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Abstract 

Nonresponse is a considerable challenge in the Retailer Survey on the Cost of Payment Methods 
conducted by the Bank of Canada in 2015. There are two types of nonresponse in this survey: 
unit nonresponse, in which a business does not reply to the entire survey, and item nonresponse, 
in which a business does not respond to particular questions within the survey. Both types may 
create a bias when computing statistics such as means and weighted totals for different variables. 
This technical report analyzes solutions to fix the problem of nonresponse in the survey data. 
Unit nonresponse is addressed through response probability adjustment, in which response 
probabilities are modelled using logistic regression (a clustering approach for the unit response 
probabilities is also considered) and are used in the construction of a set of survey weights. Item 
nonresponse is addressed through imputation, in which the gradient boosting machine (GBM) 
and extreme gradient boosting (XGBoost) algorithms are used to predict missing values for 
variables of interest. 

Bank topic: Central bank research 
JEL codes: C81; C83  

Résumé 

Dans l’enquête que la Banque du Canada a menée en 2015 sur les coûts des différents modes de 
paiement pour les détaillants, la non-réponse est un défi majeur. Elle se présente sous deux 
formes dans l’enquête en question : la non-réponse totale (une entreprise ne participe pas du tout 
à l’enquête) et la non-réponse partielle (une entreprise ne répond pas à certaines questions de 
l’enquête). Ces deux formes peuvent causer un biais dans les calculs statistiques tels que les 
moyennes et les totaux pondérés de différentes variables. Dans ce rapport technique, nous 
analysons les solutions qui permettraient de régler le problème des non-réponses dans les 
données d’enquête. Pour résoudre celui de la non-réponse totale, nous proposons d’ajuster les 
probabilités de réponse : ces dernières sont modélisées par régression logistique (le recours à une 
approche par grappes est également envisagé) et servent à la construction d’une série de 
pondérations d’enquête. Quant au problème de la non-réponse partielle, nous proposons de le 
résoudre par imputation. À cet effet, nous utilisons des algorithmes d’apprentissage automatique 
tels que « gradient boosting machine » et « extreme gradient boosting » pour prédire les valeurs 
manquantes des variables d’intérêt. 

Sujet : Recherches menées par des banques centrales 
Codes JEL : C81, C83  



1 Introduction and Overview

The objective of the Bank of Canada’s 2015 Study on the Cost of Payment Methods is to
determine the social costs of various methods of payment. This study consists of multiple
components, one of which is the Retailer Survey on the Cost of Payment Methods (RCPM
survey), the focus of this report. The objective of the survey is to obtain high-quality estimates
of certain variables based on a survey of retailers. Examples of variables of interest include cash
at hand and acceptance of various methods of payment.

A considerable challenge when conducting surveys is nonresponse. There are two types of
nonresponse: unit nonresponse, in which no response is given to the entire survey, and item
nonresponse, in which no response is given to a particular survey question. Both types are
present in the retailer survey, causing significant problems. There are two main problems survey
nonresponse causes: the first is an increase in the variance of the response averages caused by a
smaller sample size, and the second is nonresponse bias that occurs if some contacted entities
are more likely to respond than others (Bethlehem et al. (2011)).

This technical report analyzes nonresponse in the RCPM survey and examines solutions
for the analysis of the survey data. The report starts by describing the general approach used
to handle both types of nonresponse. Unit nonresponse is handled by introducing response
probabilities (predicted using logistic regression) into a set of survey weights, which adjust
for the fact that some businesses are more likely to respond than others. This is followed by a
discussion of the imputation algorithms used and their application to handle item nonresponse,
for both the method-of-payment (MOP) acceptance variables and cash at hand.

The Bank of Canada previously conducted a similar retailer survey on the cost of payment
methods in 2006 (Arango and Taylor (2008a,b)). In this previous survey, the sample size was
smaller than in the current survey (approximately 500 businesses responded to the 2006 survey)
and no attempt was made to correct for unit nonresponse or for item nonresponse. The current
methodology is thus an improvement over the methodology in the previous survey.

This report considers only the part of the survey dealing with small and medium-sized
single-location businesses, with 1–4 employees (identified as stratum A) or 5–49 employees
(stratum B). A separate analysis is performed for large single-location businesses (50 or more
employees, stratum C) and those that have headquarters and branch locations (Jiongo (2017)).

The report focuses primarily on the methodology used and, as a result, only a limited set
of variables is considered here (cash at hand, cash acceptance, cheque acceptance, credit card
acceptance, debit card acceptance, and prepaid card acceptance).

The survey frame is based on the Dun & Bradstreet (D&B) data set (a limited number of
additional businesses known via personal contacts have also been included). The frame itself
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was constructed internally at the Bank of Canada and is based on D&B data downloaded from
the Hoover’s portal between 8 August 2014 and 6 January 2015. The current version of the
D&B data available from Hoover’s may therefore differ from this version as the Hoover’s data
set is updated over time. The paper by Welte (2017) discusses the construction of the survey
frame.

2 Handling Nonresponse in Weighting

In the RCPM survey, a set of survey weights is constructed, one for each business. In this
section, the general approaches for handling nonresponse in the context of weighting for our
survey will be discussed. When computing totals (for a variable such as cash at hand), each
observation is multiplied by its weight (equation (2)), so observations with a larger weight are
given more importance. The weights are necessary for a variety of reasons, including adjusting
for businesses having differing inclusion probabilities in the survey sample. The weights can
also help with unit nonresponse, as we discuss below.

The creation of the weights for this survey is discussed in Chen and Shen (2017). The
initial weights are created using the procedure described below (in equation (1)), involving
the inclusion probabilities for each business in the sample from the sampling frame (Welte
(2017) discusses the calculation of the inclusion probabilities) and the response probabilities (the
probability of a particular business responding to the survey). Next, the weights are calibrated
based on auxiliary variables with targets from the D&B data set and the Statistics Canada
Business Registry.

Unit nonresponse is addressed using unit response probabilities to adjust the weights. Item
nonresponse is handled via imputation, in which missing entries are replaced by imputed values.
The initial weights (prior to calibration) are

Wi =
1

Ip(i) ·Rp(i)
, (1)

where Wi is the weight, Ip(i) is the inclusion probability, and Rp(i) is the unit response
probability for entry i.

The estimate of the sample total Y is then computed as

Y =
∑
i∈S

WiX̃i, (2)

where S is the set of all survey responses (including both those who answered a particular
question and those who did not answer that question) and X̃i is, for those entries that are present,
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the true value of Xi, and otherwise an imputed value.
We now give an example of how this approach handles the problem of nonresponse in survey

weighting. Suppose one sector of the economy is less likely to accept debit cards than other
sectors, and fewer businesses in that sector respond to the survey (unit nonresponse) or to that
particular question (item nonresponse) than businesses in other sectors. If nonresponse is not
taken into account, the survey results will be biased towards a higher debit card acceptance rate
than the true rate. To handle unit nonresponse, the lower survey response rate for that sector is
taken into account by giving entries in that sector (who are less likely to accept debit cards) a
larger weight. Imputation helps with the problem of item nonresponse as follows: assuming
that a good predictive algorithm is used, entries with missing values in that sector will likely
be assigned values similar to present values in the sector, which counteracts the effect of fewer
businesses in that sector (with a lower debit card acceptance rate) responding to the question.

It is theoretically possible to handle the problem of unit nonresponse via imputation or of
item nonresponse via nonresponse probabilities. In this survey, however, unit nonresponse is
only modelled directly since the survey response rates are very low (less than 3 per cent for
stratum A and B businesses in the sample frame and D&B). Imputation for the completely
missing entries would not be a good approach, because imputed values will overwhelmingly
dominate the results. Similarly, it is possible to model item nonresponse probabilities instead of
imputation to handle the problem of item nonresponse here and this was previously considered.
However, this is a more problematic approach since predictor variables that are correlated
with response indicators, but not with the variables themselves, do not reduce the nonresponse
bias and may increase the nonresponse variance. This issue is further discussed in Little and
Vartivarian (2005) and Beaumont (2005).

3 Unit Nonresponse

Unit nonresponse is a considerable challenge in the RCPM survey. Only 2.3 per cent of stratum
A and B businesses in the sample contacted via mailed packages and telephone calls responded
to the survey. Note this figure includes businesses filtered out by address checks and screening
phone calls in some cases. If such businesses are excluded the response rate rises to 2.9 per cent.
To generate the response probabilities for the weighting, two approaches are considered. In the
first, the probabilities predicted by logistic regression are used directly, and in the second, the
logistic-regression-predicted probabilities are clustered, and the empirical response rate is taken
within each cluster.

Only businesses in the D&B single-location data set (that are in stratum A or B and that are
also in the survey frame) are considered here. Businesses in the survey frame filtered out by
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address checks and screening phone calls are included in the nonresponse model, as opposed
to the inclusion-probability model.1 Businesses in stratum C, jumpers to or from stratum C,
and businesses contacted by personal visits are not included here. Overall, there are 34,292

businesses in the sample being analyzed here, of which 799 did respond and 33,493 did not
respond. Table 1 shows the sample sizes and response rates for different components of the
survey.

The probability of a business responding to the survey is modelled using logistic regression,
using the following variables:

• the region the business was in (British Columbia, Prairies, Ontario, Quebec or Atlantic)

• the two-digit primary North American Industry Classification System (NAICS) code of
the business

• presence of a phone number

• presence of a fax number

• presence of a web address

• the D&B prescreen score (low risk, high risk or missing value)

• the age of the business (zero if missing in D&B)

Table 2 shows the coefficients generated by logistic regression for all of the predictor
variables. We see that the response rate is higher when a phone number is present, when a fax
number is present, when a web address is present, for older businesses, for businesses with a
post-office (PO) box, and for businesses with a D&B prescreen score of “low risk” (as opposed
to “high risk” or missing). Significant variation in the response rate is also observed by region
and by NAICS. A histogram of the predicted response probabilities is shown in Figure 1. Probit
regression has been tested previously and produces results almost identical to logistic regression
for this data set.

When modelling nonresponse, it is important that the predictor variables are also good
predictors of the variables of interest, and not simply of the response indicators. This issue is
discussed in Little and Vartivarian (2005) and Beaumont (2005). Fortunately, all of the variables
listed above meet this requirement for at least some of the variables of interest. Logistic
regression is performed on each variable (by itself) against the variable of interest (considering
only those entries for which both variables are present). The significance (p-value) of the

1 This follows the recommendation made by J.-F. Beaumont, Statistics Canada, and is discussed in Welte
(2017).
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variable as a predictor is then found. The p-values obtained from logistic regression are shown
in Table 3. We see that all of the variables are significant at the 5 per cent level for at least one
of the variables of interest, and many have very small p-values.

The quality of the logistic regression is assessed using receiver operating characteristic
(ROC) curves and the area under these curves (the ROC AUC or AUROC). A k-fold cross-
validation approach is used (with k = 10), in which for each fold, the training set consists
of entries outside the current fold and the testing set is the current fold, and the predicted
probabilities are then combined for all the folds. Figure 2 shows an ROC curve of the results
obtained, and Figure 3 shows an ROC curve with the entire data set.2 We see that the results
obtained in both cases are very similar and show fairly good predictive performance.

A nonparametric clustering approach is now taken, in which k-means clustering is applied
to the response probabilities with various numbers of clusters. First, the logistic-regression-
predicted response probabilities found above are taken, and k-means clustering is used to group
them into k clusters. Within each cluster, the empirical response rate is found (by dividing the
number of responders within the cluster by the size of the cluster). This empirical response rate
is taken to be the response probability for all entries within that cluster. Figure 4 shows the
ROC curve with 10 clusters, which is very similar to the ROC curve with logistic regression.
The response probabilities obtained with 5 and 10 clusters are shown in Figure 5 and in Tables
4 and 5, in which the response rate within each cluster is compared with the mean predicted
probability within the corresponding clusters.

In general, the logistic-regression-predicted probabilities agree quite well with the clustered
response rates, with the exception of a very small cluster (the rightmost cluster with k = 10;
these entries also have a similar but much smaller effect on the rightmost k = 5 cluster) whose
predicted response probabilities are much larger than their empirical response rates. This is not
a significant problem for us since the high predicted response probabilities do not have much
influence on the estimates. The response probabilities in this small cluster are larger, which
means that the weights of these few entries are less than other observations, so they do not have
the large influence problem that outliers with very small predicted response probabilities would
have. Since there are only six respondents in the rightmost cluster when k = 10 (from Table 5),
it is very unlikely that those businesses having their weights reduced would have a significant
effect on the final results.

These unit nonresponse probabilities are used in the generation of one of the sets of survey
weights. Chen and Shen (2017) discuss the creation of the set of weights for this survey.

2 The ROC curves and AUROC have been computed using the R package PRROC (Keilwagen et al. (2014)).
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4 Variables of Interest

There are many variables of interest in this survey. Among the businesses that responded, many
did not answer some of these questions (the rates varying depending on the question). For the
purposes of this technical report, six key variables are considered: acceptance of cash, acceptance
of cheques, acceptance of credit cards, acceptance of debit cards, acceptance of prepaid cards,
and cash at hand. Within the data set, these have the names acc_cash, acc_cheque,
acc_credit, acc_debit, acc_prepaid, and cash_at_hand, respectively. The first
five are binary MOP acceptance variables, while the last is a numeric variable. This section
describes the variables. Table 6 shows the missing rates for these six questions. Additional
variables of interest will be considered in the future using the methodology developed in this
technical report.

In total, there are 841 businesses in this data set, with weights given for each business,
including personal visits and stratum jumpers (for which the weights are generated using mean
imputation within the cell by NAICS, number of employees, and region) (Chen and Shen
(2017)). These include personal visits and stratum jumpers that are not considered in the unit
nonresponse model. Of these businesses, 814 are not stratum jumpers to stratum C (such stratum
jumpers are given zero weight).

4.1 MOP acceptance variables

The MOP acceptance variables indicate whether or not a business accepts a particular method
of payment, and are all yes/no questions in the survey, for which a blank response is treated
as missing. There are additional MOP acceptance variables not considered in this technical
report, namely, accept mobile payment, accept Bitcoin, accept contactless credit cards, accept
contactless debit cards, accept chip & PIN credit cards, accept chip & PIN debit cards, accept
magnetic strip credit cards with PIN, accept magnetic strip debit cards with PIN, accept magnetic
strip credit cards with signature, accept magnetic strip debit cards with signature, accept
magnetic strip credit cards without signature, accept magnetic strip debit cards without signature,
and accept other methods of payment. All of these variables (with the exception of “accept
other,” which is a text field) are yes/no questions in the same format as before. The missing rates
for these variables vary but are generally higher than those of the MOP acceptance variables
considered in this report.
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4.2 Cash-at-hand variable

The cash-at-hand variable is a numeric variable indicating the value in bank notes and coins
that the business has at the start of a typical business day. This variable is usually present (92
per cent of the time), but is sometimes missing. The cash-at-hand variable has a heavy-tailed
distribution (with some entries being much larger than others), as shown in Figure 6; this is quite
problematic when attempting to perform regressions to impute missing values. An alternative
with a much less skewed distribution (as seen in Figure 7) that produces better results with
imputation is to apply the transformation x 7→ log(x+ 1) to the cash at hand, where we add one
before taking the logarithm to avoid negative infinity with entries that have zero cash at hand.

5 Imputation of Missing Values

To fix the problem of item nonresponse and the associated bias, imputation of missing values is
employed. This section discusses the general imputation algorithm used in the report. Specific
methods used for the MOP acceptance variables and for the cash-at-hand variable are discussed
in the subsequent sections. These techniques were partially inspired by Loh (2015) and He
(2006).

Here we use two variants of gradient boosting for imputation, the first being GBM (gradient
boosting machine; the R implementation used is also known as a generalized boosted regression
model) and the second being XGBoost (extreme gradient boosting, a newer algorithm based on
GBM but with some modifications). Both GBM and XGBoost are well-known classifiers that
have a very good classification/regression accuracy for many data sets, are very flexible (able
to handle many redundant features and messy data well), and can handle missing predictors
directly without any need to impute them. Both methods are described below.

For the imputation of cash at hand, the GBM algorithm is used, while for the MOP accept-
ance variables, the XGBoost algorithm is used for imputation. The reason for these choices
is that in earlier testing, XGBoost was found to improve the predictive quality, while GBM
remained superior for cash-at-hand imputation. Both algorithms can be used for either type of
variable (categorical or numeric) and for future variables, both algorithms should be tested.

To improve the stability of the estimates and assist with providing error estimates, a bootstrap
imputation approach is used, in which repeated bootstrap samples of the data set are taken and
are used for the imputation, while entries outside the corresponding bootstrap sample are held
out and used for estimating the quality of the imputation. This resembles the “out-of-bag error”
method that can be used to estimate the error of a random forest (Liaw and Wiener (2002)).
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5.1 Gradient boosting machines

Gradient boosting machines provide a method for solving classification and regression problems.
GBM is an ensemble technique, in which the predictions of many models or learners are
combined into a single stronger prediction. One well-known ensemble technique is the random
forest, in which many classification or regression trees are grown independently (with bootstrap
samples of the data and random subsets of features considered at each split) and the trees vote or
are averaged for the result (Liaw and Wiener (2002)). In boosting methods, instead of growing
each tree or building each model independently, an attempt is made to improve or “boost” the
model at each step from the previous model (so the new tree depends on the previous trees and
tries to improve the existing model). In gradient boosting machines, a loss function is specified,
and at each step, a new learner is fit to the negative gradient of the loss function over the existing
combined model. The combined model is then updated, including the new learner. In the R
package gbm, each individual learner is a regression tree. Missing values can be handled directly
by the gbm package since the tree-growing algorithm can handle missing values.3,4

Suppose we have a data set with points x1, x2, . . . , xn and labels y1, y2, . . . , yn. We would
like to estimate an unknown function f that maps input points to labels. In gradient boosting,
we construct a predictor of the form

f̂(x) =
k∑
i=0

f̂i(x), (3)

with f̂0 being an initial estimate (for instance, a constant function) and f̂1, f̂2, . . . , f̂k being base
learners. In gradient-boosted trees (which are implemented in the R gbm package), each of the
base learners f̂i (1 ≤ i ≤ n) is a regression tree.

The algorithm for gradient-boosted trees (implemented in the R package gbm) works as
follows (the description is based on Hastie et al. (2009) and Ridgeway (2015)):

(i) We start with a training data set containing n labelled points, with points x1, x2, . . . , xn and
labels y1, y2, . . . , yn. We fix a number of iterations M for our algorithm and a shrinkage
parameter λ (discussed below).

3 When performing a variable split, missing values for a variable are assigned into their own node at each split,
which is called “MissingNode” in the code. I would like to thank the users at http://stackoverflow.com/
questions/14718648/r-gbm-handling-of-missing-values for bringing this to light.

4 Further information about the GBM algorithm and the R package gbm is available in Friedman (2002);
Ridgeway (2015, 2012); Elith and Leathwick (2016); Natekin and Knoll (2013); and Hastie et al. (2009).
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(ii) We start with an initial constant prediction that minimizes the total loss function,

f̂0(x) = arg min
γ

n∑
i=1

`(yi, γ). (4)

(iii) For each iteration m from 1 to M , we update the current estimate to obtain a new estimate
as follows (if subsampling [discussed below] is enabled, only a subset of the observations
will be considered at each step):

(a) We compute the “pseudo-residuals” rim (with 1 ≤ i ≤ n), which are the components
of the negative gradient of the loss function with respect to the existing estimate at
each point, that is, for 1 ≤ i ≤ n, we compute

rim = − ∂

∂f̂m−1(xi)
`(yi, f̂m−1(xi)) (5)

= − ∂

∂ŷi
`(yi, ŷi) where ŷi = fm−1(xi). (6)

(b) We then fit a regression tree to the pseudo-residuals rim, with the regions Rji being
the leaves of the tree (with Jm being the number of leaves and 1 ≤ j ≤ Jm).

(c) For each j ∈ {1, 2, . . . , Jm}, we determine the optimal update γjm for points in the
region Rji, by computing

γjm = arg min
γ

∑
xi∈Rjm

` (yi, fm−1(xi) + γ) . (7)

(d) For each point in the region Rji, we adjust the current estimate by γjm (by adding
γjm to points in that region),

fm(x) = fm−1(x) + λ

Jm∑
j=1

γjm1{x∈Rjm}. (8)

(iv) We return the final estimate f̂ = f̂M .

One important parameter for GBM is the choice of loss function. In the R package gbm,
this is controlled by the distribution parameter. With “distribution = gaussian,”
the mean squared error (MSE) is used as the loss function (no normality assumptions are made in
this case, only that the MSE is a useful loss function). With “distribution = bernoulli,”
a logistic loss for binary outcomes is used, and several other distributions can be specified as
well.
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The number of trees also has to be specified, controlled by the n.trees parameter in the
gbm package. Adding more trees to the model will generally improve the model up to a point;
however, if too many are added, the model will start to overfit. It is possible to train the model
using many trees, and to then generate predictions with a smaller number of trees (this is done
by specifying n.trees to the predict function, which can take values up to the number of
trees used to train the model). In addition, adding trees to an existing model can be done (using
the gbm.more function). This flexibility allows different choices for the number of trees to
be quickly compared on a validation set, for which we can compare the results and select the
number of trees that appears optimal.

The effect of the shrinkage parameter λ in equation (8) is to control how much the model is
adjusted by each individual tree: smaller values make the algorithm more conservative, reducing
the effect of adding each individual tree at each step. It is very common for higher prediction
accuracies to be achieved by using a smaller shrinkage parameter and a larger number of trees,
which makes the algorithm take many small steps instead of a few large ones (however, this
increases the computational cost owing to the need to compute more trees).

Subsampling can be incorporated into the GBM algorithm, in which for each decision
tree only a random subset of the observations are considered instead of all the observations (a
different random subsample is chosen at each step). This helps to prevent overfitting. In the
gbm package, subsampling is controlled by the bag.fraction parameter.

Other parameters of interest include weights, which specifies case weights for each
observation; minobsinnode, which specifies the minimum number of observations in each
node of the tree; and interaction.depth, which specifies the maximum depth of the trees
that are grown by GBM. There are additional parameters, documented in Ridgeway (2015).

5.2 XGBoost algorithm

The extreme boosting machine is a newer method based on gradient tree boosting, implemented
in the R package xgboost. The xgboost package also implements gradient boosting with
some other base learners; however, in this technical report we use only the version with
regression trees as base learners. In XGBoost, regularization is performed when growing each
tree to prevent overfitting. The design of XGBoost also emphasizes efficient computation of the
trees so that the classifier can be trained and applied quickly.

In XGBoost, we have a predictor of the form in equation (3) (in Chen and Guestrin (2016),
the initial estimate is taken to be zero, f̂0 = 0; the initial estimate should not be too important
since there will be many trees added that adjust this initial estimate). When growing each tree,
we include a regularization term Ω(f̂i) in the objective to be minimized to limit tree complexity
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and prevent overfitting,

Ω(fi) = γT +
1

2
λ‖w‖2, (9)

where T is the number of leaves in the tree and w is the vector of leaf weights (the values
assigned to each leaf or terminal node of the tree).

Suppose that ŷ(t)i = ft(xi) is the prediction at step t. From step t− 1, we add a new base
learner ft at step t, where we would like to minimize the objective

L(t) =
n∑
i=1

`
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft). (10)

We define gi to be the ith component of the gradient and hi to be the ith component of the
second-order gradient (equivalently, the diagonal of the Hessian matrix) of the loss function
with respect to the current estimate,

gi =
∂

∂ŷ
(t−1)
i

`
(
yi, ŷ

(t−1)
i

)
, (11)

hi =
∂2

∂ŷ
(t−1)2
i

`
(
yi, ŷ

(t−1)
i

)
. (12)

We take a second-order approximation to equation (10) that can be optimized quickly,

L(t) ≈
n∑
i=1

(
`
(
yi, ŷ

(t−1)
i

)
+ gift(xi) +

1

2
hif

2
t (xi)

)
+ Ω(ft). (13)

Since we are interested in minimizing the above expression, we can drop constant terms to
obtain

L̃(t) =
n∑
i=1

(
gift(xi) +

1

2
hif

2
t (xi)

)
+ Ω(ft). (14)

Chen and Guestrin (2016) discuss how the XGBoost algorithm optimizes the above objective,
using a greedy algorithm to iteratively add branches to the tree and then finding optimal weights
for the leaves of the tree. The algorithm for constructing trees can handle missing values
(discussed in the paper in the context of sparse input data) by assigning a default direction for
each branch, where the optimal default direction is learned from the data.

We notice that the only dependency the expression in equation (14) has on the loss function
is in the gi and hi. This means we can apply any loss function for which we know the gradient
and second-order gradient for XGBoost, without requiring any modifications to the algorithm.
This allows us to easily use a wide variety of loss functions with XGBoost, including custom
loss functions with weights for each instance. In the xgboost package, this can be done
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using the objective parameter, which can be either a user-defined R function returning the
gradient and second-order gradient or a string that specifies some options built into xgboost
(such as reg:linear for linear regression or binary:logistic for logistic regression
for binary classes, returning probabilities). Case weights for XGBoost can be specified to the
xgb.DMatrix function by specifying a weight parameter.

When invoking XGBoost in the xgboost R package, the nrounds parameter specifies
the number of iterations (equivalent to n.trees for GBM), the eta parameter specifies
the learning rate (equivalent to shrinkage for GBM), the max_depth parameter specifies
the maximum depth of the trees (equivalent to interaction.depth for GBM), gamma
specifies the value of γ in equation (9), and the subsample and colsample_bytree

parameters control row and column subsampling when building each tree (so a different random
subsample of the rows and of the columns can be used when building each tree). There are
additional parameters, which are documented in the R package (Chen et al. (2016)).

5.3 Bootstrap imputation

A bootstrap imputation approach is used with the GBM and XGBoost algorithms, in which
repeated bootstrap subsamples of the non-missing entries of the data set are used to predict the
missing entries. The advantage of the bootstrap approach is that it helps stabilize the result,
reveals the variability of the imputation predictions, and allows us to create error estimates by
comparing the predictions for the non-missing entries not in the current bootstrap sample (that
is, the predicted values for out-of-sample entries for which the true values are known) against
the true values in each round.

For each variable to impute, the data set is split into two sets: one in which the variable
of interest is present, and the other in which it is missing. We then take B = 1,000 bootstrap
samples of the non-missing entries (the constant B can be adjusted downward or upward if
desired) for the bootstrap imputation. For each round i of the bootstrap imputation, the ith

bootstrap sample is used as a training set, and predictions for the entries, both missing and
outside the current bootstrap sample, are generated using GBM or XGBoost with the predictor
variables listed above. Equivalently, if we let Bi be the ith bootstrap sample, a model (for us,
GBM or XGBoost) is trained using the entries in Bi, and predictions are generated for all entries
in Bc

i (the complement of Bi, which is the set of all entries not in Bi). The bootstrap imputation
results are saved, along with their means and standard deviations.

Combining the above, the general algorithm for imputation is as follows:

• For the variable of interest, the bootstrap samples are created as described above.
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• For each bootstrap sample, a GBM or XGBoost model is trained, using parameters fixed
for the particular variable of interest.

• For each bootstrap sample, predictions are generated only for the entries outside the
bootstrap sample (both out-of-sample entries for which the variable of interest is known
and entries for which the variable of interest is unknown), using the model found in the
previous step for that bootstrap sample. No predictions are generated for entries in the
current bootstrap sample.

• The means and standard deviations of all of the generated predictions for each entry (with
the number of trees fixed) are computed (we notice that every prediction is generated
without the current entry being in the bootstrap sample). A separate averaged prediction
is generated for each specified number of trees.

Depending on the variable of interest (in this technical report, the cash-at-hand variable in
particular), preprocessing may be done before the imputation algorithm is run and a transforma-
tion may be applied after the imputation. This is discussed below for the variables of interest
where this is performed.

6 Imputation of MOP Acceptance Variables

In this section, we discuss imputation of the MOP acceptance variables (accept cash, accept
cheque, accept credit, accept debit, and accept prepaid). All of these variables are binary (either
“yes” or “no”), with missing rates and observed acceptance rates given in Table 6.

6.1 Imputation method

For each MOP acceptance variable, the bootstrap imputation discussed above is applied with
B = 1,000 bootstrap replications. For each bootstrap sample, an XGBoost model is trained,
with the learning rate parameter eta set to 10−2 and a total of 1,000 trees computed (using
the nrounds parameter). The survey weights (based on the unit response probabilities with
10 clusters) are used in the XGBoost. All other parameters have been left at their defaults in
the XGBoost package. Predictions are generated for each of 10, 20, 30, . . . , 990, 1000 trees (the
determination of the number of trees to use for prediction of the final result is discussed in the
next section).

For the imputation, probability scores in [0, 1] are imputed for the missing entries, using the
XGBoost algorithm. The present entries are converted to 0 for the “no” entries and 1 for the
“yes” entries. The means and totals (both unweighted and weighted) can then easily be computed
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from this (where the imputed entries take on fractional values, reflecting the uncertainty in the
prediction). It is theoretically possible to convert the imputed values to the quantities 0 or 1 (this
can be done by taking all values below a threshold to be zero and otherwise to be 1), but for our
purposes (the calculation of weighted totals), this is unnecessary and increases variance.

The XGBoost algorithm requires its input (including predictor variables) to be numeric.
Categorical values are therefore coded as a set of binary indicator variables for XGBoost
(“one-hot encoding”) (Chen et al. (2016)).

6.2 Imputation results

Several methods are used to determine the quality of the imputed values. Unless otherwise
specified, each quality measure in this section is based on the mean of the out-of-sample
predictions (that is, the mean of the predictions each time the entry was outside the bootstrap
sample). We first look at the cross-entropy loss, a weighted version of which is used to determine
the number of trees to use in prediction. For binary variables (with y ∈ 0, 1 being a true value
and x ∈ (0, 1) being a predictor) the cross-entropy loss function is defined as5

`(x, y) = −y log(x)− (1− y) log(1− x). (15)

For a sample of n predicted values x = (x1, x2, . . . , xn) and true labels y = (y1, y2, . . . , yn),
we can take the unweighted mean cross-entropy as a loss function,

`(x,y) = − 1

n

n∑
i=1

`(xi, yi). (16)

Given a set of survey weights w1, w2, . . . , wn, we can define a weighted mean cross-entropy
as follows

`(x,y) = − 1∑n
i=1wi

n∑
i=1

wi`(xi, yi). (17)

Figures 8 and 9 show the unweighted and weighted cross-entropy results, respectively. We
see that both functions are stable (no sudden fluctuations or jumps—instead, they smoothly
decrease to a minimum and start to increase again) and have the same general shape, for all of
the MOP acceptance variables. The exact minimum observed differs between the weighted and
unweighted versions. However, both types of minima are in the same region in all cases, and the
minimum for one graph is still a good point (i.e., the loss function is small) for the other graph.
This means that choosing the minimum based on the weighted or the unweighted version should

5 This can be extended to the case where both x and y are zero or both are 1 by defining the cross-entropy to be
zero in these two cases.
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have little effect on the final results. Since the weighted totals are the quantities of ultimate
interest, the weighted cross-entropy is used to determine the number of trees to use. Table 7
shows the number of trees chosen for the imputation of each MOP acceptance variable.

At the number of trees chosen, additional quality measures are computed. The ROC curves
are plotted in Figures 10, 11, 12, 13 and 14, with the AUROC shown for each variable in Table
7 (computed using the R package PRROC, Keilwagen et al. (2014)). We see that the predictive
accuracy appears good in each case. Within the bootstrap imputation, we compute the standard
deviation as well as the mean for each entry (that is, the standard deviation of the predictions
for each entry, every time the entry is outside the bootstrap sample). This is an indicator of the
variability of the predictions in the bootstrap imputation, and is displayed as well in Table 7.

In addition, bootstrapped estimates of the bias associated with the imputation are found.
The unweighted bias is computed in the usual manner

biasunweighted(x,y) =
1

n

n∑
i=1

(xi − yi), (18)

while the weighted bias can be computed as

biasweighted(x,y) =
1∑n
i=1wi

n∑
i=1

wi(xi − yi). (19)

A bootstrap procedure is used with B = 25,000 bootstrap samples of the mean imputation
results, in which, for each bootstrap sample, the weighted and unweighted bias is computed.
Histograms of the results obtained are shown in Figures 15, 16, 17, 18 and 19 and the mean
unweighted and weighted bias observed is shown in Table 7.

7 Imputation of Cash at Hand

In this section, we discuss imputation of the cash-at-hand variable. This is a numeric variable
with entries that have quite a bit of variability. A logarithmic transformation x 7→ log(x+ 1) is
computed for each present entry x prior to imputation. This is done because log(x+ 1) has a
much less skewed distribution (as seen in Figures 6 and 7) and can be imputed more accurately.
The bootstrap imputation approach discussed earlier is used, and the GBM regression is used to
generate the predictions. The quality of the logarithm-transformed imputed values is analyzed.
The problem of back-transforming the imputed values in the logarithmic scale to the original
scale without creating bias is then discussed.

A comparison of the values predicted by GBM with the logarithmic transformation and
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GBM with the original values is performed. The imputation predictions generated by applying
GBM directly to the data are compared with the back-transformed predictions (without the
use of any correction factor, as discussed below) generated with the logarithm-transformed
values for GBM (so both sets of predictions are directly comparable). The MSE is found to
be similar in both cases (being slightly higher for the logarithm-transformed version), but the
mean absolute error (MAE) and a “bins” score (the fraction of points such that the true value
is within a certain distance from the imputed value) are found to be significantly better for the
logarithm-transformed version. This suggests that the predictions and the MSE are affected by
outliers, and the logarithm-transformed version is a “safe” choice to make.

7.1 Imputation of logarithm-transformed variable

First, the logarithmic transformation x 7→ log(x+ 1) is applied to every entry with cash at hand
present. The imputation algorithm attempts to predict the transformed cash at hand value for
entries with cash at hand missing.

The bootstrap imputation approach discussed previously is used for cash at hand, with
100 rounds of bootstrap samples taken. For generating predicted values, GBM regression is
performed, using the MSE as the loss function (this is done by specifying the distribution
parameter in GBM to be gaussian; note that this specifies the MSE loss function and does
not make further normality assumptions). Most of the other parameters for GBM are kept at
their defaults, with the exception of the weights being specified (the survey weights based on
the response probabilities with 10 clusters are used here), the interaction.depth (the
maximum depth of trees to grow) being set to 6, the shrinkage (a factor controlling how
much the model is updated by each new tree) set to 10−2, and n.trees (the number of trees
to grow) set to 2,000 (with predictions generated using 10, 20, 30, . . . , 1990, 2000 trees). For
each number of trees and each bootstrap sample, predictions are generated for all out-of-sample
entries (both entries with unknown cash at hand and entries with known cash at hand not in the
current bootstrap sample). For each number of trees, the mean and standard deviation of the
predictions for each entry from all the bootstrap samples are computed.

The quality of the imputed values is assessed using both unweighted and weighted versions
of the MSE for the logarithm-transformed variables. Suppose we have a sample of n entries
with observed cash at hand, with wi being the weights, xi being the predicted values in the
logarithm scale, and yi being the observed values for cash at hand with the x 7→ log(x + 1)

transformation applied (here 1 ≤ i ≤ n). The unweighted MSE is defined as

MSEunweighted =
1

n

n∑
i=1

(xi − yi)2. (20)
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The weighted MSE is defined as

MSEweighted =

∑n
i=1wi(xi − yi)

2∑n
i=1wi

. (21)

For each number of trees, both the weighted and unweighted MSE are computed (based
on the predictions averaged over the bootstrap entries). Plots of these are shown in Figures 20
and 21. We see that both graphs are stable and have the same shape, with the minimum being
attained in approximately the same place for both graphs. Overall, the smallest unweighted
MSE is 3.12 and is attained with 580 trees, while the smallest weighted MSE is 3.42 and is
attained with 550 trees (here the average standard deviation of the bootstrapped predictions is
0.43). This can be compared with the mean imputation (where the missing values are replaced
by the mean of the logarithm-transformed cash at hand), which has an unweighted MSE of 4.55

and a weighted MSE of 4.90, both of which are much worse than the result obtained with GBM.
The average standard deviation of the bootstrapped predictions is 0.44 and 0.43 with the 580

and 550 trees, respectively.
Since the ultimate quantity of interest is the weighted total cash at hand, the point with the

optimal weighted MSE is chosen (with 550 trees). The unweighted MSE serves as a robustness
check and confirms that this still produces good results in another quality measure that does not
involve the weights. The graph is stable and the MSE is relatively small in a wide region around
this point (slowly increasing as we move away from the point), without sudden unexpected
jumps or fluctuations.

7.2 Back-transformation of logarithm-transformed variable

Intuition suggests back-transforming the variables with the x 7→ log(x+ 1) transformation by
applying the inverse function y 7→ exp(y) − 1. The problem with this is that a bias may be
created and the resulting estimates using the mean of the imputed values may be biased. This is
a well-known issue, noticed as early as 1941 in Finney (1941), in a variety of contexts where
estimates are based on logarithm-transformed variables. Here is an explanation of the problem
in our case. Suppose Xi is the true value we are trying to predict (for each entry i in the sample),
Zi is a vector of predictor variables, and φi is a Borel-measurable function of Zi. We can let φi
be an estimate of log(Xi + 1) based on Zi. We then let εi be a random variable that corresponds
to the error of our estimate, so we have

log(Xi + 1) = φi + εi. (22)

Rearranging the above equation and taking the conditional expectation on both sides, we
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find
E [Xi|Zi] = E [exp (φi + εi)− 1|Zi] . (23)

Since φi is a Borel-measurable function of Zi, this becomes

E [Xi|Zi] = E [exp (εi)|Zi] exp (φi)− 1. (24)

If the errors εi are identically distributed, the E [exp (εi)|Zi] term can be replaced by a
constant C,

E [Xi|Zi] = C exp (φi)− 1. (25)

We see that if C = 1, then the expression simplifies to exp(φi)− 1 and our original estimate
is unbiased. However, this is not necessarily the case, and it is possible for it to be not equal to
one. In this case, our original estimate will be biased. To avoid this bias, we can multiply the
exponential term by a correction factor C, to obtain an expression of the form C exp(φi)− 1.
A variety of methods for finding such a correction factor C are discussed in the literature (in
various contexts such as logarithmic regression). Some papers discussing possible choices of
correction factor are: Finney (1941); Baskerville (1972); Snowdon (1991); and Zeng and Tang
(2011). Some of the proposed correction factors are sensitive to normality assumptions, which
we would like to avoid here.

We find a method-of-moments estimator for C as follows, which we denote as Cm. We first
take the expectation on both sides of equation (25) and apply the law of total expectation to
obtain

E [Xi] = CmE [exp (φi)]− 1. (26)

We then rearrange the equation for Cm,

Cm =
E [Xi] + 1

E [exp (φi)]
. (27)

We now need to replace the terms in equation (27) with empirical estimates based on the
observed sample values xi and our predicted estimates φi(zi). Let Sr be the sample of observed
entries and let n = |Sr| be the number of observed entries. Substituting in the empirical values,
we obtain

Cm =
1
n

∑
i∈Sr

(xi) + 1
1
n

∑
i∈Sr

exp (φi(zi))
. (28)

Simplifying, we find that

Cm =

∑
i∈Sr

(xi + 1)∑
i∈Sr

exp (φi(zi))
. (29)
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We can modify the above estimator in equation (29) to incorporate the survey weights wi, to
obtain an alternative correction factor

Cw =

∑
i∈Sr

wi (xi + 1)∑
i∈Sr

wi exp (φi(zi))
. (30)

7.3 Results of back-transformation

We now compute and evaluate the back-transformation results, with the null correction constant
Cnull = 1 (as a control), the unweighted correction constant Cm (from equation (29)), and the
weighted correction constant Cw (from equation (30)). A bootstrap method is used to evaluate
each of these correction constants to find which one is the most stable and produces results with
the smallest bias.

In the bootstrap approach, we take B = 25,000 bootstrap samples of the entries with known
cash at hand (true value present in data set). For each bootstrap sample, we then calculate each of
the correction factors based only on those entries inside the bootstrap sample (using the formulas
above). The bias and various error measures are then computed for those entries that are outside
the corresponding bootstrap sample by applying the back-transformation x 7→ C exp(x+ 1)− 1

(with C being a correction factor computed based on the bootstrap factor; here Cnull, Cm and Cw
are computed). This approach avoids the problem of the correction factors being fit to known
values (with the same points being used for both determining the values and assessing their
quality) and thereby biasing the error estimates.

We first plot histograms of the values of the correction constants (from the bootstrap samples)
in Figure 22. The histograms in Figures 23, 24 and 25 contain the bias results with no correction
factor Cnull, the unweighted correction factor Cm and the weighted correction factor Cw. Table
8 contains a summary of the results obtained with these three correction factors.

From this, we see that the weighted correction factor has significantly less variance than the
unweighted version. It appears that the weights have a stabilizing effect on the correction factor.
The weighted correction factor also produces the smallest weighted bias (approximately zero for
our purposes) and has an unweighted bias that is much smaller than with no correction factor
(although larger than with the unweighted correction factor, which produces an unweighted bias
of approximately zero for our purposes).

We notice that when the correction factor is applied, the MSE of the variables with the
x 7→ log(x + 1) transformation applied becomes much higher, in some cases higher than the
mean imputation. This suggests that if we want to obtain accurate predictions for individual
entries, we should keep the biased estimate with Cnull = 1. However, we are interested in
correcting for nonresponse bias in the weighted total, so what is important for us is that the bias
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of the prediction for all of the missing entries is small, and not that each individual prediction
has a small error. In our case, the imputation will generate logarithmic-transformed predictions
that are as accurate as possible for each missing entry, and the correction factor in the back-
transformation will help fix the overall bias of the predictions, so the weighted total will be as
close to the true value as possible.

Overall, the weighted correction factor is significantly more stable than the unweighted
correction factor, produces the smallest weighted bias (which is important since the final result
of interest is a weighted total), and produces a much smaller unweighted bias than with no
correction factor. For these reasons, it is recommended that the weighted correction factor Cw
be used for the final imputed values.

8 Conclusion

Nonresponse is one of the major challenges in the Retailer Survey on the Cost of Payment Meth-
ods, which must be accounted for to avoid bias in the final results. Unit nonresponse is handled
by a logistic-regression-based response probability model followed by weight adjustment, and
item nonresponse is handled by imputation using the GBM and XGBoost algorithms.

These solutions are effective at addressing the problem of nonresponse in our survey. The
logistic regression model has good predictive accuracy for the task at hand. Two sets of response
probabilities are generated, one with a direct approach and another using a clustering approach
with logistic regression. Both sets of response probabilities produce similar results and both
should be considered for the creation of the set of weights. Chen and Shen (2017) discuss the
creation of the weights, for which these response probabilities are used. The unit nonresponse
methodology is able to handle very low response rates, provided that the results are checked
carefully. For the imputation, the GBM and XGBoost algorithms are successfully able to handle
the messy data with a large number of predictors and produce imputed values whose quality
ranges from good to excellent for our data set.
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Appendix A Figures
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Figure 1: Histogram of the logistic-regression-predicted response probabilities.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression ROC Curve (with 10−fold Cross Validation)
AUC = 0.687

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.
05

0.
10

0.
15

Figure 2: Plot of receiver operating characteristic (ROC) curve of the logistic-regression-
predicted response probabilities, using a k-fold cross-validation approach (with k = 10 here).
The colour indicates the minimum threshold at that point on the ROC curve to classify as
responded.
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Figure 3: Plot of receiver operating characteristic (ROC) curve of the logistic-regression-
response probability predictions (using the entire data set). The colour indicates the minimum
threshold at that point on the ROC curve to classify as responded.
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Figure 4: Plot of receiver operating characteristic (ROC) curve of the clustered response rates
with 10 clusters. The colour indicates the minimum threshold at that point on the ROC curve to
classify as responded.
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Figure 5: Results of clustering logistic regression predictions (for the second set of variables)
using k-means clustering, with 5 and 10 clusters. A histogram of the cluster sizes is on the left
and a bar plot of the mean predicted response probability and the true response rate in each
cluster is on the right.
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Figure 6: Empirical CDF and histogram of cash-at-hand variable. We see that this has a highly
skewed distribution with some entries being many times larger than the vast majority of the
entries.
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Figure 7: Empirical CDF and histogram of the logarithm of the cash-at-hand variable plus one.
We see that this has a much less skewed distribution than the original cash-at-hand variable.

26



●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0.2

0.3

0.4

0.5

0.6

0 250 500 750 1000
Number of Trees

M
ea

n 
C

ro
ss

−
E

nt
ro

py Variable
● acc_cash

acc_cheque

acc_credit

acc_debit

acc_prepaid

Unweighted Cross−Entropy Results for MOP Variables Imputation

Figure 8: The unweighted mean cross-entropy for MOP variables imputation, as a function of
the number of trees, for each of the MOP acceptance variables.
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Figure 9: The weighted cross-entropy for MOP variables imputation, as a function of the number
of trees, for each of the MOP acceptance variables.
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Figure 10: Unweighted and weighted ROC curves for imputation of the “accept cash” variable.
The colour indicates the minimum threshold at that point on the ROC curve to classify as “yes”
for accept cash.
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Figure 11: Unweighted and weighted ROC curves for imputation of the “accept cheque” variable.
The colour indicates the minimum threshold at that point on the ROC curve to classify as “yes”
for accept cheque.
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Figure 12: Unweighted and weighted ROC curves for imputation of the “accept credit” variable.
The colour indicates the minimum threshold at that point on the ROC curve to classify as “yes”
for accept credit.
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Figure 13: Unweighted and weighted ROC curves for imputation of the “accept debit” variable.
The colour indicates the minimum threshold at that point on the ROC curve to classify as “yes”
for accept debit.
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Figure 14: Unweighted and weighted ROC curves for imputation of the “accept prepaid”
variable. The colour indicates the minimum threshold at that point on the ROC curve to classify
as “yes” for accept prepaid.
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Figure 15: Histograms showing unweighted and weighted bias of imputation for the “accept
cash” variable.
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Bias Plot for acc_cheque Imputation
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Figure 16: Histograms showing unweighted and weighted bias of imputation for the “accept
cheque” variable.
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Figure 17: Histograms showing unweighted and weighted bias of imputation for the “accept
credit” variable.
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Bias Plot for acc_debit Imputation
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Figure 18: Histograms showing unweighted and weighted bias of imputation for the “accept
debit” variable.
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Figure 19: Histograms showing unweighted and weighted bias of imputation for the “accept
prepaid” variable.
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Figure 20: The unweighted MSE for cash-at-hand imputation (with logarithmic transformation),
as a function of the number of trees.
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Figure 21: The weighted MSE for cash-at-hand imputation (with logarithmic transformation),
as a function of the number of trees.
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Figure 22: Histograms of correction factor values, for the bootstrap samples for cash-at-hand
imputation. The histogram on the left is for the unweighted method-of-moments correction
factor; the one on the right is for the weighted method-of-moments correction factor.
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Figure 23: Histograms of bias (unweighted on left, weighted on right) with no correction factor,
for the bootstrap samples for cash-at-hand imputation.
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Figure 24: Histograms of bias (unweighted on left, weighted on right) with the unweighted
method-of-moments correction factor, for the bootstrap samples for cash-at-hand imputation.
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Figure 25: Histograms of bias (unweighted on left, weighted on right) with the weighted
method-of-moments correction factor, for the bootstrap samples for cash-at-hand imputation.
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Appendix B Tables

Entry Sample Size Respondents Response Rate

All 34,252 799 0.023

All (without those excluded by address
checks and screening phone calls) 27,384 799 0.029

Phase 1 All 27,011 650 0.024

Phase 1 (without those excluded by address
checks and screening phone calls) 24,488 650 0.027

Phase 1 Wave 1 9,233 256 0.028

Phase 1 Wave 2 All 9,347 351 0.038

Phase 1 Wave 2A 4,607 169 0.037

Phase 1 Wave 2B 3,697 151 0.041

Phase 1 Wave 2C 1,043 31 0.030

Phase 1 Wave 3 All 5,907 43 0.007

Phase 1 Wave 3A 3,699 33 0.009

Phase 1 Wave 3B 2,208 10 0.005

Phase 2 7,241 149 0.021

Table 1: Table showing sample sizes and response rates for different parts of the survey.
Businesses in stratum C, stratum jumpers to or from the C stratum, and businesses contacted by
personal visits and regional representatives are not shown in this table.
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Estimate Std. Error z value Pr(>|z|)

(Intercept) −5.4925 0.2789 −19.69 0.0000

phonenumberPresentTRUE 1.6425 0.2549 6.44 0.0000

faxnumberPresentTRUE 0.1680 0.0829 2.03 0.0428

webaddressPresentTRUE 0.4948 0.0911 5.43 0.0000

dbprescreenscoreHigh Risk −0.5384 0.1050 −5.13 0.0000

dbprescreenscoreMissingValue −0.2365 0.0986 −2.40 0.0165

age 0.0089 0.0021 4.25 0.0000

regionBC 0.2487 0.1243 2.00 0.0455

regionON 0.2874 0.1190 2.42 0.0157

regionPR 0.1999 0.1210 1.65 0.0986

regionQC 0.5249 0.1182 4.44 0.0000

hasPoboxTRUE 0.5138 0.1197 4.29 0.0000

primarynaics245 0.2098 0.1057 1.99 0.0471

primarynaics272 −0.6168 0.1000 −6.17 0.0000

primarynaics281 0.0688 0.1010 0.68 0.4955

Table 2: Table showing logistic regression summary for response probability prediction, includ-
ing each of the coefficient values and significance p-values.
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acc_cash acc_cheque acc_credit acc_debit acc_prepaid

phonenumberPresentTRUE 0.6328 0.0405 0.1013 0.2133 0.3585

faxnumberPresentTRUE 0.0653 0.0001 0.0000 0.0000 0.2209

webaddressPresentTRUE 0.4857 0.7252 0.0000 0.0096 0.5523

dbprescreenscoreHigh Risk 0.6006 0.0371 0.0000 0.0000 0.2098

dbprescreenscoreMissingValue 0.2366 0.1556 0.0008 0.0002 0.0658

age 0.0311 0.0000 0.0061 0.0020 0.0422

regionBC 0.4881 0.8519 0.6102 0.9089 0.7972

regionON 0.1905 0.1173 0.4762 0.4576 0.3477

regionPR 0.1714 0.0251 0.1088 0.4606 0.8523

regionQC 0.0431 0.5922 0.6648 0.9797 0.0048

hasPoboxTRUE 0.9880 0.0007 0.5653 0.9305 0.0036

primarynaics245 0.5342 0.1636 0.0946 0.0455 0.8048

primarynaics272 0.4079 0.0000 0.1168 0.1178 0.4744

primarynaics281 0.1366 0.0427 0.0000 0.0000 0.0000

Table 3: Logistic regression significance (p-value) in terms of predicting select variables of
interest (here the MOP acceptance variables), when each of the predictor variables is considered
on its own.

Number of
Entries in
Cluster

Number of
Responses in

Cluster

Proportion of
Entries in

Cluster (%)

Predicted
Response Rate
in Cluster (%)

Empirical
Response Rate
in Cluster (%)

1 11,101 93 32.410 0.875 0.838

2 12,884 250 37.615 1.973 1.940

3 6,794 237 19.835 3.460 3.488

4 2,886 178 8.426 5.551 6.168

5 587 41 1.714 8.920 6.985

Table 4: Table showing response rates within each cluster with a total of 5 clusters.
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Number of
Entries in
Cluster

Number of
Responses in

Cluster

Proportion of
Entries in

Cluster (%)

Predicted
Response Rate
in Cluster (%)

Empirical
Response Rate
in Cluster (%)

1 3,620 20 10.569 0.436 0.552

2 6,814 59 19.894 1.058 0.866

3 8,227 143 24.019 1.671 1.738

4 5,829 136 17.018 2.402 2.333

5 3,784 129 11.048 3.169 3.409

6 2,672 99 7.801 4.074 3.705

7 1,734 96 5.062 5.167 5.536

8 1,039 80 3.033 6.443 7.700

9 415 31 1.212 8.348 7.470

10 118 6 0.345 11.667 5.085

Table 5: Table showing response rates within each cluster with a total of 10 clusters.

Variable Present Rate (%) Missing Rate (%)
Empirical

Acceptance
Rate (%)

Cash at Hand 92.3 7.7 N/A

Accept Cash 98.8 1.2 96.0

Accept Cheque 97.3 2.7 67.7

Accept Credit Card 98.3 1.7 75.5

Accept Debit Card 98.1 1.9 76.7

Accept Prepaid Card 95.6 4.4 29.7

Table 6: Table showing present and missing rates for various questions in the survey. The empir-
ical acceptance rate is the proportion of retailers who answered “yes” to the MOP acceptance
question out of retailers who responded to the question.
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Number
of Trees

Cross-
Entropy

Weighted
Cross-

Entropy
AUROC

Weighted
AUROC Bias

Weighted
Bias

Bootstrap
SD

Accept
Cash 320 0.14 0.16 0.76 0.73 0.01 0.01 0.07

Accept
Cheque 240 0.52 0.54 0.78 0.77 0.03 −0.02 0.16

Accept
Credit
Card

410 0.35 0.42 0.89 0.87 −0.01 −0.02 0.14

Accept
Debit
Card

360 0.31 0.38 0.90 0.90 0.00 −0.01 0.15

Accept
Prepaid

Card
310 0.54 0.47 0.72 0.75 0.00 0.00 0.18

Table 7: Table showing MOP acceptance variable imputation results, with the number of
trees used to obtain these results. The cross-entropy, area under the ROC curve (AUROC or
ROC AUC), and bias are shown (both unweighted and weighted versions, unweighted unless
otherwise specified). The “Bootstrap SD” is the average standard deviation of each entry among
the bootstrap samples in the bootstrap imputation.

No Correction
Factor

Unweighted
Correction

Factor

Weighted
Correction

Factor

CF Value 1.00 4.24 2.95

CF Value SD 0.00 1.04 0.40

Unweighted Bias −1,481.42 −6.14 −590.57

Unweighted Bias SD 641.41 1,038.05 687.91

Weighted Bias −568.59 371.90 −1.86

Weighted Bias SD 157.79 365.02 255.33

LogMSE 3.12 5.17 4.28

LogMSE SD 0.30 0.83 0.51

Weighted LogMSE 3.42 5.56 4.66

Weighted LogMSE SD 0.42 1.00 0.70

Table 8: Table showing results with various correction factors for the back-transformation of the
imputed cash at hand. In this table, SD means standard deviation and LogMSE refers to the
mean squared error after a logarithmic transformation x 7→ log(x+ 1) is performed.
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Appendix C List of Predictor Variables for Imputation

The following variables are used in generating predictions for the imputed values (for the
variables of interest, namely, cash-at-hand and the MOP acceptance variables):

Variable Description

age Age of the business, based on D&B (zero if missing).

ageMissing Binary indicator if the age variable is missing (based
on D&B).

certificate Did the business request a certificate of appreciation
(from the survey)?

contacttitlePresent Is a contact title for the business owner present in the
D&B dataset?

dbprescreenscore The D&B prescreen score.

detailed_report Did the business request a copy of the detailed report
(from the survey)?

doingbusinessasPresent Is the “doing business as” field present in the D&B
dataset?

durables Is the business in the durables sector (based on the
D&B NAICS variable)?

employeesatthislocation Number of employees at the particular location (from
D&B).

facilitysizesqft Facility size in square feet (from D&B).

faxnumberPresent Is a fax number present for the business in the D&B
dataset?

final_report Did the business request a copy of the final report
(from the survey)?

gasoline Is the business in the gasoline sector (based on the
D&B NAICS variable)?
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genretail Is the business in the general retail sector (based on
the D&B NAICS variable)?

greg_employees Number of employees (based on the survey).

greg_sales Total sales (based on the survey).

greg_wages Wages (based on the survey).

greg_year_of_founding Year of founding (based on the survey).

groceries Is the business in the grocery sector (based on the
D&B NAICS variable)?

has_safe Does the business have a safe (from the survey)?

insurance_cft Does the business have insurance for counterfeit bank
notes (from the survey)?

insurance_credit Does the business have insurance for credit cards (from
the survey)?

insurance_debit Does the business have insurance for debit cards (from
the survey)?

insurance_no Does the business not have insurance for any method
of payment (from the survey)?

insurance_premium Insurance premium paid by the business (based on the
survey).

insurance_prepaid Does the business have insurance for prepaid cards
(from the survey)?

ipad_draw Did the business request to be placed in the draw for
an iPad Air 2 (from the survey)?

is_cati Did the business respond to the survey via a CATI
phone call?

is_online Did the business respond to the survey online?

isexporter Is the business an exporter (from D&B)?
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isimporter Is the business an importer (from D&B)?

ismanufacturing Is the business in manufacturing (from D&B)?

latitude Latitude of the business (from D&B).

location_scope Is the response for one particular sales location or the
entire business (from the survey)?

locationtype_EDITED Edited location type based on the survey (single loca-
tion, branch, or headquarters).

longitude Longitude of the business (from D&B).

MAIL Did the business respond to the survey via mail?

netincomeusdollarsmillion Net income in US dollars, millions (from D&B).

no_incentive Did business not request any incentive (based on the
survey)?

no_of_newvarsmissing Number of new variables (based on survey data, such
as ratios of survey variables) missing.

numemp Stratum for the number of employees in the business
(based on D&B).

ownsrents Does the business own or rent its location (from
D&B)?

pays_cit_fees Does the business pay cash-in-transit (CIT) fees?

phase Phase the business was contacted in.

phonenumberPresent Is a phone number present for the business in the D&B
dataset?

primarynaics_EDITED Two-digit primary NAICS code for the business, from
D&B and edited based on survey responses.

primarynaics_FRAME Two-digit primary NAICS code for the business, from
D&B.
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primarynaics3 Three-digit primary NAICS code for the business,
from D&B.

primarystate Primary province of business (from D&B).

primaryussiccode Primary USSI code for the business (from D&B).

regioncode_EDITED Edited region code for the business (original based
on the province in D&B, edited based on the survey
response).

regioncode_FRAME Region code for the business (based on the province
in D&B).

restaurants Is the business in the restaurants sector (based on the
D&B NAICS variable)?

revenuecanadiandollarsmillion Revenue in Canadian dollars, millions (from D&B).

revenueusdollarsmillion Revenue in US dollars, millions (from D&B).

sales Total annual sales made by the business (from the
survey).

semidurables Is the business in the semidurables sector (based on
the D&B NAICS variable)?

services Is the business in the services sector (based on the
D&B NAICS variable)?

size_EDITED Edited size stratum of the business, based on the survey
and D&B.

size_FRAME Size stratum of the business in the survey frame (based
on D&B and missing entries filled in).

size_REPORTED Size stratum of the business based on survey response.

stratum_jumper Is the business a stratum jumper (computed based on
the survey and D&B)?

totalemployees The total number of employees in the business (from
D&B).
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wave Which survey wave was the business contacted in?

webaddressPresent Is a web address present for the business in D&B?

webinar Did the business request a webinar invite (from the
survey)?

yearoffounding Year of founding of the business (from D&B).

These variables are of different types, some being numeric and others categorical. For many
of the variables, some of the entries are missing.
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