb − µQb ,

λbb = Φbb −ΦQ
bb,

λbs = Φbs.

Thus, the risk premia on holding a bond for a period are linear in the state variables,

xt = (xb,t,∆st)
′, and have three terms: (i) a Jensen’s inequality term; (ii) a constant

risk premium related to λb0; and (iii) a time-varying risk-premium component where time

variation is governed by the parameters in λb and λs. Note that λb,t = λ0+λbxb,t+λs∆st

has the interpretation of the market price of bond risks, given that it captures how much

expected bond holding returns must rise to compensate for exposure to the bond shocks,

vb,t+1.In fact, when agents are risk neutral (i.e., µb = µQb , Φbb = ΦQ
bb and Φbs = ΦQ

bs = 0),

we have that the market price of bond risk is equal to zero for all t.

Similarly, the one-period excess return earned by a domestic investor for holding a

one-period zero-coupon bond from country j (i.e., the currency return) is:

Etrs
(n)
j,t+1 = Et

[
log

Sj,t+1
Sj,t

]
+ rj,t − r$,t = JIT + e

′

j(λs0 + λsbxb,t + λss∆st),

where we have that

e
′

jλs0 = e
′

jµs + δ
(0)
j − δ

(0)
$ ,

e
′

jλsb = e
′

jΦsb + δ
(b)
j − δ

(b)
$ ,

e
′

jλbs = e
′

jΦss.
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Again, the currency risk premia are linear in the state variables, xt = (xb,t,∆st)
′, and

have three terms: (i) a Jensen’s inequality term; (ii) a constant risk premium; and (iii) a

time-varying risk-premium component. As in the case of the bond prices of risk, we note

that λs,t = λs0 + λsbxb,t + λss∆st has the interpretation of the market price of foreign

exchange risks, given that it captures how much expected currency returns must rise to

compensate for exposure to the currency shocks, vs,t+1. Finally, note that when agents

are risk neutral, we have that the market price of foreign exchange rate risk is equal to

zero for all t, and the uncovered interest parity hypothesis holds under both the physical

and risk-neutral measures.

Table 3 presents Wald statistics for the hypothesis that the prices of risk are equal to

zero (i.e., risk neutrality). Importantly, we cannot reject that neither of the bond factors

are priced nor the exchange rate risks.13

5.3 Term premium estimates

In this section, we use the parameter estimates of our seven-country, 10-factor GDTSM

to decompose long-term interest rates into expectations of future short-term rates and

term premia. In particular,

y
(n)
j,t =

1

n

n∑
h=1

Etrj,t+h−1 + tp
(n)
j,t . (33)

That is, the n-period interest rate at time t, y(n)j,t , is equal to the average path of the short-

term rate over the following n periods and a risk-premium component, tp(n)j,t , usually called

the term premium. This term premium is the expected return from holding an n-period

bond to maturity while financing this investment by selling a sequence of one-period

bonds.

Figure 2 plots the term premium on 10-year bond yields implied by our model for the

seven countries in our sample. We find that the estimated term premium is countercyclical

and rising during recessions (particularly during the early 1990s and 2000s). Figure 2 also

13When the dynamics of the state variables are left unrestricted, the estimates of P-parameters coincide
with the OLS estimates of a VAR(1) process for ft and, therefore, suffer from the well-known problem
that OLS estimates of autoregressive parameters tend to underestimate the persistence of the system in
finite samples. For this reason, we replace the reduced-form OLS estimates of the VAR(1) equation in
(1) with bias-corrected estimates as suggested by Bauer, Rudebusch and Wu (2012). As in Diez de los
Rios (2015a), we use the analytical approximation for the mean bias in VARs presented in Pope (1990)
with the adjustment suggested by Kilian (1998), in order to guarantee that the bias-corrected estimates
are stationary.
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shows that our term premia estimates for all the countries are highly correlated across

countries. In fact, the first PC of the cross-section of term premia explain 75% of the

variation in the cross-section of risk premia, while the first two PCs explain 92%. This

might indicate that while one cannot statistically reject that all 10 factors are priced in

the cross-section of interest rates, only 2 factors might be needed to explain most of the

(economically interesting) variation in term premia. Interestingly, our finding that only 2

factors are priced in the cross-section of term premia is in line with the results in Duffee

(2010) and Joslin Priebsch and Singleton (2014), while it differs from those in Cochrane

and Piazzesi (2008), who find that only level risk is priced in the term structure of U.S.

interest rates. However, we leave for further research understanding the drivers of these

2 term premia factors.

6 Final Remarks

In this paper, we extend the linear estimator of Diez de los Rios (2015a) to overcome the

numerical challenges that plague multi-country term structure models. Specifically, we

consider a novel linear regression approach to the estimation of multi-country Gaussian

dynamic term structure models that can completely avoid numerical optimization methods

whenever yields on adjacent maturities are directly observed, and that can be interpreted

as an ALS estimator. Importantly, our estimator remains easy to compute and asymptot-

ically effi cient, even when the number of countries is relatively large: a situation in which

other recently proposed approaches lose their tractability.
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Appendix

A Bond Pricing

A.1 Domestic bonds

We start by assuming (to then verify that this guess is right) that the price of a U.S.
zero-coupon bond of maturity n periods at time t is exponentially affi ne in the factors:

P
(n)
$,t = exp

[
A
(1)
$ + B

(1)′
$ xb,t

]
. (34)

Substituting (34) into (8) in the main text of the paper, we have that:

P
(n+1)
$,t = EQt

[
exp

(
−r$,t + A

(n)
$ + B

(n)′
$ xb,t+1

)]
,

= EQt

{
exp

[
A
(1)
$ + B

(1)′
$ xb,t + A

(n)
$ + B

(n)′
$ (µQb + ΦQ

bbxb,t + vb,t+1)
]}

,

= EQt

{
exp

[
A
(1)
$ + A

(n)
$ + B

(n)′
$ µQb +

(
B
(n)′
$ ΦQ

bb + B
(1)′
$

)
xb,t + B

(n)′
$ vb,t+1

]}
.

Note that the last term in the previous equation satisfies

EQt

[
exp

(
B
(n)′
$ vb,t+1

)]
= exp

[
1

2
B
(n)′
$ ΣbbB

(n)
$

]
.

Thus we have that

A
(n+1)
$ + B

(n+1)′
$ xb,t =

(
A
(n)
$ + B

(n)′
$ µQbb +

1

2
B
(n)′
$ ΣbbB

(n)
$ + A

(1)
$

)
+
(
B
(n)′
$ ΦQ

bb + B
(1)′
$

)
xb,t.

And matching coeffi cients we arrive at the following pricing recursions:

B
(n+1)′
$ = B

(n)′
$ ΦQ

bb + B
(1)′
$ , (35)

A
(n+1)
$ = A

(n)
$ + B

(n)′
$ µQb +

1

2
B
(n)′
$ ΣbbB

(n)
$ + A

(1)
$ . (36)

Furthermore, the recursion is started by exploiting the fact that the affi ne pricing rela-
tionship is trivially satisfied for domestic one-period bonds (i.e., y(1)$,t = r$,t):

logP
(1)
$,t = −y(1)$,t = −r$,t = −δ(0)$ − δ

(1)′
$ xb,t.

In particular, matching coeffi cients, we have that A(1)$ = −δ(0)$ , and B
(1)
$ = −δ(b)$ .

A.2 Foreign bonds

In a similar fashion to the case of domestic bonds, we also start by assuming that the
price of a country j bond of maturity n periods at time t is exponentially affi ne in the
factors:

P
(n)
j,t = exp

[
A
(1)
j + B

(1)′
j xb,t

]
. (37)
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with A(1)j = −δ(0)j , and B
(1)
j = −δ(b)j for one-period bonds.

Note that, substituting (37) into (12) in the main text of the paper, we have that:

P
(n+1)
j,t = EQt

[
exp

(
−r$,t + ∆sj,t+1 + A

(n)
j + B

(n)′
j xb,t+1

)]
,

= EQt

{
exp

[
A
(1)
$ + B

(1)′
$ xb,t + e′j(µ

Q
s + ΦQ

sbxb,t + vs,t+1) + . . .

+ A
(n)
j + B

(n)′
j (µQb + ΦQ

bbxb,t + vb,t+1)
]}

,

= EQt

{
exp

[
A
(1)
$ + e′jµ

Q
s + A

(n)
j + B

(n)′
j µQb + . . .

+
(
B
(n)′
j ΦQ

bb + B
(1)′
$ + e′jΦ

Q
sb

)
xb,t + B

(n)′
j vb,t+1 + e′jvs,t+1

]}
,

= EQt

{
exp

[
−1

2
e′jΣssej + A

(1)
j + A

(n)
j + B

(n)′
j µQb + . . .

+
(
B
(n)′
j ΦQ

bb + B
(1)′
j

)
ft + B

(n)′
j vb,t+1 + e′jvs,t+1

]}
,

where, for the last equality, we have used the fact that the uncovered interest parity holds
under the risk-neutral measure.
Once again, note that the last term in the previous equation satisfies:

EQt

{
exp

[(
B
(n)′
j e′j

)( vb,t+1
vs,t+1

)]}
= exp

[
1

2

(
B
(n)′
j e′j

)( Σbb Σ′sb
Σsb Σss

)(
B
(n)
$

ej

)]
= exp

[
1

2
B
(n)′
j ΣbbB

(n)
j +

1

2
e′jΣssej + B

(n)′
j Σsbej

]
.

Thus we have that

A
(n+1)
j +B

(n+1)′
j xb,t =

[
A
(n)
j + B

(n)′
j

(
µQbb + Σsbej

)
+

1

2
B
(n)′
j ΣbbB

(n)
j + A

(1)
j

]
+
(
B
(n)′
j ΦQ

bb + B
(1)′
j

)
xb,t.

And matching coeffi cients we arrive at the following pricing recursions:

B
(n+1)′
j = B

(n)′
j ΦQ

11 + B
(1)′
j , (38)

A
(n+1)
j = A

(n)
j + B

(n)′
j µQ1 +

1

2
B
(n)′
j Σ11B

(n)
j + A

(1)
j . (39)

B Details on computation of the CGLS estimator

Specifically, we start by linearizing r(θ) = 0 around the unconstrained OLS estimate of
θ, θ̂OLS, described above. Let r̃(θ) = 0 be the linearized version r(θ) around θ̂OLS:

r̃(θ) =

[
r(θ̂OLS)− ∂r(θ̂OLS)

∂θ′
θ̂OLS

]
+
∂r(θ̂OLS)

∂θ′
θ = a + Aθ,

with A =
∂r(θ̂OLS)

∂θ′ and a = r(θ̂OLS)− ∂r(θ̂OLS)

∂θ′ θ̂OLS.
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Then, we reparameterize the parameter space into the alternative K parameters α
(S × 1) and β ((K − S)× 1) such that α =r̃(θ). Specifically, we can choose(

α
β

)
=

(
a
0

)
+

(
A
A⊥

)
θ, (40)

where A′⊥ is a basis for the orthogonal component of the row span of A. This transfor-
mation allows us to impose the parametric restrictions r̃(θ) = α = 0 by inverting (40):

θ =Ã−1(E2β−ã), (41)

where E2 = [0, I]′ and substituting θ into the distance function g(π,θ) = γ(π)− Γ(π)θ

to obtain a new distance function in terms of the smaller set of parameters β:

h(π,β) = γ̃−Γ̃β,

with γ̃ = γ+ΓÃ−1ã, and Γ̃ = ΓÃ−1E2.

Thus, the optimal ALS estimator of β can be obtained as

β̂LCGLS = arg min
θ
T
[
γ̃−Γ̃β

]′
V̂+
g

[
γ̃−Γ̃β

]
,

=
(
Γ̃′V̂+

g Γ̃
)−1 (

Γ̃′V̂+
g γ̃
)
,

and the optimal estimate of θ can be obtained using (41):

θ̂LCGLS=Ã−1(E2β̂GLS−ã). (42)

C Invariant transformations of multi-country term
structure models

Assume the following multi-country term structure model:

rt = ∆0 + ∆1xt,

xt+1 = µ+ Φxt + vt+1,

xt+1 = µQ + ΦQxt + vQt+1,

where both vt and vQt are i.i.d. N(0,Σ), and xt = (x′1,t,x
′
2,t)
′ being x1,t a latent set

of factors, and x2,t observable. As in Dai and Singleton (2000), we are interested in
applying invariant transformations, x̂t = c + Dxt. We then have that the model above is
observationally equivalent to:

rt = ∆̂0 + ∆̂1xt,

xt+1 = µ̂+ Φ̂xt + v̂t+1,

xt+1 = µ̂Q + Φ̂Qxt + v̂Qt+1,
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where now both v̂t and v̂Qt are i.i.d. N(0, Σ̂) and

∆̂0 = ∆0 −∆1D
−1c,

∆̂1 = ∆1D
−1,

µ̂ = (I−DΦD−1)c + Dµ,

Φ̂ = DΦD−1,

µ̂Q = (I−DΦQD−1)c + DµQ,

Φ̂Q = DΦQD−1,

Σ̂ = DΣD′.

Of special interest to us are those invariant transformations that leave the set of
observable variables, x2,t, unchanged. Such transformations can be expressed the following
way: (

x̂1,t
x̂2,t

)
=

(
c1
0

)
+

(
D1 0
0 I

)(
x1,t
x2,t

)
=

(
c1 + D1x1,t

x2,t

)
.

D Proof of Lemma 1

To proof this lemma, we use the invariant transformations of multi-country term structure
models above as in Joslin, Singleton and Zhu (2011). In particular, we need to focus on
invariant transformations that leave the set of exchange rates unchanged:(

f̂t
∆st

)
=

(
c1
0

)
+

(
D1 0
0 IJ

)(
ft

∆st

)
.

For simplicity, we assume that ΦQ
11 can be diagonalized, that is ΦQ

11 = TΛT−1 where Λ

is a diagonal matrix that contains the eigenvalues of ΦQ
11, and P is a matrix that contains

the corresponding eigenvectors.14 The following two invariant transformations deliver the
model in Lemma 1. First, we apply:(

f̂t
∆st

)
=

(
−(I−Λ)−1T−1µQ1

0

)
+

(
T−1 0
0 IJ

)(
ft

∆st

)
.

Second, we exploit that for a given diagonal matrix such as Λ, we can pre- and post-
multiply it by another diagonal matrix, B, and leave it unchanged it: Λ = LΛL−1. In
particular, using (

f̃t
∆st

)
=

(
0
0

)
+

(
L 0
0 IJ

)(
f̂t

∆st

)
,

where

L =


∑J

j=0 δ̂1j 0 . . . 0

0
∑J

j=0 δ̂2j . . . 0
...

...
. . .

...
0 0 . . .

∑J
j=0 δ̂Fj

 ,

14See appendix of Joslin, Singleton and Zhu (2011) for the case of non-diagonalizable matrices.
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and δ̂ij is the i-th element of vector δ̂
(1)

j , the vector of factor loadings of the short rate
obtained from the first invariant transformation. Under such transformation, the factor
loadings for the short rate will sum up to one, and thus the model can be expressed in
the canonical form of Lemma 1.
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Figure 1: Bond factor loadings 
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Figure 1: Bond factor loadings (cont.) 
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Figure 1: Bond factor loadings (cont.) 
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Figure 1: Bond factor loadings (cont.) 
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Figure 2: Estimated term premium on international 10-year yields 
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Table 1
Principal components analysis

Panel A: Per cent variation in yield curves explained by the first k domestic PCs
k U.S. U.K. Germany Canada Australia Switzerland Japan
1 95.8 96.9 96.4 97.4 97.6 97.5 98.4
2 99.8 99.7 99.7 99.8 99.8 99.7 99.9
3 100.0 100.0 100.0 100.0 100.0 99.9 100.0

Panel B: Per cent variation in yield curves explained by the first k global PCs
k per cent k per cent k per cent
1 88.6 6 99.0 11 99.8
2 93.9 7 99.4 12 99.9
3 96.4 8 99.6 13 99.9
4 97.8 9 99.7 14 99.9
5 98.5 10 99.8 15 99.9

Panel C: RMSE (in basis points) of a regression of yields on the first k PCs
k U.S. U.K. Germany Canada Australia Switzerland Japan Global
Domestic PCs
1 37.7 43.8 35.4 38.9 43.7 27.0 25.6 36.7
2 8.0 13.6 10.1 10.8 14.1 10.2 6.4 10.8
3 3.4 4.9 3.3 4.0 5.1 4.1 2.3 4.0

Global PCs
8 8.9 14.0 18.7 12.7 17.1 14.9 11.9 14.0
9 8.4 12.6 13.9 12.1 16.2 12.9 9.5 12.2
10 8.0 11.4 12.1 9.7 13.7 12.1 9.1 10.8
11 7.9 10.7 7.7 9.3 12.1 10.3 8.6 9.4
12 7.3 8.6 6.9 8.3 9.5 10.1 8.4 8.4

Note: Data are sampled quarterly March 1988 (1988Q1) to March 2009 (2009Q1).



Table 2
Model fit in basis points

Affi ne Unrestricted Difference
U.S. 10.95 7.97 2.98
U.K. 20.1 13.6 6.5
Germany 16.9 10.07 6.83
Canada 10.81 10.79 0.02
Australia 21.12 14.14 6.98
Switzerland 15.76 10.17 5.59
Japan 10.35 6.39 3.96

Note: Affi ne model fit in basis points (1 = 0.01 per cent). RMSPE gives the root-mean-squared
pricing error, and MAPE gives mean-absolute pricing error. “Affi ne”provides the fit of the multi-
country term structure model, while “Unrestricted”provides the model fit of a regression of yields
on the first 10 global principal components. “Difference”provides the loss of fit in basis points of
estimating an affi ne term structure model instead of unrestricted OLS regressions.



Table 3
Wald statistics for the prices of risk being equal to zero

Panel A: Bond Prices of Risk (H0 : e′jλb = 0)

Wald Test p-value
PC1 51.58 [< 0.001]
PC2 59.52 [< 0.001]
PC3 39.48 0.001
PC4 48.88 [< 0.001]
PC5 43.40 [< 0.001]
PC6 44.89 [< 0.001]
PC7 45.24 [< 0.001]
PC8 44.03 [< 0.001]
PC9 44.30 [< 0.001]
PC10 43.98 [< 0.001]

Panel B: Foreign Exchange Prices of Risk (H0 : e′jλs = 0)

Wald Test p-value
GBP 10864.14 [< 0.001]
EUR 16259.49 [< 0.001]
CAD 15725.58 [< 0.001]
AUD 17866.31 [< 0.001]
CHF 14754.80 [< 0.001]
JPY 13412.00 [< 0.001]

Note: Data are sampled quarterly March 1988 (1988Q1) to March 2009 (2009Q1).
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