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Abstract 

This paper presents a new testing method for the scapegoat model of exchange rates that 
aims to tighten the link between the theory on scapegoats and its empirical 
implementation. This new testing method consists of a number of steps. First, the 
exchange rate risk premium, the unobserved time-varying structural impact of the macro 
fundamentals on the exchange rate and the unobserved fundamental of the model are 
estimated. Next, the scapegoat terms in the model’s exchange rate equation are estimated 
under the restrictions implied by these first-step estimates. The scapegoat terms consist of 
macro fundamentals, i.e., potential scapegoats, interacted with parameter expectations, 
where the latter are proxied using survey data. We use a Bayesian Gibbs sampling 
approach to estimate the different steps of the methodology for eight countries (five 
developed, three emerging) versus the US over the period 2002Q1–2014Q4. The macro 
fundamentals we consider are real GDP growth, the inflation rate, the long-run nominal 
interest rate and the current account to GDP ratio. We calculate the posterior probabilities 
that these macro fundamentals are scapegoats. For the inflation rate, these probabilities 
are considerably higher than the imposed prior probabilities of 0.5 in five out of eight 
countries (including the Anglo-Saxon economies). We find little evidence to suggest that 
the other macro fundamentals we consider are scapegoats. 

Bank topics: Exchange rates; Econometric and statistical methods; International 
financial markets 
JEL codes: G15, C32, F31 

Résumé 

Nous présentons dans cette étude un nouveau test pour le modèle de taux de change 
fondé sur la théorie du bouc émissaire (scapegoat model of exchange rates). Le test vise à 
renforcer le lien entre cette théorie et sa traduction empirique. Ce nouveau test comporte 
plusieurs étapes. En premier, la prime de risque de change et l’incidence structurelle 
inobservée et changeante dans le temps des variables macroéconomiques fondamentales 
sur le taux de change sont estimées ainsi qu’une composante inobservée du modèle. 
Ensuite, les termes représentant le bouc émissaire dans l’équation du taux de change du 
modèle sont estimés en tenant compte des restrictions déduites des estimations obtenues à 
la première étape. Ces termes sont des variables macroéconomiques fondamentales (des 
boucs émissaires potentiels) en interaction avec les paramètres des anticipations, 
lesquelles sont approximées au moyen de données d’enquête. Nous procédons à une 
estimation en différentes étapes à l’aide d’une méthode d’échantillonnage bayésienne de 
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Gibbs pour huit pays (cinq développés et trois émergents) qui sont comparés aux États-
Unis sur la période 2002T1-2014T4. Les variables fondamentales macroéconomiques 
examinées sont le taux de croissance du PIB réel, le taux d’inflation, le taux d’intérêt 
nominal de long terme et le ratio balance courante/PIB. Nous calculons les probabilités a 
posteriori concernant les chances de voir ces variables fondamentales être considérées 
comme des boucs émissaires. Pour le taux d’inflation, ces probabilités sont beaucoup plus 
élevées que les probabilités a priori de 0,5 imposées pour cinq des huit pays (notamment 
les pays anglo-saxons). Nous trouvons peu d’éléments pour conforter l’idée que les autres 
variables macroéconomiques sont des boucs émissaires. 

Sujets : Taux de change; Méthodes économétriques et statistiques; Marchés financiers 
internationaux 
Codes JEL : G15, C32, F31 
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Non-Technical Summary

One of the major puzzles in international macroeconomics is the difficulty of linking exchange rates

to macroeconomic fundamentals such as money supplies, interest rates and outputs, i.e., the so-called

“disconnect puzzle” of exchange rates (see Obstfeld and Rogoff, 2000). The “disconnect puzzle” manifests

itself in a variety of ways, among which the lack of out-of-sample predictability of exchange rates and the

instability of the ex-post relationship between exchange rates and fundamentals are probably the most

striking. The latter manifestation of the “disconnect puzzle” constitutes the focus of this paper. With

respect to the reasons for instability, Cheung and Chinn (2001) argue, based on a survey of US foreign

exchange traders, that the instability caused by the impact of macro fundamentals on exchange rates is

driven by the fact that traders regularly change the weight that they attach to macro fundamentals.

The scapegoat theory of exchange rates (see Bacchetta and van Wincoop, 2004, 2009, 2012, 2013)

provides a formal theoretical framework with a potential explanation for the weak link between macro

fundamentals and exchange rates. In a scapegoat model, economic agents form rational expectations but

are assumed to have incomplete information. Economic agents do not observe some economic variables

in the economy (e.g., money demand shifts, real exchange rate shocks) and do not know the structural

parameters on the macro fundamentals that drive the exchange rate. Therefore, they form expectations

about these structural parameters based on an observed “signal”, which typically depends on the observed

level of the exchange rate, the observed interest rate differential and the discount factor of the agents

(i.e., the discount rate used by investors to discount future observed and unobserved variables). Because

of imperfect information, economic agents can be rationally confused and can, as a result, rationally

attribute changes in the exchange rate to changes in the observed macro fundamentals, while in fact

these changes are caused by the unobserved variables. Therefore, they may erroneously give too much

weight to certain observed macro fundamentals in the determination of the exchange rate. In this model,

it is economic agents’ expectations of the structural parameters on macro fundamentals that are driving

exchange rates rather than the structural parameters themselves. As agents are assumed to frequently

update their expectations about the impact of macro fundamentals on exchange rates, the theory can

potentially explain the highly unstable observed relationship between macroeconomic fundamentals and

exchange rates.

In this paper, we propose an alternative empirical testing strategy for the scapegoat theory of ex-

change rates. More specifically, the contribution of the paper is to test for scapegoat effects using the

exact structural exchange rate equation implied by a scapegoat model instead of an ad hoc empirical

specification. This implies that we test for scapegoat effects under the restrictions imposed on the data
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by the model. This approach should tighten the link between the theory on scapegoats and the empirical

testing of this theory.

The results suggest, first, that there is a persistent but stationary exchange risk premium or time-

varying deviation from the uncovered interest rate parity (UIRP) condition in all countries considered.

Second, we identify a persistent but stationary unobserved component from the “signal” in the model,

which potentially reflects unobserved quantities such as money demand shocks or real exchange rate

shocks. Third, we find that, over the sample period, the structural parameters on the macro fundamentals

are constant and often close to zero. Fourth, as far as the scapegoat terms in the exchange rate equation

are concerned, we calculate posterior probabilities that these macro fundamentals are scapegoats, and

find, for the inflation rate in five out of eight countries, probabilities that are considerably higher than

the imposed prior probabilities of 0.5. These countries are the three Anglo-Saxon economies (Australia,

Canada and the UK) and South Korea and South Africa. We find little evidence to suggest that the

other considered macro fundamentals are scapegoats, however.
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1 Introduction

One of the major puzzles in international macroeconomics is the difficulty linking exchange rates to

macroeconomic fundamentals such as money supplies, interest rates and outputs, i.e., the so-called “dis-

connect puzzle” of exchange rates (see Obstfeld and Rogoff, 2000). The “disconnect puzzle” manifests

itself in a variety of ways, among which the lack of out-of-sample predictability of exchange rates and the

instability of the ex-post relationship between exchange rates and fundamentals are probably the most

striking. The latter manifestation of the “disconnect puzzle” constitutes the focus of this paper. The

instability of structural parameters has been linked to the poor performance of exchange rate models

both in and out of sample (see Meese and Rogoff, 1983a,b, 1988; Bacchetta et al., 2009; Rossi, 2006,

2013).1 With respect to the reasons for instability, Cheung and Chinn (2001) argue, based on a survey

of US foreign exchange traders, that the instability caused by the impact of macro fundamentals on

exchange rates is driven by the fact that traders regularly change the weight that they attach to macro

fundamentals. Sarno and Valente (2009) conduct an exchange rate model selection procedure that allows

them to select the best model in every period out of all possible combinations of fundamentals. They

report frequent changes in the optimal model, implying frequent shifts in parameters.

The scapegoat theory of exchange rates (see Bacchetta and van Wincoop, 2004, 2009, 2012, 2013)

provides a formal theoretical framework for many of these ideas and hence provides a potential explanation

for the weak link between macro fundamentals and exchange rates. In a scapegoat model, economic

agents form rational expectations but are assumed to have incomplete information. Economic agents

do not observe some economic variables in the economy (e.g., money demand shifts, real exchange rate

shocks) and do not know the structural parameters on the macro fundamentals that drive the exchange

rate. Therefore, they form expectations about these structural parameters based on an observed “signal”,

which typically depends on the observed level of the exchange rate, the observed interest rate differential

and the discount factor of the agents (i.e., the discount rate used by investors to discount future observed

and unobserved variables). Because of imperfect information, they can be rationally confused and can, as a

result, rationally attribute changes in the exchange rate to changes in the observed macro fundamentals,

while in fact these changes are caused by the unobserved variables. Therefore, economic agents may

1We note that Engel and West (2005) and Engel et al. (2007) nuance this poor performance, however, by arguing that

the low predictability of exchange rates using macro fundamentals is actually implied by standard present-value models of

the exchange rate. When macro fundamentals are non-stationary and the discount factor used to discount expected future

fundamentals is high (i.e., close to 1), then the exchange rate will be close to a random walk. In this case, expectations

about future fundamentals drive the exchange rate, while current and lagged values are relatively unimportant. A testable

implication then is whether exchange rates can predict future fundamentals rather than the other way around (see, e.g.,

Engel and West, 2005; Sarno and Schmeling, 2014).
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erroneously give too much weight to certain observed macro fundamentals in the determination of the

exchange rate. In this model, it is economic agents’ expectations about the structural parameters on

macro fundamentals that are driving exchange rates rather than the structural parameters themselves.

As agents are assumed to frequently update their expectations about the impact of macro fundamentals

on exchange rates, the theory can potentially explain the highly unstable observed relationship between

macroeconomic fundamentals and exchange rates. The model has recently been tested empirically by

Fratzscher et al. (2015) using survey scores reported biannually by Consensus Economics. These reflect

the weight investors attach to certain macro fundamentals in the determination of the exchange rate

in a given period. They regress changes in the exchange rate of 12 currencies on fundamentals and on

fundamentals interacted with these scores. They find that the interaction terms have a significant impact

on exchange rates, hence providing evidence in favor of the scapegoat model.

In this paper, we propose an alternative empirical testing strategy for the scapegoat theory of ex-

change rates. More specifically, the contribution of the paper is to test for scapegoat effects using the

exact structural exchange rate equation implied by a scapegoat model instead of an ad hoc empirical

specification. This implies that we test for scapegoat effects under the restrictions imposed on the data

by the model. This approach should tighten the link between the theory on scapegoats and the empirical

testing of this theory.

The scapegoat model that we consider largely follows the model presented by Bacchetta and van

Wincoop (2013), except for the assumption of time-varying structural parameters (i.e., random walks) on

the macro fundamentals and the explicit incorporation of a time-varying deviation from the uncovered

interest rate parity (UIRP) condition in the derived exchange rate equation.2 The model leads to an

exchange rate equation that consists of four terms. First, a term that captures the standard impact of

the macro fundamentals on the exchange rate. This term consists of the macro fundamentals interacted

with time-varying structural parameters. Second, a term that captures the impact of macro fundamentals

as scapegoats. This term consists of the macro fundamentals interacted with the expectations about the

time-varying structural parameters. Third, a term related to the unobserved component which reflects

unobserved relative money demand shocks and/or real exchange rate shocks. Fourth, a term related to

the exchange rate risk premium or time-varying deviation from the UIRP condition.

The exchange rate equation is sufficiently complex that an estimation approach in different steps

is required. First, the exchange rate risk premium or time-varying deviation from the UIRP condition

is estimated using a state-space approach applied to the observed difference between the change in

the exchange rate and the interest rate differential. Second, the unobserved time-varying structural

2A risk premium is included in the calibration exercise of Bacchetta and van Wincoop (2013), however.
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parameters on the macro fundamentals and the unobserved component of the model are estimated using

a state-space system applied to the observed “signal” in the model, which depends on the level of the

exchange rate, the interest rate differential and the discount factor. Third, the scapegoat terms in the

model’s exchange rate equation, i.e., the expectations of the structural parameters interacted with the

macro fundamentals, are estimated using a regression analysis where the estimation is conditional on the

exchange rate risk premium, the structural parameters on the macro fundamentals and the unobserved

component estimated in the previous steps. Following Fratzscher et al. (2015), we use survey data to

proxy the parameter expectations that enter the scapegoat terms.

The estimation in different steps is carried out through a Bayesian Gibbs sampling approach for

eight countries versus the US over the period 2002Q1-2014Q4. We consider five developed economies

(Australia, Canada, the euro area, Japan and the UK) and three emerging countries (Singapore, South

Korea and South Africa). Our choice of macro fundamentals is based on the availability of corresponding

survey data for these fundamentals. More specifically, we incorporate four macro fundamentals in the

estimations that can potentially be scapegoats, i.e., the real GDP growth rate (relative to the US), the

inflation rate (relative to the US), the long-run nominal interest rate (relative to the US) and the current

account balance to GDP ratio. The applied Gibbs approach is advantageous because the full posterior

distributions of parameters and states are calculated in every step and are conditioned upon in the next

steps so that both parameter and state uncertainty can fully be taken into account in the estimation of

scapegoat effects. Additionally, the Bayesian approach allows for model selection when considering which

fundamentals are scapegoats. In particular, we assign binary indicators to each of the potential scapegoat

terms in the exchange rate regression (see, e.g., George and McCulloch, 1993; Frühwirth-Schnatter and

Wagner, 2010). These are equal to one if a particular fundamental can be considered a scapegoat and

equal to zero if the fundamental does not enter the regression equation as a scapegoat. We sample

these binary indicators together with the other parameters using the Gibbs sampler. From the sampled

indicators, we compute the posterior probabilities that the included fundamentals are scapegoats.

The results suggest, first, that there is a persistent but stationary exchange risk premium or time-

varying deviation from the UIRP condition in all countries considered. Second, we identify a persistent but

stationary unobserved component from the “signal” in the model, which potentially reflects unobserved

quantities such as money demand shocks or real exchange rate shocks. Third, we find that over the

sample period the structural parameters on the macro fundamentals are constant and often close to zero.

Fourth, as far as the scapegoat terms in the exchange rate equation are concerned, we calculate posterior

probabilities that these macro fundamentals are scapegoats, and we find, for the inflation rate in five out

of eight countries, probabilities that are considerably higher than the imposed prior probabilities of 0.5.
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These countries are the three Anglo-Saxon economies (Australia, Canada and the UK) and South Korea

and South Africa. We find little evidence to suggest that the other macro fundamentals we consider are

scapegoats, however.

The paper is structured as follows. Section 2 presents the scapegoat model and derives a testable

exchange rate equation from the model. Section 3 shows how to implement the estimation of this equation

in a number of steps. Section 4 discusses the choice of macro fundamentals, the data used and the Bayesian

estimation method (i.e., the outline of the Gibbs sampler and the imposed parameter priors). Section 5

presents and discusses the estimation results of the various steps. Section 6 concludes.

2 Theory

We consider an interest rate parity condition between a local and a benchmark economy and an equation

that contains determinants of the interest rate differential between these economies:

Et(st+1)− st = īt + zt (1)

īt = µ[st − ftβt − xt] (2)

where st is the log nominal exchange rate (expressed as the amount of local currency per unit of bench-

mark currency), Et denotes the rational expectations operator conditional on time t information, īt is

the short-term nominal interest rate differential between the local country and the benchmark country,

zt is the exchange risk premium or deviation from UIRP, ft is a 1 × K vector of observed macroe-

conomic fundamentals with βt the K × 1 vector of corresponding time-varying parameters, and xt is

an unobserved fundamental or component. As noted by Engel and West (2005), eq.(2) may represent

the interest rate differential as obtained from the differential in Taylor rules between the local and the

benchmark economies. Alternatively, it may represent the interest rate differential as obtained from the

reduced-form monetary model of exchange rates, i.e., obtained by combining a purchasing power parity

condition with money market equilibrium in both countries. In the Taylor rule model, the unobserved

component represents a relative shock to the Taylor rules and/or potentially omitted Taylor rule terms.

In the monetary model, the unobserved component represents an unobserved relative money demand

shock, possibly augmented with a real exchange rate shock. We depart from the standard exchange rate

framework of Engel and West (2005) by assuming that some parameters in the model are unknown (see,

e.g. Bacchetta and van Wincoop, 2009, 2013). In particular, we assume that the parameter vector βt

is unknown; i.e., we have Et(βkt) 6= βkt for k = 1, ...,K. With respect to the parameter µ, we follow

Bacchetta and van Wincoop (2009) and Bacchetta and van Wincoop (2013) and assume that µ is known

and constant.
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We define the signal yt ≡ st − 1
µ īt, which agents know since they observe st, īt and µ. From eq.(2)

we then have

yt = ftβt + xt (3)

If βt were known, agents could infer the value of the unobserved component xt. Given that βt is not

known, yt gives an imperfect signal of βt because of the unobserved component xt.

Combining eqs.(1), (2) and (3) and solving forward then gives

st = (1− λ)

yt +

∞∑
j=1

λjEt(yt+j)

− λ
zt +

∞∑
j=1

λjEt(zt+j)


or

st = (1− λ)

ftβt + xt +

∞∑
j=1

λjEt(ft+jβt+j + xt+j)

− λ
zt +

∞∑
j=1

λjEt(zt+j)

 (4)

where the result is obtained by imposing the transversality condition λ∞Et(st+∞) = 0 and where we

define the discount factor λ as λ ≡ 1
1+µ .

We assume that the unobserved variables xt and zt follow AR(1) processes and that the observed

macroeconomic fundamentals ft and corresponding time-varying unknown parameters βt follow random

walk processes, i.e.,

xt = ρxxt−1 + εxt (5)

zt = ρzzt−1 + εzt (6)

fkt = fk,t−1 + εfkt k = 1, . . . ,K (7)

βkt = βk,t−1 + εβkt k = 1, . . . ,K (8)

where all processes are assumed to be mutually independent. Using these processes in eq.(4) then gives

st = (1−Ψ)ftβt + ΨftEt(βt) + (1−Ψ)xt + Φzt (9)

where Ψ ≡ λ(1−ρx)
1−ρxλ and Φ ≡ − λ

1−ρzλ . We refer to Appendix A for the derivation. The first term, (1 −

Ψ)ftβt, captures the standard impact of macro fundamentals on the exchange rate st via the time-varying

structural parameters βt. The second term, ΨftEt(βt), captures the impact of macro fundamentals

on st through the occurrence of scapegoat effects as captured by the expectations about the unknown

parameters, i.e., through Et(βt). The third term, (1−Ψ)xt, captures the role of the unobserved component

xt. The fourth term, Φzt, captures the impact of UIRP deviations or exchange rate risk premiums zt.

It should be noted that for the scapegoat effects to enter the model, three conditions must be fulfilled.

First, the discount factor λ must be nonzero as otherwise Ψ = 0 and the scapegoat term drops out of
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the model. Second, the unobserved variable xt must be stationary; otherwise, if ρx = 1, we have Ψ = 0

and the scapegoat term drops out of the model.3 Third, the parameters in βt must be unknown; i.e., βt

must be different from Et(βt). The first condition is met as the literature finds that λ is positive and

typically close to 1 (see, e.g. Engel and West, 2005; Sarno and Sojli, 2009). Our results show that the

second condition is also met as the estimates that we obtain for ρx are well below 1. The third condition

constitutes the focus of this paper. In the empirical section we test whether proxies used for the expected

parameters on macro fundamentals Et(βt) have an impact on the exchange rate.

The estimation of eq.(9) is conducted in four steps, which are discussed one by one in the next section.

3 Empirical implementation

This section explains how the estimation of eq.(9) is implemented. In Section 3.1, the estimation of

the UIRP deviation zt using a state-space approach is discussed. In Section 3.2, we explain how to

estimate the time-varying structural parameters βt as well as the unobserved component xt from the

signal yt ≡ st − 1
µ īt also using a state-space approach. In Section 3.3, we discuss how the parameters Ψ

and Φ are estimated. Finally, in Section 3.4, we use the estimates obtained for zt, xt, βt, Ψ and Φ in

eq.(9) and then estimate the scapegoat term ΨftEt(βt) using survey data to proxy Et(βt). We note that

the Gibbs sampler approach discussed in Section 4 below incorporates the parameter uncertainty of the

first three steps into the estimation of eq.(9) as the scapegoat effects are calculated conditional on the

full posterior distributions obtained for zt, xt, βt, Ψ and Φ.

3.1 Estimating the exchange risk premium zt

To calculate the time-varying deviation from UIRP or exchange rate risk premium zt, we estimate a

state-space system consisting of the following equations:

∆st+1 − īt = zt + εst+1 εst+1 ∼ iid
(
0, σ2

s

)
(10)

zt+1 = ρzzt + εzt+1 εzt+1 ∼ iid
(
0, σ2

z

)
, z1 ∼ iid

(
0,

σ2
z

1− ρ2z

)
(11)

The observation equation, eq.(10), equals the interest parity condition, eq.(1), in the model. This can

be seen by taking expectations in period t from both sides of eq.(10) and noting that Et(ε
s
t+1) = 0. It

relates the observed variable ∆st+1 − īt to the unobserved variable zt. The state equation, eq.(11), is

eq.(6) rewritten for period t + 1. We refer to Appendix C for the exact specification of the state-space

3More specifically, as shown by Bacchetta and van Wincoop (2013), the observed fundamentals ft and the unobserved

component xt can both follow AR(1) processes (with an AR parameter potentially equal to 1) but the AR parameters of

both processes should be different.
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model. Estimation of this system provides estimates of zt. Given zt, we can then calculate ρz and σ2
z

from a simple AR(1) regression on zt, and we can calculate σ2
s , which is the variance of the error term

εst+1 = ∆st+1 − īt − zt. The estimates of zt and ρz are then used in the estimation of eq.(9). Note that

we implicitly assume 0 < ρz < 1. If ρz = 0, no distinct identification of zt versus εst+1 is possible. If

ρz = 1, estimation is possible after adjusting the initialization for z1. However, this is not necessary as

the literature reports that UIRP deviations tend to be stationary (see, e.g., Carriero, 2006; Byrne and

Nagayasu, 2012). When estimating eqs. (10) and (11), we do indeed find that 0 < ρz < 1, as we report

below.

3.2 Estimating the time-varying structural parameters βt and the unob-

served component xt

We estimate the time-varying structural parameters βt using eq.(3), where the signal yt ≡ st− 1
µ īt can be

calculated from st, īt and the known parameter µ. Since from the model discussed in Section 2 we have

λ ≡ 1
1+µ , we can use a value for µ obtained from estimates reported in the literature for λ. Sarno and

Sojli (2009) report an average monthly discount factor of 0.989, which then amounts to setting λ = 0.967

in quarterly data.4 This value for λ implies setting µ = 0.034.

When yt is calculated, we estimate the following state-space model to obtain estimates for the time-

varying structural parameters βkt where k = 1, . . . ,K:

(1− ρxL)yt = (1− ρxL)ftβt + εxt εxt ∼ iid
(
0, σ2

x

)
(12)

βk,t+1 = βkt + εβk,t+1 εβk,t+1 ∼ iid
(
0, σ2

βk

)
, βk1 ∼ iid

(
0, 106

)
(13)

where eq.(12) is the observation equation, which relates the observed signal yt to the unobserved states

βt. Eq.(12) equals eq.(3) premultiplied by (1 − ρxL) (with L the lag operator), a transformation that

guarantees that the observation equation has a noise shock εxt as, from eq.(5), we have (1− ρxL)xt = εxt .

The state equation, eq.(13), is eq.(8) rewritten for period t + 1. Since the state βkt follows a random

walk, its initialization is diffuse. We refer to Appendix C for the exact specification of the state-space

model. Estimation of this system provides estimates of βt. Given these, we can calculate estimates

for the variances σ2
βk

. Estimates for the unobserved component xt are then obtained by noting that

xt = yt − ftβt. Given estimates for xt, we can then calculate ρx and σ2
x from an AR(1) regression on

xt. Note that estimates for ρx should be smaller than 1 because, as noted in Section 2, a non-stationary

xt implies that scapegoat effects drop out of the model. As reported below, we do indeed find that

0 < ρx < 1. The obtained estimates of βt and xt are then used in the estimation of eq.(9).

4This is obtained from λ = (0.989)
12
4 .
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3.3 Estimating the parameters Ψ and Φ

The parameters Ψ and Φ in eq.(9) are given by Ψ ≡ λ(1−ρx)
1−ρxλ and Φ ≡ − λ

1−ρzλ , respectively. Hence,

to estimate Ψ and Φ we need estimates for ρz, ρx and λ. Estimates for ρz and ρx are obtained when

estimating zt and xt, respectively, as detailed in Sections 3.1 and 3.2. For λ, as noted in Section 3.2, we

use the estimates reported by Sarno and Sojli (2009) and set λ = 0.967. When calculating the posterior

distributions of Ψ and Φ, we keep λ fixed so that the posteriors of Ψ and Φ incorporate only the dispersion

contained in the posterior distributions of ρx and ρz, respectively. We find, however, that our results are

robust to imposing slightly different values for the discount factor λ.5

3.4 Estimating the scapegoat effects Et(βt)

Using the estimates obtained for zt, xt, βt, Ψ and Φ in Sections 3.1, 3.2 and 3.3, we rewrite eq.(9) as

s̃t = f̃tEt(βt) (14)

where s̃t ≡ st − (1− Ψ̂)ftβ̂t − (1− Ψ̂)x̂t − Φ̂ẑt and f̃t ≡ Ψ̂ft. Upon noting that f̃t and Et(βt)
′ are 1×K

vectors, we can write

s̃t =

K∑
k=1

Et(βkt)f̃kt (15)

where k = 1, ...,K. Following Fratzscher et al. (2015), we proxy the scapegoat effects Et(βkt) by set-

ting Et(βkt) = φkτkt for k = 1, ...,K, where τkt is a survey outcome denoting the weight attached to

fundamental k by investors in period t and where φk captures the impact of τkt on the exchange rate.6

Assuming that τkt is a good proxy for the scapegoat effect Et(βkt), if the macro fundamental fkt functions

as a scapegoat in the exchange rate determination, we should find a nonzero φk for this fundamental.

Hence, eq.(15) becomes

s̃t =

K∑
k=1

φkτktf̃kt (16)

We then add an intercept and an error term to the equation, which gives

s̃t = c+

K∑
k=1

φkτktf̃kt + εt (17)

where c is a constant and εt is a zero-mean error term. Next, as a model selection device, we add binary

indicators δk to each of the K scapegoat terms (see George and McCulloch, 1993; Frühwirth-Schnatter

and Wagner, 2010). If fundamental k can be considered a scapegoat, then δk = 1. Otherwise, δk = 0.

5These results are unreported but are available from the authors upon request.
6A constant added to the specification for Et(βkt) was generally found to be equal to zero.
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From the sampled indicator δk (for k = 1, ...,K) we can then calculate the posterior probability that

fundamental k is a scapegoat. Our estimable test equation is now given by

s̃t = c+

K∑
k=1

δkφkτktf̃kt + εt (18)

Finally, if the model fits the data well, the error term εt should be independent and identically distributed

(iid). Our results suggest, however, that there is residual autocorrelation. This is not surprising since

we include only a limited number of fundamentals in the equation, i.e., fundamentals k for which we

have survey data τkt available to proxy Et(βkt). Calculated autocorrelation and partial autocorrelation

functions applied to estimates for εt obtained under the assumption that εt is iid suggest that, for all

currencies, there is substantial first-order autocorrelation of the autoregressive form (see Appendix B).

To deal with this when estimating eq.(18), we explicitly model this autocorrelation so that we have,

εt = ρεεt−1 + ε∗t ε∗t ∼ iid
(
0, σ2

ε

)
(19)

Upon multiplying both sides of eq.(18) by (1− ρεL), we obtain

(1− ρεL)s̃t = c∗ +

K∑
k=1

δkφk(1− ρεL)τktf̃kt + ε∗t (20)

where c∗ = (1 − ρεL)c = (1 − ρε)c and where the regression error term ε∗t is now an iid shock so that

Bayesian Ordinary Least Squares (OLS) can be applied to estimate this equation. Technical details are

provided in Appendix C.

4 Estimation method

In this section we discuss the macroeconomic fundamentals included in ft that could potentially be

scapegoats. Then we discuss the data used and its sources. Finally, we elaborate on the Bayesian

estimation method; i.e., we discuss the Gibbs sampler and the assumed parameter priors.

4.1 Choice of macroeconomic fundamentals ft that can be scapegoats

We include macroeconomic fundamentals in ft that can be expected to have an impact on both the

interest rate differential as given by eq.(2) and the exchange rate as given by eq.(9). Additionally, as

these variables are the ones that can become scapegoats according to the model—i.e., the parameters

βt on ft are unknown, and therefore we can have Et(βt) 6= βt—we choose to include macroeconomic

fundamentals in ft for which proxies are available for Et(βt).

Following Fratzscher et al. (2015), we proxy Et(βt) by survey data from Consensus Economics (see
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Section 4.2).7 As such, we use the following fundamentals in ft for which survey data from Consensus

Economics are available. First, the real GDP growth rate differential between the local and the benchmark

country, ḡt. Second, the inflation rate differential between the local and the benchmark country, π̄t. Third,

the long-term nominal interest rate differential between the local and the benchmark country, īLt .8 Fourth,

the current account balance to GDP ratio of the local country, cat (where the latter is not considered in

deviation from the benchmark country).9

We have also conducted estimations where ft contains variables for which we have no survey data

to proxy Et(βt)—i.e., an intercept, the money supply differential between the local and benchmark

economies and the one-period lagged short-term nominal interest rate differential (see Bacchetta and van

Wincoop, 2009, 2013). For these variables, by necessity, we have to assume that Et(βt) = βt (for all t).

The results obtained when these additional fundamentals are included in the regression equation do not

differ much from our reported results. Hence, we do not report them, but they are available from the

authors upon request.

4.2 Data

We use quarterly data over the period 2002Q1-2014Q4 so that the sample size equals T = 52. The

availability of the surveys τkt determines the sample period chosen (see below). We conduct estimations

using data for five developed or industrialized economies (Australia, Canada, the euro area, Japan and

the United Kingdom) and for three emerging economies (Singapore, South Africa and South Korea). The

data for exchange rates and all macro fundamentals used in the baseline estimations, with the exception

of the long-term interest rate, are taken from Oxford Economics via Datastream. Data for the long-run

interest rates are taken from national sources.10

The currencies considered are the Australian dollar, the Canadian dollar, the euro, the Japanese yen,

the UK pound, the Singapore dollar, the South African rand and the Korean won. All exchange rate

7An alternative proxy could be Et(βt) as estimated from the Kalman filter applied when estimating the state-space

system given by eqs. (12) and (13). However, the Kalman filter output cannot be considered a good proxy for Et(βt) as it

tends to converge to the “smoother” ET (βt) when filtering nears the end of the sample period, where ET (βt) is basically

what is used to estimate the time-varying structural parameter βt. While the scapegoat model does predict that Et(βt)

tends to βt when the scapegoat effects wear off (see Fratzscher et al., 2015), there is of course no reason for this convergence

to occur only and precisely at the end of the sample period.
8We do not add the short-term interest rate differential īt in ft since it appears on the left hand side (LHS) of eq.(2).
9Note that the variables ḡt, π̄t and īLt are, given that īLt can be considered a proxy for inflation expectations, in accordance

with variables one would include in eq.(2) under a Taylor rule differential interpretation of eq.(2). The variables ḡt, π̄t and

cat are also in accordance with the variables one would use in a reduced-form monetary model of exchange rates (see, e.g.

Meese and Rogoff, 1983a; Cheung et al., 2005). We note that the expected signs of the coefficients βt on the fundamentals

ft can vary according to the assumed underlying model.
10I.e., from the Reserve Bank of Australia, the Bank of Canada, Eurostat, the Ministry of Finance of Japan, the Bank of

England, the US Treasury, the Bank of Korea, the South African Reserve Bank and the Monetary Authority of Singapore.
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data are expressed versus the US dollar. In particular, the (log) nominal exchange rate st is expressed

as (the log of) the amount of local currency that one US dollar is worth.

The other variables are calculated as follows. For īt we use the short-term nominal interest rate

(relative to the US), for ḡt we use real GDP growth (relative to the US), for the inflation rate π̄t we use

the quarterly change in the consumer price index (relative to the US), for īLt we use the yield on 10-year

government bonds relative to the US as a proxy for the long-term interest rate differential, and for cat

we use the ratio of the current account balance to GDP where a positive value of cat indicates a surplus.

Data for the survey outcomes τkt—i.e., the weights attached by exchange market participants to

macro fundamentals in the determination of the exchange rate—are taken from Consensus Economics.

In their survey, 40 to 60 exchange market participants are asked to rank the current importance of macro

fundamentals for the exchange rate of a country (versus the US dollar) where each fundamental receives a

score from 0 (no influence) to 10 (very strong influence). The survey scores are available over the sample

period for all currencies in our sample for the macro fundamentals included in ft, i.e., for ḡt, π̄t, ī
L
t and

cat. Since they are only available on a biannual basis, we use linear interpolation to obtain a quarterly

series over the period 2002Q1-2014Q4.11

While some papers in the literature model exchange rates at the monthly frequency (see, e.g., Bac-

chetta and van Wincoop, 2013; Fratzscher et al., 2015), we prefer to use quarterly data for three reasons.

First, this avoids the need to interpolate quarterly macro data to obtain macro data at the monthly fre-

quency. Second, since the survey data that are used as proxies for the parameter expectations Et(βt) are

only available on a biannual basis, it makes more sense to consider the model at the quarterly frequency

rather than at the monthly frequency. Third, we can use real GDP—which is available at the quarterly

but not at the monthly frequency—to construct ḡt instead of having to use industrial production.

4.3 Bayesian estimation

Bayesian methods are used to estimate eq.(9). In particular, we use a Gibbs sampling approach, which

is a Markov chain Monte Carlo method used to simulate draws from the intractable joint and marginal

posterior distributions of the parameters and unobserved states using only tractable conditional distribu-

tions. As described in Section 3, estimation is conducted in different steps, with steps 1 and 2 (Sections

3.1 and 3.2) being fully independent, step 3 (Section 3.3) using the results of steps 1 and 2, and step 4

(Section 3.4) using the results obtained in steps 1, 2 and 3. A Bayesian method is advantageous when

compared with classical methods like maximum likelihood because the full posterior distributions of pa-

11We find very similar results when instead we construct a quarterly series by assigning the last-available survey score to

the quarter in which the survey is not conducted. These results are not reported but are available upon request.
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rameters and states are calculated in every step and can be used in the next steps. Hence, the parameter

uncertainty of the first two steps can be incorporated into step 3, and the parameter and state uncer-

tainty of the first three steps can be incorporated into the estimation of eq.(9) in step 4. Additionally,

our Bayesian approach allows us to do model selection, i.e., compute the posterior probabilities that the

macro fundamentals included in eq.(9) are scapegoats. Finally, a Bayesian approach can be conducted

without making specific assumptions about the orders of integration of the variables used in the analysis.

As a Bayesian analysis relies on sampling posterior distributions rather than on using asymptotic approx-

imations, statistical inference in the presence of non-stationarity variables is less complicated compared

to inference conducted in a classical setting.

The general outline of the Gibbs sampler is presented in Section 4.3.1, while technical details about

the implementation of the Gibbs sampler are relegated to Appendix C. The Bayesian parameter priors

are then discussed in Section 4.3.2.

4.3.1 Gibbs sampler

The Gibbs sampling scheme is as follows:

1. Sample the exchange rate risk premium zt and parameters from the state-space model eqs. (10)

and (11). First, sample the state zt conditional on the data and the parameters in the system,

namely σ2
s , ρz and σ2

z . To this end, the Bayesian state-space approach with multimove sampling

of Carter and Kohn (1994) and Kim and Nelson (1999) is implemented (i.e., the forward-filtering,

backward-sampling approach). Second, sample the parameter σ2
s conditional on the data and the

state zt using a Bayesian OLS regression approach applied to eq.(10) (see, e.g. Bauwens et al.,

2000). Third, sample ρz and σ2
z conditional on the data and the state zt using a Bayesian OLS

regression approach applied to eq.(11).

2. Sample the time-varying structural parameters βt from the state-space model of eqs. (12) and (13).

First, sample the K states βt conditional on the data and the parameters in the system, namely ρx,

σ2
x and σ2

βk
, using the Bayesian state-space approach with multimove sampling of Carter and Kohn

(1994) and Kim and Nelson (1999). Second, obtain estimates for the unobserved component xt

from xt = yt−ftβt. Third, sample the parameter σ2
βk

conditional on the state βkt (for k = 1, ...,K)

using a Bayesian OLS regression approach applied to eq.(13). Fourth, sample the parameters ρx

and σ2
x conditional on xt using a Bayesian OLS regression approach applied to eq.(5).

3. Calculate the parameters Ψ = λ(1−ρx)
1−ρxλ and Φ = − λ

1−ρzλ using the sampled values for ρz and ρx and

the imposed value for λ, i.e., λ = 0.967.
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4. (a) Using estimates for zt, xt, βt, Ψ and Φ, calculate s̃t ≡ st − (1− Ψ̂)ftβ̂t − (1− Ψ̂)x̂t − Φ̂ẑt and

f̃t ≡ Ψ̂ft.

(b) For k = 1, ...,K, sample the binary indicator δk using eq.(20) while marginalizing over the

parameter vector φk over which model selection is carried out. The approach follows the

stochastic variable selection procedure for regressions by George and McCulloch (1993) and

Frühwirth-Schnatter and Wagner (2010).

(c) Jointly sample c∗, σ2
ε and the slope coefficients φk, for which the corresponding binary indi-

cators δk are equal to 1 via a Bayesian OLS regression approach applied to eq.(20). Set the

slope coefficients φk to 0 if the corresponding binary indicators δk are equal to 0.

(d) Calculate the estimates of the residuals εt from εt = s̃t − c −
∑K
k=1 δkφkτktf̃kt. Sample the

AR coefficient ρε for given variance σ2
ε using Bayesian OLS applied to eq.(19).

Sampling from these steps is iterated D times, and, after a sufficiently large number of burn-in

draws B, the sequence of draws (B + 1, ..., D) approximates a sample from the posterior distributions

of the sampled quantities. The results reported below are based on D = 20, 000 iterations with the

first B = 10, 000 draws discarded as a burn-in sequence; i.e., the reported results are based on posterior

distributions constructed from D −B = 10, 000 draws.

4.3.2 Parameter priors

For the regression parameters—i.e., ρz, ρx, c∗, φ and ρε—we use a Gaussian prior N (b0, V0) defined by

setting the prior mean b0 and prior variance V0. For the variance parameters—i.e., σ2
s , σ2

z , σ2
x, σ2

βk
(for

k = 1, ...,K) and σ2
ε—we use the Inverse Gamma prior IG(c0, C0) where the shape c0 = ν0T and scale

C0 = c0σ
2
0 parameters are calculated from the prior belief σ2

0 about the variance parameter and the prior

strength ν0, which is expressed as a fraction of the sample size T .12 More details are provided in Appendix

C. For the binary indicators δk (with k = 1, ...,K) in eq.(20) that determine which fundamentals are

scapegoats, we choose Bernoulli prior distributions where every indicator δk has a prior probability p0 of

being equal to 1, i.e., p(δk = 1) = p0 (for k = 1, ...,K).

With respect to the parameter priors used when estimating the state-space system given by eqs. (10)

and (11), we set b0 = 0 and V0 = 1 for the AR(1) parameter ρz so that the prior distribution covers the

full range of possible values for this parameter. For both variance parameters σ2
s and σ2

z , we set the prior

belief equal to half the unconditional variance of the data series ∆st+1 − īt; i.e., for σ2
s and σ2

z we set

12Since this prior is conjugate, ν0T can be interpreted as the number of fictional observations used to construct the prior

belief σ2
0 .
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σ2
0 = 0.5 × V (∆st+1 − īt). The strength is set equal to ν0 = 0.01 for both variances, which amounts to

imposing a very loose prior.

With respect to the parameter priors used when estimating the state-space system given by eqs. (12)

and (13), we set b0 = 0 and V0 = 1 for the AR(1) parameter ρx so that the prior distribution covers the

full range of possible values for this parameter. For the variance parameter σ2
x, we set the prior belief

equal to half the unconditional variance of the variable yt ≡ st − 1
µ īt, which follows eq.(3); i.e., for σ2

x we

set σ2
0 = 0.5 × V (yt). For the variances σ2

βk
(for k = 1, ...,K), we set belief σ2

0 = 0.01, which is not too

low and not too high to allow for slow structural movement in βk without imposing that βk is constant.

The strength is set equal to ν0 = 0.01 for all variances so that the priors are given little weight in the

estimation results.

With respect to the parameters of regression eq.(20), we set p0 = 0.5 for every binary indicator δk

(with k = 1, ...,K), which amounts to assuming that there is an a priori 50% chance that fundamental

k is a scapegoat. For the intercept c∗ and the regression slope parameters φk that are included in the

regression (i.e., those for which δk = 1), we set b0 = 0 and V0 = 10, which allows for a wide range of

possible estimates for c∗ and φk. For the regression error variance σ2
ε , we set belief σ2

0 = 0.01 and strength

ν0 = 0.01, which, again, implies a loose prior imposed on a variance, in this case on σ2
ε .

With respect to the AR parameter of regression eq.(19), we set b0 = 0 and V0 = 1 for ρε so that

the prior distribution covers the full range of possible values for this parameter. Note that we sample ρε

given the sampled value of σ2
ε obtained when estimating eq.(20).

5 Results

5.1 Estimates of the exchange rate risk premium

Table 1 presents the parameter estimates of the state-space system in eqs. (10) and (11), while Figure 1

presents the signal ∆st+1 − īt and the estimated exchange risk premium zt for all eight currencies in the

sample. From the table we note that for all currencies the AR(1) parameter lies between 0.13 and 0.84,

suggesting that there is a persistent though stationary deviation of the UIRP condition in the model.

This result is in line with results reported in the literature (see, e.g., Carriero, 2006; Byrne and Nagayasu,

2012). As the scapegoat model discussed in Section 2 shows that zt enters the exchange rate equation

derived from the model, i.e., eq.(9), we condition the estimation of this equation on the estimates obtained

for zt (i.e., on the full posterior distribution of zt).
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Table 1: Posterior distributions of the parameters of the state-space system eqs.(10) and (11)

Australia Canada Euro area Japan UK Singapore South Korea South Africa

ρz 0.6232 0.4208 0.1347 0.5971 0.4957 0.3240 0.5817 0.8426

[0.340; 0.880] [0.109; 0.689] [-0.420; 0.622] [0.262; 0.879] [0.219; 0.749] [-0.079; 0.625] [0.262; 0.865] [0.643; 0.975]

σ2
z 0.0023 0.0008 0.0007 0.0008 0.0010 0.0002 0.0012 0.0021

[0.001; 0.004] [0.000; 0.001] [0.000; 0.002] [0.000; 0.002] [0.000; 0.002] [0.000; 0.001] [0.000; 0.002] [0.001; 0.005]

σ2
s 0.0014 0.0005 0.0018 0.0007 0.0005 0.0002 0.001 0.0026

[0.000; 0.003] [0.000; 0.001] [0.000; 0.003] [0.000; 0.001] [0.000; 0.001] [0.000; 0.001] [0.000; 0.002] [0.001; 0.005]

Note: Reported are the medians and the 90% highest posterior density intervals of the posterior distributions of the AR parameter and

variance parameters of state-space system in eqs.(10) and (11).
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Figure 1: The signal ∆st+1 − īt and the estimated exchange risk premium zt
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5.2 Structural parameters of macro fundamentals and unobserved compo-

nent

In this section we discuss the results of the estimation of the state-space system eqs.(12) and (13). This

estimation provides estimates for the potentially time-varying structural parameters βt on the macro

fundamentals ḡ, π̄, īL and ca. These are presented in Figure 3, while the posterior distributions of the

estimates of the variances σ2
βk

(for k = 1, ...,K) of the shocks to the random walks βt are reported in

Table 2. Figure 3 shows that—while there is some time-variation in the structural parameters, since

the variances reported in Table 2 are positive—the highest posterior density intervals (HPD) around the
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βt’s are rather wide, and these parameters can de facto all be considered constant. This means that our

theoretical model essentially collapses to the model considered by Bacchetta and van Wincoop (2013)

with constant structural parameters. While this result may be specific to the considered sample period

(which contains relatively few observations), the result nonetheless seems to suggest that the instability

between exchange rates and macro fundamentals and the “disconnect puzzle” cannot be explained simply

by imposing time-varying structural parameters in the model.

Table 2: Posterior distributions of the parameters of the state-space system eqs.(12) and (13)

Australia Canada Euro area Japan UK Singapore South Korea South Africa

ρx 0.5166 0.6919 0.6650 0.7102 0.4855 0.5031 0.7014 0.6481

[0.149; 0.807] [0.306; 0.908] [0.140; 0.956] [0.199; 0.944] [0.149; 0.773] [0.160; 0.780] [0.240; 0.941] [0.393; 0.899]

σ2
x 0.0476 0.0551 0.1574 1.1264 0.0866 0.0294 6.7532 0.2933

[0.022; 0.260] [0.016; 0.729] [0.031; 6.075] [0.283; 18.05] [0.042; 0.263] [0.015; 0.087] [2.094; 64.24] [0.107; 5.283]

σ2
β(ḡ) 0.0227 0.0231 0.0195 0.0163 0.0172 0.0205 0.0325 0.0225

[0.002; 2.586] [0.003; 1.088] [0.003; 0.886] [0.002; 1.079] [0.002; 0.476] [0.003; 0.495] [0.003; 1.894] [0.003; 4.772]

σ2
β(π̄) 0.0168 0.0206 0.0229 0.0185 0.0212 0.0213 0.0265 0.0292

[0.003; 0.547] [0.003; 2.459] [0.003; 4.554] [0.002; 0.670] [0.003; 1.393] [0.003; 1.169] [0.003; 1.227] [0.003; 9.418]

σ2
β (̄iL) 0.0164 0.0135 0.0280 0.0163 0.0143 0.0235 0.0252 0.0181

[0.002; 0.650] [0.002; 1.166] [0.002; 2.380] [0.002; 0.360] [0.002; 1.244] [0.003; 2.293] [0.003; 4.118] [0.002; 1.238]

σ2
β(ca) 0.0178 0.0437 0.0225 0.0261 0.0452 0.0214 0.0214 0.0270

[0.002; 0.407] [0.003; 3.979] [0.003; 2.251] [0.003; 6.065] [0.003; 7.857] [0.003; 0.124] [0.002; 1.256] [0.003; 2.280]

Note: Reported are the medians and the 90% highest posterior density intervals of the posterior distributions of the AR parameter and

variance parameters of state-space system in eqs.(12) and (13).

Additionally—and related to the width of the HPD intervals—most structural parameters have HPD

intervals that contain the value of 0, suggesting that the impact of the macro fundamentals on the signal

yt ≡ st − 1
µ īt is rather limited. Macro fundamentals that have a clear nonzero structural impact on

the exchange rate are the inflation rate π̄ for Australia and the UK, the long-run interest rate īL for

Australia, Japan, the UK and Singapore, and the current account to GDP ratio ca for Australia and the

UK. The inflation differential π̄ has a positive impact, suggesting that higher inflation rates in Australia

and the UK versus the US depreciate the exchange rates of these countries; the long-run interest rate īL

has a negative impact, suggesting that higher long-run interest rates in Australia, Japan, the UK and

Singapore versus the US appreciate those countries’ exchange rates. The current account balance ca has

a negative impact for Australia and a positive impact for the UK, meaning that a higher current account

surplus or a lower deficit appreciates the Australian dollar and depreciates the UK pound.

The estimation of eqs.(12) and (13) then allows us to calculate estimates for the unobserved component

xt from xt = yt− ftβt. The estimated AR(1) and variance parameters of this component, i.e., ρx and σ2
x,

are reported in Table 2, while Figure 2 presents graphs for the signal yt and for the posterior median of
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xt and its 90% HPD interval. From Figure 2 we note that the difference between yt and xt, which reflects

ftβt, is often rather important, suggesting that even though the HPD intervals around the β’s are wide

and often contain the value of 0, the magnitude of the estimated β’s is non-negligible. From Table 2 we

note that, for all currencies, the AR(1) parameter is positive and lies between 0.48 and 0.71, suggesting

that there is a persistent though stationary unobserved component in the model which potentially reflects

unobserved quantities such as money demand shocks or real exchange rate shocks. The existence of this

component is a precondition for the potential presence of scapegoat effects. We investigate the presence

of scapegoat effects in the next section.

Figure 2: The signal yt ≡ st − 1
µ
īt and the unobserved component xt
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Figure 3: Structural parameters βkt
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2002 2004 2006 2008 2010 2012 2014
−10

0

10

20

30

(d) ca

Canadian dollar (CAD)

2002 2004 2006 2008 2010 2012 2014
−300

−200

−100

0

100

200

(a) ḡ
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Figure 3: Structural parameters βkt (cont’d)
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5.3 Scapegoat effects

The results of estimating eq.(20) using Bayesian OLS are reported in Tables 3 and 4. The posterior

inclusion probabilities p that the included macro fundamentals ḡ, π̄, īL and ca are scapegoats are reported

in Table 3. These probabilities are calculated as the average over the iterations of the Gibbs sampler of

the binary indicators δk included in eq.(20). From the table, we note that only the scapegoat term for the

inflation rate π̄, which is the inflation rate interacted with the Consensus survey score for the inflation

rate, tends to systematically have a posterior inclusion probability that is higher than the imposed prior

probability of p0 = 0.5. This is the case for the Anglo-Saxon countries (Australia, Canada, the UK),

where the inclusion probabilities are all close to or even above 0.9, and for South Korea and South Africa,

where the inclusion probabilities are lower but still well above 0.5.

Table 3: Posterior probabilities p that fundamentals are scapegoats

Australia Canada Euro area Japan UK Singapore South Korea South Africa

ḡ 0.5534 0.3444 0.2488 0.1051 0.1309 0.0347 0.1082 0.3658

π̄ 0.8838 0.9313 0.3713 0.2309 0.9337 0.3159 0.6405 0.7109

īL 0.8719 0.5003 0.2605 0.5021 0.3384 0.2098 0.3665 0.3869

ca 0.2858 0.2731 0.1932 0.2998 0.1359 0.0257 0.1057 0.2961

Note: Reported are the posterior probabilities p that the fundamentals ḡ, π̄, īL and ca (as defined in Section 4.1) are scapegoats. These probabilities

are calculated as the average of the sampled binary indicators δk over the iterations of the Gibbs sampler. The prior inclusion probabilities are

equal to p0 = 0.5 in all cases.

The estimates for the other parameters of eq.(20) are reported in Table 4. The posterior medians and

90% HPD intervals of the coefficients φk on the macro fundamentals ḡ, π̄, īL and ca interacted with the

Consensus survey scores support the results obtained for the posterior probabilities as reported Table 3.

For the Anglo-Saxon economies (Australia, Canada and the UK) and for South Korea and South Africa,

the impact of the inflation rate interacted with the survey weight as captured by the parameter φk for

inflation is different from zero and positive. Also, while we find posterior inclusion probabilities for the

inflation rate below 0.5 for the euro area and Singapore, the estimates for φk are nonetheless above zero

for these countries as well (even though the value of zero is included in the HPD interval). We note

further that the structural parameters βk on the inflation rate are found to be positive in Australia and

in the UK as can be seen in Figure 3, while they are essentially zero in Canada, South Korea and South

Africa. Hence, the scapegoat effects φk intensify the impact of the structural parameters βk, a result

that supports the predictions of the scapegoat model. Apart from the inflation rate in the five countries

mentioned above, only the long-run interest rate in Australia can be considered a scapegoat, since the

long-run interest rate interacted with its survey weight has a negative impact on the exchange rate; i.e.,

it has a nonzero value for φk. This result is in line with the posterior probability p = 0.87 reported for
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īL for Australia in Table 3. Since in Figure 3 the structural parameter βk on the long-run interest rate

is also negative, this suggests that for the Australian dollar the long-run interest rate is a scapegoat. For

the other countries no convincing evidence can be found that īL is a scapegoat. Neither is there evidence

that the macro fundamentals ḡ and ca are scapegoats. While our results confirm the empirical findings

of Fratzscher et al. (2015) as far as the inflation rate is concerned, we find considerably less evidence in

favor of scapegoat effects when looking at the other macro fundamentals. Interestingly, the finding that

the inflation rate shows up as a scapegoat in the model is not surprising, since, from looking at the survey

scores of Consensus Economics, Fratzscher et al. (2015) infer that the inflation rate most frequently is

selected as the main driver of exchange rates out of the six variables that they consider (for industrialized

countries and, to a lesser extent, for emerging economies).13

Table 4: Estimation of the parameters of regression eq.(20)

Australia Canada Euro area Japan UK Singapore South Korea South Africa

c 0.1251 0.0116 -0.0694 0.1806 -0.1692 0.0118 0.3290 0.3220

[0.005; 0.295] [-0.011; 0.041] [-0.143; -0.016] [0.024; 1.253] [-0.312; -0.043] [-0.007; 0.048] [0.039; 3.160] [-0.007; 0.768]

φ(ḡ) 1.0505 0.4828 -0.3570 0.2133 -0.0066 0.0189 -0.2692 2.1988

[0.207; 2.155] [-0.018; 1.156] [-1.074; 0.154] [-0.327; 0.761] [-0.769; 0.647] [-0.046; 0.086] [-1.332; 0.392] [-0.736; 7.127]

φ(π̄) 2.5528 2.0192 0.6959 -0.5592 1.9264 0.2570 1.8762 3.1964

[0.910; 4.885] [0.711; 3.693] [-0.420; 1.985] [-2.178; 0.645] [0.738; 3.550] [-0.018; 0.573] [0.309; 4.347] [0.802; 7.464]

φ(̄iL) -3.1574 1.2036 0.1417 -1.4683 -0.5088 -0.1112 1.4568 1.9722

[-5.895; -1.017] [-0.834; 3.392] [-1.794; 2.665] [-4.799; 0.243] [-2.615; 1.534] [-0.700; 0.443] [-0.620; 7.887] [-1.097; 4.391]

φ(ca) 0.7744 -0.3526 -0.0676 0.7260 -0.2282 0.0096 0.2593 -1.2904

[-0.177; 2.138] [-0.864; 0.163] [-1.429; 0.861] [-0.194; 2.116] [-0.749; 0.243] [-0.057; 0.065] [-0.293; 0.935] [-3.740; 0.956]

ρε 0.6672 0.8581 0.7003 0.9512 0.6476 0.9495 0.9421 0.7467

[0.364; 0.933] [0.647; 0.999] [0.414; 0.921] [0.655; 0.999] [0.371; 0.911] [0.843; 0.999] [0.462; 0.999] [0.314; 0.999]

σ2
ε 0.0138 0.0041 0.0046 0.0118 0.0066 0.0016 0.0179 0.0564

[0.007; 0.047] [0.002; 0.009] [0.002; 0.012] [0.004; 0.056] [0.003; 0.014] [0.000; 0.003] [0.005; 0.229] [0.023; 0.420]

Note: Reported are the medians and the 90% highest posterior density intervals of the posterior distributions of the parameters c, φk (with

corresponding fundamental denoted between brackets), ρε and σ2
ε .

In Figure 4 we present the posterior medians and 90% HPD intervals of the estimated parameter

expectations, i.e., Et(βkt) = φkτkt. These are calculated using the posterior distributions of φk and the

survey data τkt. In line with the findings reported in both tables, we find that these are strictly larger

than zero for the inflation rate in the five aforementioned countries (Australia, Canada, the UK, South

Korea and South Africa) and positive (but with the value of zero contained in the HPD interval) in the

euro area and Singapore. The time-variation found in these estimates allows us to explain potentially why

the relationship between exchange rates and macro fundamentals—in particular, the inflation rate—can

13See Tables I and II in their Internet Appendix B. They also find that this holds for the short-run interest rate, which

we do not include in ft since it appears on the left hand side (LHS) of eq.(2) in the model.
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be unstable.
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Figure 4: Expectations of parameters Et(βkt)
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Figure 4: Expectations of parameters Et(βkt) (cont’d)
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6 Conclusions

This paper proposes a new empirical testing strategy for the scapegoat theory of exchange rates that uses

the exact structural exchange rate equation implied by a scapegoat model instead of an ad hoc empirical

specification. The approach followed should tighten the link between the theory on scapegoats and the

empirical testing of this theory.

From theory we derive an exchange rate equation that can be estimated in different steps. First,

the exchange rate risk premium or time-varying deviation from the UIRP condition is estimated using

a state-space approach applied to the observed difference between the change in the exchange rate and

the interest rate differential. Second, the unobserved time-varying structural parameters on the macro

fundamentals and the unobserved component of the model are estimated using a state-space system

applied to the observed “signal” in the model, which depends on the level of the exchange rate, the

interest rate differential and the discount factor. Third, the scapegoat component in the model’s exchange

rate equation is estimated using a regression analysis where the estimation is conditional on the estimates

obtained in the previous steps.

The estimation is carried out through a Bayesian Gibbs sampling approach for eight countries versus

the US over the period 2002Q1-2014Q4. We consider five developed economies (Australia, Canada, the

euro area, Japan and the UK) and three emerging countries (Singapore, South Korea and South Africa),

and we incorporate four macro fundamentals in the estimations that can potentially be scapegoats, i.e.,

the real GDP growth rate (relative to the US), the inflation rate (relative to the US), the long-run

interest rate (relative to the US) and the current account balance to GDP ratio. We use survey data

from Consensus Economics to proxy the parameter expectations that enter the scapegoat term.

The results suggest, first, that there is a persistent but stationary exchange risk premium or time-

varying deviation from the UIRP condition in all countries considered. Second, we identify a persistent but

stationary unobserved component from the “signal” in the model, which potentially reflects unobserved

quantities such as money demand shocks or real exchange rate shocks. Third, we find that, over the

sample period, the structural parameters on the macro fundamentals are constant and often close to

zero. Fourth, as far as the scapegoat terms in the exchange rate equation are concerned, we calculate

posterior probabilities that these macro fundamentals are scapegoats, and we find, for the inflation rate in

five out of eight countries, probabilities that are considerably higher than the imposed prior probabilities

of 0.5. These countries are the three Anglo-Saxon economies (Australia, Canada and the UK) and

South Korea and South Africa. We find little evidence to suggest that the other macro fundamentals we

considered are scapegoats.
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Appendix A Derivation of eq.(9)

Note that from eq.(5) we can derive xt+j = ρjxxt +
∑j−1
l=0 ρ

l
xε
x
t+j−l and therefore write

Et(xt+j) = ρjxEt(xt) (A-1)

Similarly, from eq.(6) we can derive zt+j = ρjzzt +
∑j−1
l=0 ρ

l
zε
z
t+j−l and therefore write

Et(zt+j) = ρjzEt(zt) (A-2)

Given the assumption that the processes fkt and βkt (for k = 1, ...,K) are independent, we can write

Et(fk,t+jβk,t+j) = Et(fk,t+j)Et(βk,t+j) = fktEt(βkt) k = 1, . . . ,K, (A-3)

where the last step follows from the random walk processes in eqs. (7) and (8) assumed for fkt and βkt.

We note that as the signal yt ≡ st − 1
µ īt is observed, we have Et(yt) = yt or yt − Et(yt) = 0 (but,

since the parameters βt are unknown, Et(βt) 6= βt and Et(xt) 6= xt). From eq.(3), this implies that

ftβt + xt − ftEt(βt)− Et(xt) = 0 or

Et(xt) = xt + ftβt − ftEt(βt) (A-4)

For zt, on the other hand, we have

Et(zt) = zt (A-5)

This can be seen by taking expectations in period t from both sides of eq.(1) in the text to obtain

Et(st+1)− st = īt + Et(zt), which can only be equal to eq.(1) if eq.(A-5) holds.

Using eqs.(A-1), (A-2), (A-3), (A-4) and (A-5) in eq.(4) while noting that
∑∞
j=1 λ

j =
∑∞
j=0 λ

j − 1 =

λ
1−λ ,

∑∞
j=1(λρx)j =

∑∞
j=0(λρx)j − 1 = λρx

1−λρx and
∑∞
j=1(λρz)

j =
∑∞
j=0(λρz)

j − 1 = λρz
1−λρz , we obtain

eq.(9) in the text.
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Appendix B Autocorrelation and partial autocorrelation func-

tions of the estimated residuals of eqs.(18) and (20)

Table B-1: Autocorrelations and partial autocorrelations of the residuals εt in eq.(18) under the iid assumption.

Australia Canada Euro area Japan UK Singapore South Korea South Africa

acf(1) 0.5120 0.4127 0.6640 0.6681 0.4632 0.6705 0.3623 0.4102

[0.271; 0.691] [0.191; 0.632] [0.406; 0.816] [0.454; 0.816] [0.257; 0.656] [0.469; 0.824] [0.101; 0.653] [0.179; 0.645]

acf(2) 0.3224 0.2426 0.5458 0.4728 0.2564 0.4653 0.1356 0.2077

[0.022; 0.538] [0.068; 0.451] [0.279; 0.677] [0.180; 0.676] [0.028; 0.476] [0.178; 0.693] [-0.103; 0.454] [-0.025; 0.463]

acf(3) 0.1587 0.1227 0.4083 0.4784 0.1609 0.4419 0.1253 0.1232

[-0.163; 0.403] [-0.043; 0.347] [0.142; 0.534] [0.240; 0.631] [-0.076; 0.382] [0.214; 0.638] [-0.099; 0.376] [-0.103; 0.350]

acf(4) 0.0995 0.1485 0.3022 0.1190 0.4045 0.3308 0.0341 0.0480

[-0.192; 0.329] [-0.027; 0.344] [0.042; 0.433] [0.186; 0.544] [-0.037; 0.341] [0.058; 0.554] [-0.173; 0.295] [-0.158; 0.253]

pacf(1) 0.5120 0.4127 0.6640 0.6681 0.4632 0.6705 0.3623 0.4102

[0.271; 0.691] [0.191; 0.632] [0.406; 0.816] [0.454; 0.816] [0.257; 0.656] [0.470; 0.824] [0.101; 0.653] [0.179; 0.645]

pacf(2) 0.0621 0.0738 0.1678 0.0382 0.0397 0.0166 -0.0151 0.0329

[-0.179; 0.256] [-0.096; 0.230] [-0.095; 0.315] [-0.146; 0.165] [-0.133; 0.190] [-0.098; 0.132] [-0.213; 0.190] [-0.155; 0.212]

pacf(3) -0.0470 -0.0003 -0.0273 0.2560 0.0313 0.2043 0.0792 0.0168

[-0.236; 0.126] [-0.142; 0.149] [-0.150; 0.121] [0.043; 0.405] [-0.121; 0.167] [0.114; 0.307] [-0.123; 0.238] [-0.176; 0.195]

pacf(4) 0.0026 0.0898 -0.0122 -0.0295 0.0760 -0.1005 -0.0449 -0.0352

[-0.173; 0.171] [-0.085; 0.238] [-0.166; 0.106] [-0.181; 0.119] [-0.065; 0.191] [-0.215; 0.022] [-0.220; 0.123] [-0.204; 0.131]

Note: The iid assumption for the residuals in eq.(18) implies the assumption that ρε = 0 in eq.(19). acf(l)/pacf(l) denotes autocorrelation/partial

autocorrelation of order l. Reported are the medians and 90% highest posterior density intervals of the posterior distributions of the autocorrela-

tions/partial autocorrelations.

Table B-2: Autocorrelations and partial autocorrelations of the residuals ε∗t in eq.(20)

Australia Canada Euro area Japan UK Singapore South Korea South Africa

acf(1) -0.0561 -0.1449 -0.1360 -0.0398 0.0397 -0.0795 -0.0051 0.0017

[-0.300; 0.242] [-0.352; 0.141] [-0.381; 0.381] [-0.206; 0.127] [-0.174; 0.277] [-0.230; 0.134] [-0.216; 0.142] [-0.231; 0.256]

acf(2) -0.0850 -0.0430 0.0640 -0.1879 -0.1152 -0.0796 -0.0671 -0.0251

[-0.277; 0.127] [-0.246; 0.179] [-0.137; 0.311] [-0.431; 0.034] [-0.313; 0.108] [-0.239; 0.110] [-0.305; 0.085] [-0.244; 0.212]

acf(3) -0.0856 -0.0331 -0.0303 -0.0080 -0.0448 -0.0928 -0.0177 0.0733

[-0.287; 0.114] [-0.235; 0.164] [-0.226; 0.182] [-0.161; 0.188] [-0.226; 0.135] [-0.261; 0.080] [-0.173; 0.208] [-0.173; 0.283]

acf(4) -0.0348 0.0284 -0.0602 0.1285 0.0635 -0.1157 -0.0517 0.0074

[-0.217; 0.154] [-0.168; 0.211] [-0.221; 0.112] [-0.033; 0.314] [-0.090; 0.187] [-0.238; -0.043] [-0.214; 0.052] [-0.208; 0.206]

pacf(1) -0.0561 -0.1449 -0.1360 -0.0398 0.0397 -0.0795 -0.0051 0.0017

[-0.300; 0.242] [-0.352; 0.141] [-0.381; 0.381] [-0.206; 0.127] [-0.174; 0.277] [-0.230; 0.134] [-0.216; 0.142] [-0.231; 0.259]

pacf(2) -0.1169 -0.0908 0.0022 -0.2030 -0.1348 -0.1009 -0.0806 -0.0460

[-0.303; 0.089] [-0.278; 0.136] [-0.205; 0.230] [-0.449; 0.013] [-0.326; 0.066] [-0.251; 0.090] [-0.330; 0.073] [-0.261; 0.177]

pacf(3) -0.1101 -0.0626 -0.0482 -0.0383 -0.0408 -0.1139 -0.0242 0.0612

[-0.301; 0.093] [-0.246; 0.137] [-0.233; 0.137] [-0.178; 0.145] [-0.244; 0.141] [-0.273; 0.067] [-0.175; 0.147] [-0.179; 0.271]

pacf(4) -0.0818 -0.0151 -0.0993 0.0733 0.0250 -0.1617 -0.0699 -0.0201

[-0.281; 0.122] [-0.212; 0.179] [-0.279; 0.060] [-0.080; 0.234] [-0.162; 0.164] [-0.308; 0.026] [-0.265; 0.034] [-0.231; 0.174]

Note: acf(l)/pacf(l) denotes autocorrelation/partial autocorrelation of order l. Reported are the medians and 90% highest posterior density

intervals of the posterior distributions of the autocorrelations/partial autocorrelations.
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Appendix C Technical details of the Gibbs sampler

C.1 State-space models (steps 1 and 2)

C.1.1 General approach

The unobserved states are sampled conditional on the parameters using a state space approach. In

particular, we use the forward-filtering backward-sampling approach discussed in detail in Kim and

Nelson (1999) to sample the unobserved states. The general form of the state-space model is given by,

Yt = ZtSt + Vt, Vt ∼ iidN (0, Ht) , (C-1)

St+1 = TtSt +Kt+1Et+1, Et+1 ∼ iidN (0, Qt+1) , t = 1, . . . , T, (C-2)

S1 ∼ iidN (s1, P1) , (C-3)

where Yt is a T × 1 vector of observations and St an unobserved ns × 1 state vector. The matrices

Zt, Tt, Kt, Ht, Qt and the mean s1 and variance P1 of the initial state vector S1 are assumed to be

known (conditioned upon) and the error terms Vt and Et are assumed to be serially uncorrelated and

independent of each other at all points in time. Note that Et is a nss × 1 matrix (where nss ≤ ns). As

eqs. (C-1) to (C-3) constitute a linear Gaussian state-space model, the unknown state variables in St can

be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its conditional distribution

can then be done using the multimove Gibbs sampler of Carter and Kohn (1994).

C.1.2 Step 1

In step 1 of the Gibbs sampler, we sample the state zt conditional on the data and parameters in the

state-space system eqs. (10) and (11), namely σ2
s , ρz and σ2

z . We have ns = 1 and nss = 1. The system

matrices are given by Yt = ∆st+1 − īt, Zt = 1, St = zt, Vt = εst+1, Ht = σ2
s , Qt+1 = σ2

z , Tt = ρz,

Kt+1 = 1, Et+1 = εzt+1, s1 = 0 and P1 =
σ2
z

1−ρ2z .

C.1.3 Step 2

In step 2 of the Gibbs sampler, we sample the time-varying structural parameters βt from the state-space

model eqs. (12) and (13); i.e., we sample the K states in βt conditional on the data and parameters in the

system, namely ρx, σ2
x and σ2

βk
(with k = 1, ...,K). We have ns = 2K and nss = K. The system matrices

are given by Yt = ỹt = (1 − ρxL)yt, Zt =
[
ft −ρxft−1

]
(a 1 × 2K matrix), St =

[
βt βt−1

]′
(the

2K × 1 state vector), Vt = εxt , Ht = σ2
x, Tt =

 IK 0K

IK 0K

 (a 2K × 2K matrix), Kt+1 =

 IK

0K

 (a
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2K×K matrix), Et+1 =
[
εβ1,t+1 ... εβK,t+1

]′
(a K×1 matrix), Qt+1 =


σ2
β1 0. . .

0 σ2
βK

 (a K×K

matrix), s1 =
[

0 ... 0
]′

(a 2K × 1 vector) and P1 = 106 × I2K (a 2K × 2K matrix).

C.2 OLS regressions (steps 1, 2 and 4)

C.2.1 General approach

Regression parameters (intercept, slope parameters and error variance) can be sampled from a standard

regression model,

y = wrγr + χ (C-4)

where y is a T × 1 vector containing T observations on the dependent variable, wr is a T ×M matrix

containing T observations of M predictor variables, γr is the M × 1 parameter vector, and χ is the T × 1

vector of error terms for which χ ∼ iidN
(
0, σ2

χIT
)
. If there are no binary indicators ι in the regression

or if all binary indicators in the regression ι are equal to 1, then wr = w and γr = γ, where w and γ

are the unrestricted predictor matrix and the corresponding unrestricted coefficient vector. Otherwise,

the restricted parameter vector γr and the corresponding restricted predictor matrix wr contain only

those elements of w and γ for which the corresponding binary indicators ι are equal to 1. The prior

distribution of γr is given by γr ∼ N
(
br0, B

r
0σ

2
χ

)
with br0 a M × 1 vector and Br0 a M × M matrix.

The prior distribution of σ2
χ is given by σ2

χ ∼ IG (c0, C0) with scalars c0 (shape) and C0 (scale). The

posterior distributions (conditional on y, wr and ι) of γr and σ2
χ are then given by γr ∼ N

(
br, Brσ2

χ

)
and σ2

χ ∼ IG (c, Cr), with

Br =
[
(wr)′wr + (Br0)−1

]−1
br = Br

[
(wr)′y + (Br0)−1br0

]
(C-5)

c = c0 + T/2

Cr = C0 +
1

2

[
y′y + (br0)′(Br0)−1br0 − (br)′(Br)−1br

]
Following Frühwirth-Schnatter and Wagner (2010), we marginalize over the parameters γ when sam-

pling ι and next draw γr conditional on ι. The posterior distribution of the binary indicators ι is obtained

from Bayes’ theorem as,

p(ι|y, w, σ2
χ) ∝ p(y|w, σ2

χ, ι)p(ι) (C-6)

where p(ι) is the prior distribution of ι and p(y|w, σ2
χ, ι) is the marginal likelihood of regression eq.(C-

4), where the effect of the parameters γ has been integrated out. We refer to Frühwirth-Schnatter and
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Wagner (2010) (their eq.(25)) for the closed-form expression of the marginal likelihood for the general

regression model of eq.(C-4).

C.2.2 Step 1

The regressions estimated in step 1 are unrestricted, so in eq.(C-4) we have wr = w and γr = γ.

Sampling σ2
s conditional on the state zt and the data is implemented by setting y = ∆s − ī − z,

wr = w = 0, γr = γ = 0, σ2
χ = σ2

s and χ = εs, where ∆s, ī, z and εs contain the stacked values of

∆st+1, īt, zt and εst over T . Sampling σ2
s is from the distribution σ2

s ∼ IG (c, C), where c = c0 + T
2 and

C = C0 + 1
2 [y′y] with, as noted in Section 4.3.2 in the main text, the shape c0 and scale C0 of the prior

distribution given by c0 = ν0T = 0.01T and C0 = c0σ
2
0 = 0.01T × 0.5V (∆s− ī).

Sampling ρz and σ2
z conditional on the state zt is implemented by setting y = z, wr = w = z−1,

γr = γ = ρz, σ
2
χ = σ2

z and χ = εz, where z, z−1 and εz contain the stacked values of zt, zt−1 and εzt

over T . Sampling ρz is from the distribution N
(
b, Bσ2

z

)
with, from eq.(C-5), B =

[
w′w + (B0)−1

]−1
and

b = B
[
w′y + (B0)−1b0

]
where, as noted in Section 4.3.2 in the main text, b0 = 0 and V0 = B0σ

2
z = 1 so

that B0 = 1
σ2
z

where we use the prior belief σ2
0 for σ2

z . Sampling σ2
z is from the distribution σ2

z ∼ IG (c, C),

where c = c0 + T
2 and C = C0 + 1

2

[
y′y + (b0)′(B0)−1b0 − b′(B)−1b

]
with, as noted in Section 4.3.2 in

the main text, the shape c0 and scale C0 of the prior distribution given by c0 = ν0T = 0.01T and

C0 = c0σ
2
0 = 0.01T × 0.5V (∆s− ī). Note that first σ2

z is sampled from IG (c, C) and then, given a draw

for σ2
z , ρz is sampled from N

(
b, Bσ2

z

)
.

C.2.3 Step 2

The regressions estimated in step 2 are unrestricted, so in eq.(C-4) we have wr = w and γr = γ.

Sampling σ2
βk

(for k = 1, ...,K) conditional on the state βkt is implemented by setting y = βk−βk,−1,

wr = w = 0, γr = γ = 0, σ2
χ = σ2

βk
and χ = εβk , where βk, βk,−1 and εβk contain the stacked values of

βkt, βk,t−1 and εβkt over T . Sampling σ2
βk

is from the distribution σ2
βk
∼ IG (c, C), where c = c0 + T

2 and

C = C0 + 1
2 [y′y] with, as noted in Section 4.3.2 in the main text, the shape c0 and scale C0 of the prior

distribution given by c0 = 0.01T and C0 = c0σ
2
0 = 0.01T × 0.01.

Sampling ρx and σ2
x conditional on the calculated xt = yt − ftβt is implemented by setting y = x,

wr = w = x−1, γr = γ = ρx, σ2
χ = σ2

x and χ = εx, where x, x−1 and εx contain the stacked values

of xt, xt−1 and εxt over T . Sampling ρx is from the distribution N
(
b, Bσ2

x

)
with, from eq.(C-5), B =[

w′w + (B0)−1
]−1

and b = B
[
w′y + (B0)−1b0

]
where, as noted in Section 4.3.2 in the main text, b0 = 0

and V0 = B0σ
2
x = 1 so that B0 = 1

σ2
x

where we use the prior belief σ2
0 for σ2

x. Sampling σ2
x is from the

distribution σ2
x ∼ IG (c, C), where c = c0 + T

2 and C = C0 + 1
2

[
y′y + (b0)′(B0)−1b0 − b′(B)−1b

]
with,
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as noted in Section 4.3.2 in the main text, the shape c0 and scale C0 of the prior distribution given by

c0 = 0.01T and C0 = c0σ
2
0 = 0.01T × 0.5V (yt). Note that first σ2

x is sampled from IG (c, C) and then,

given a draw for σ2
x, ρx is sampled from N

(
b, Bσ2

x

)
.

C.2.4 Step 4 (parts b, c and d)

We first sample the binary indicators ι = δ in eq.(20). In particular, we follow George and McCulloch

(1993) and Frühwirth-Schnatter and Wagner (2010) and use a single-move sampler in which the binary

indicators δk are sampled one by one for k = 1, ...,K. We calculate the marginal likelihoods p(y|δk =

1, δ−k, w, σ2
ε) and p(y|δk = 0, δ−k, w, σ2

ε) (see Frühwirth-Schnatter and Wagner, 2010, for the correct

expressions based on a regression of the type of eq.(C-4) with priors as discussed below). Upon combining

the marginal likelihoods with the Bernoulli prior distributions of the binary indicators p(δk = 1) = p0

and p(δk = 0) = 1 − p0, the posterior distributions p(δk = 1|y, δ−k, w, σ2
ε) and p(δ = 0|y, δ−k, w, σ2

ε) are

obtained, from which the probability prob(δk = 1|y, δ−k, w, σ2
ε) =

p(δk=1|y,δ−k,w,σ
2
ε)

p(δk=1|y,δ−k,w,σ2
ε)+p(δk=0|y,δ−k,w,σ2

ε)
is

calculated, which is used to sample δk i.e., draw a random number r from a uniform distribution with

support between 0 and 1 and set δk = 1 if r < prob(.) and δk = 0 if prob(.) > r.

We then sample the following parameters from eq.(20): the intercept c∗, the residual variance σ2
ε and

the slope coefficients φk for which the corresponding binary indicators δk are equal to 1. The dependent

variable y in eq.(C-4) contains the stacked values of (1− ρεL)s̃t over T . The restricted predictor matrix

wr in eq.(C-4) contains a T × 1 vector of ones for the intercept and the stacked (over T ) values of the

regressors (1 − ρεL)τktf̃kt for those k for which the binary indicators are equal to 1. The coefficient

vector γr in eq.(C-4) contains c∗ and the coefficients φk for those k for which the binary indicators are

equal to 1. The error term in eq.(C-4) is given by χ = ε, where ε contains the stacked values of εt and

σ2
χ = σ2

ε . Sampling γr is from the distribution N
(
br, Brσ2

ε

)
, where Br and br are defined by eq.(C-

5) for which, as noted in Section 4.3.2 in the main text, we have b0 = 0 (an M × 1 vector of zeros)

and V0 = B0σ
2
ε = 10IM so that B0 = 10IM

σ2
ε

where we use the prior belief σ2
0 for σ2

ε . Sampling σ2
ε is

from the distribution σ2
ε ∼ IG (c, Cr), where c and Cr are given by eq.(C-5) with, as noted in Section

4.3.2 in the main text, the shape c0 and scale C0 of the prior distribution given by c0 = 0.01T and

C0 = c0σ
2
0 = 0.01T × 0.01. Note that first σ2

ε is sampled from IG (c, Cr), and then, given a draw for σ2
ε ,

γr is sampled from N
(
br, Brσ2

ε

)
.

Finally, we sample the parameter ρε in eq.(19) conditional on εt and on σ2
ε . Estimates for εt are

obtained from εt = s̃t − c −
∑K
k=1 φkτktf̃kt. The regression is unrestricted so that in eq.(C-4) we have

wr = w and γr = γ. We set y = ε, w = ε−1, γ = ρε, σ
2
χ = σ2

ε and χ = ε∗ where ε, ε−1 and ε∗ contain

the stacked values of εt, εt−1 and ε∗t over T . Sampling ρε is from the distribution N
(
b, Bσ2

ε

)
with, from

37



eq.(C-5), B =
[
w′w + (B0)−1

]−1
and b = B

[
w′y + (B0)−1b0

]
where, as noted in Section 4.3.2 in the

main text, b0 = 0 and V0 = B0σ
2
ε = 1 so that B0 = 1

σ2
ε

where we use the prior belief σ2
0 for σ2

ε . When

sampling ρε from N
(
b, Bσ2

ε

)
, we use the draw for σ2

ε obtained when estimating eq.(20).
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