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Abstract 

Many decentralized markets are able to attain a stable outcome despite the absence of a 
central authority (Roth and Vande Vate, 1990). A stable matching, however, need not be 
efficient if preferences are weak. This raises the question whether a decentralized market 
with weak preferences can attain Pareto efficiency in the absence of a central 
matchmaker. I show that when agent tastes are independent, the random stable match in a 
large-enough market is asymptotically Pareto efficient even with weak preferences. In 
fact, even moderate-sized markets can attain good efficiency levels. The average fraction 
of agents who can Pareto improve is below 10% in a market of size n = 79 when one side 
of the market has weak preferences; when both sides have weak preferences, the 
inefficiency falls below 10% for n > 158. This implies that approximate Pareto efficiency 
is attainable in a decentralized market even in the absence of a central matchmaker. 

 
Bank topics: Economic models 
JEL codes: C78; D61 

 

Résumé 

Beaucoup de marchés décentralisés peuvent atteindre un état stable malgré l’absence 
d’autorité centrale (Roth et Vande Vate, 1990). Un jumelage stable, toutefois, n’a pas 
besoin d’être efficient si les préférences sont peu marquées. On peut dès lors se demander 
si un marché décentralisé caractérisé par des préférences peu marquées peut atteindre une 
efficience parétienne en l’absence d’un planificateur. L’auteur montre que, lorsque les 
goûts des agents économiques sont indépendants, le jumelage aléatoire stable dans un 
marché suffisamment important est efficient asymptotiquement au sens de Pareto même 
si les préférences sont peu marquées. En fait, les marchés de taille modeste peuvent eux 
aussi atteindre un degré d’efficience raisonnable. La proportion d’agents dont la situation 
est susceptible de s’améliorer au sens de Pareto est, en moyenne, inférieure à 10 % dans 
un marché de taille n = 79 lorsque les offreurs ou les demandeurs du marché ont des 
préférences peu marquées; si les deux groupes ont des préférences peu marquées, 
l’inefficience tombe au-dessous de 10 % pour n > 158. Ces résultats portent à croire 
qu’un marché décentralisé peut se rapprocher d’une efficience parétienne même en 
l’absence de planificateur. 

Sujet : Modèles économiques 
Codes JEL : C78, D61 

 



 

Non-Technical Summary 

 

To operate properly, many markets rely on matching economic agents such as buyers with 
sellers, resident physicians with hospitals, and kidney donors with kidney patients, to name a 
few. The notion of stability (the tendency for a matching not to dissolve) plays a central role in 
such markets. Stability has been studied extensively in the literature, and has been shown to also 
imply Pareto efficiency when agent preferences are strict. 

However, when preferences admit indifferences, not every stable matching need be Pareto 
efficient. Instead, some agents may benefit from a reassignment without making anyone else 
worse off. In stable but inefficient matchings, stability creates perverse incentives for 
inefficiently matched agents to stay together, so that the match has no natural tendency to 
dissolve or improve its efficiency without a central matchmaker. Since decentralized markets do 
not have a central coordinating authority, this raises the question of how a decentralized market 
with weak preferences can attain Pareto efficiency. 

I approach this question in the spirit of several newer papers showing that certain shortcomings 
of stable two-sided matchings tend to improve in large markets (Kojima and Pathak, 2009; 
Kojima and Manea, 2010). In this paper, I demonstrate that with weak preferences, a random 
stable matching will be approximately Pareto efficient in a large market. Specifically, I show that 
the random stable mechanism, which selects a matching at random from the uniform distribution 
over all stable matchings, attains approximate Pareto efficiency in large decentralized markets.  

Since the result is asymptotic, it is natural to ask how large a market is large enough to result in 
acceptable efficiency levels. In practice, even moderate-sized markets attain good efficiency 
using this metric. The market size necessary to reduce the proportion of agents admitting Pareto-
improvement cycles to less than 10% is only n = 79 when one side of the market admits weak 
preferences, and n = 158 when both sides admit weak preferences. The implied efficiency level 
above 90% is encouraging for one-to-one matchings. A caveat is that these results do not 
generalize to many-to-one matching. Rather than offering a “cure-all solution,” this paper 
provides an asymptotic upper bound for the inefficiency and shows that even in relatively small 
markets, this inefficiency is small. 



1 Introduction

Many two-sided matching markets operate in decentralized settings where agents meet ran-

domly and match in the absence of a central authority. Roth and Vande Vate (1990) first

showed that despite their decentralized nature, such markets can attain stable outcomes by

following random processes such as random paths to stability, where random blocking pairs

are sequentially resolved over time. The salient characteristic of such markets is that despite

their decentralized nature, a stable matching can nonetheless be attained.

However, when preferences admit indifferences, a stable matching need not be Pareto

efficient (Roth and Sotomayor, 1990). In stable but inefficient matchings, stability creates

perverse incentives for inefficiently matched agents to stay together, so that the match has

no tendency to dissolve or improve its efficiency over time. Unlike random paths to stability,

there is no natural process by which an inefficient stable matching could evolve to a more

Pareto efficient one without a central matchmaker. This raises the question of whether a

decentralized market with weak preferences can attain Pareto efficiency in the absence of a

central authority.

I approach this question in the spirit of several newer papers showing that certain short-

comings of stable matchings can improve in large markets (Kojima and Pathak, 2009; Kojima

and Manea, 2010). I demonstrate that with weak preferences, a random stable matching will

be approximately Pareto efficient in a large market with non-transferable utility. Specifically,

I show that the random stable mechanism, which selects a matching at random from the uni-

form distribution over all stable matchings, attains approximate Pareto efficiency in large

decentralized markets. While random paths may be closer to the actual matching process,

the random stable mechanism is a clean benchmark that provides better conceptual insight

about how heterogeneity helps correct Pareto inefficiency in large markets.

The metric I use to gauge Pareto inefficiency is the proportion of agents who benefit

from Pareto-improving exchanges known as Pareto-improvement cycles and chains (Erdil

and Ergin, 2015). Since the remaining agents cannot improve from a reassignment, this

metric is suitably conservative. I show that the proportion of agents in a random stable

match who can Pareto improve (and therefore admit Pareto-improvement cycles or chains)

is vanishing in a large market.

The first necessary condition for this result is that preferences must be independent, as in

a decentralized marketplace where agents do not systematically influence each other’s tastes;



and secondly, the market must be sufficiently large, as measured by the number of agents

on each side of the market. To reflect this setting, similar to Kojima and Pathak (2009), I

consider a sequence of random markets — instances of the marriage problem of increasing

size, where agent preferences are drawn from a probability distribution.

Since the result is asymptotic, it is natural to ask how large a market is large enough

to result in acceptable efficiency levels. In practice, even modest-sized markets attain good

efficiency using this metric. The market size necessary to reduce the proportion of agents

admitting Pareto-improvement cycles to less than 10% is only n = 79 when one side of the

market admits weak preferences, and n = 158 when both sides admit weak preferences. The

implied efficiency level above 90% is encouraging for one-to-one matchings, although the

results do not generalize to many-to-one matching. Rather than offering a “cure-all,” this

paper provides an asymptotic upper bound and shows that even in relatively small markets,

the inefficiency is small.

My strategy is to first identify inefficiently matched agents using the concept of Pareto-

improvement cycles and chains (Erdil and Ergin, 2015). A Pareto-improvement cycle (or

chain, when unmatched agents exist) is a set of agents who can switch partners amongst

themselves so that at least one agent in the set is strictly better off, while nobody else is

worse off; it can be shown that a matching is Pareto efficient if and only if it admits neither

Pareto-improvement cycles nor Pareto-improvement chains. Such cycles and chains, there-

fore, are natural identifiers for potentially inefficient matchings. My strategy is to develop

an asymptotic approximation for the probability of Pareto-improvement cycles (chains) and

show that this probability converges to zero in a large market. Further, I show that the same

is true of the expected proportion of agents who can Pareto improve.

The smallest component of a cycle consists of a 2-tuple of agents from the same side of

the market (two men or two women). The statement “a particular man admits a cycle” is

meaningless unless it is also specified with what other man, since the latter man’s partner

must also be willing to switch. For this reason, I focus on the asymptotic probability that

an arbitrary 2-tuple of men (women) admits a cycle. As an intermediate result, I show

that a cycle cannot arise between two men in a stable matching unless one of their mates is

indifferent between them, and then I seek to approximate this probability.

To gauge the probability that a given 2-tuple admits a cycle, one must know both how

frequently a particular man is matched to a particular woman, and how frequently the latter
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woman is indifferent between the two men in the 2-tuple. Generally, these two events are

statistically dependent, because the matching produced by the mechanism depends on the

preferences that have been fed to it. However, I show that in a large market, the allocation

obtained by the random stable mechanism becomes independent of indifferences, permitting

one to disentangle the influence of preferences on the resulting matching from that of the

mechanism. This allows one to translate the maximum probability of a cycle in terms of the

probability of a pairwise indifference in a random weak preference, which I quantify for large

n using combinatorial methods.

This asymptotic decoupling involves a few technical steps that are of interest on their

own. First, I show that the random stable mechanism is symmetric in matching each man to

each woman with equal likelihood when agent preferences are uniform, independent draws.

However, conditioning on a pairwise indifference (the necessary condition for cycles) violates

symmetry, because the mechanism’s output links back to the asymmetric preferences that

have been fed to it. Thus the allocation depends statistically on who can form cycles with

whom; the two events are not independent. One technical contribution of the paper is to

show that this statistical dependence vanishes and symmetry is restored as n → ∞. This

allows me to approximate the probability of a 2-tuple admitting a cycle simply with the

probability of the corresponding pairwise indifference.

Mechanisms other than the random stable mechanism generally do not share this indepen-

dence property, because the matching correlates with the agent preferences used as an input.

Thus, anything that upsets the symmetry of the mechanism, or the symmetry, uniformity and

mutual independence of agent preferences, might also upset the asymptotic independence

property that allows one to make inferences about the behavior of cycles. Nonetheless, I

consider the random stable mechanism with a very broad class of non-uniform preferences

and show that, as long they remain symmetric and independent, the same or stronger results

hold. The reason for that is that the paper’s main insight — that large-market heterogeneity

makes it harder for agent preferences to line up in the concrete way required to form a cycle

— is conceptual rather than technical.

The rest of the paper is organized as follows. Section 2 provides a brief literature review,

and section 3 the model and main results. Section 4 discusses the results, and section 5

concludes. Proofs are relegated to the Appendix.
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2 Related Literature

Roth and Vande Vate (1990) first showed that an arbitrary initial matching can evolve into

a stable matching with probability 1 if randomly chosen blocking pairs are resolved over

time. This result provides a strong justification why some decentralized markets are able to

function smoothly in the absence of a central coordinating body.1

The random stable outcome can be path-dependent (depending on which particular ran-

dom sequence of blocking pairs is resolved), or path-independent, such as in a random

selection among stable matchings. In this paper, I focus on the path-independent approach

as implemented by the random stable mechanism (RSM) — the mechanism that selects a

stable matching at random from the uniform distribution over all stable matchings. While

the path-dependent approach may be closer to how markets work, as a clean benchmark case,

the RSM provides better conceptual insight about how Pareto inefficiency corrects itself in

large markets.

When agents have strict preferences, stability already implies efficiency, so a stable match

is also Pareto efficient. With weak preferences, however, stability no longer guarantees Pareto

efficiency. To see this, consider a simple marriage problem with three men and three women,

where men have the strict preferences Pi and women have the weak preferences Ri given

below,

Pm1 : w1, w2, w3, m1; Rw1 : {m1, m2, m3} , w1

Pm2 : w1, w3, w2, m2; Rw2 : {m1, m2, m3} , w2

Pm3 : w2, w1, w3, m3; Rw3 : {m1, m2, m3} , w3

where potential mates are listed in a descending order of preference and braces indicate mates

that are equivalent in terms of utility. Now consider the following two stable matchings, µ1

and µ2:

µ1 =

(
m1 m2 m3

w2 w3 w1

)
µ2 =

(
m1 m2 m3

w1 w3 w2

)
.

The allocation µ1 is stable, but inefficient, because men m1 and m3 can switch partners and

obtain their respective first choices without anyone being worse off and without upsetting

stability, thus arriving at the stable matching µ2. Hence, stability not only does not imply

Pareto efficiency, but in addition creates bad incentives for inefficiently matched agents to

1Roth and Vande Vate (1990) use entry-level labor markets with non-transferable utility as an example.
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stay together, since inefficient stable matchings have no natural tendency to dissolve or

Pareto improve over time.

Such matchings therefore pose not only theoretical but also practical concerns, such as

in high-school admissions. For example, Abdulkadiroğlu, Pathak and Roth (2009) show that

inefficient stable matchings in New York City high-school admission result in more than

6,800 students per year receiving a Pareto inefficient placement. For this reason, improving

the efficiency of stable matchings in markets with weak preferences remains in the focus of

recent work (Erdil and Ergin, 2008).

However, several new studies have shown that certain finite-market shortcomings of a

mechanism can vanish when the market is large. For example, Kojima and Pathak (2009)

find that incentives to manipulate the student-optimal mechanism greatly diminish in large

markets, so that truth-telling becomes an ε-Nash equilibrium. Kojima and Manea (2010)

obtain a similar result for the probabilistic serial mechanism, and Che and Kojima (2010)

demonstrate that even seemingly unrelated mechanisms can converge to the same outcome

in a large market. These results show that even well-studied mechanisms can behave surpris-

ingly in large allocation problems, allowing the mechanism designer to sometimes improve

on existing shortcomings.

Roth and Peranson (1999) and Immorlica and Mahdian (2005) first introduced two-sided

matching in a random environment where agent preferences are drawn from a probability

distribution. This technique allows a parsimonious representation of decentralized markets

whose heterogeneity increases with market size, and was extended to many-to-one matching

by Kojima and Pathak (2009), who reintroduced it under the name random market. It

conveniently allows the mechanism designer to predict the average market outcome with

increasing accuracy as the number of agents grows. For instance, Ashlagi et al. (2015)

use the random market device to show that in an unbalanced marriage market, the core

collapses to a single stable matching with a probability close to 1. In contrast to Ashlagi et

al. (2015), the marriage problem considered here generally has a much larger, non-singleton

core — first, because the market is balanced, and second, because weak preferences increase

the number of stable matchings. In my paper, random preferences are important insofar as

they help generate heterogeneity, which increases with market size and makes it harder for

preferences to line up in the way required to form a cycle.
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3 Model and Results

A marriage problem2 is a triple (M,W,R)n consisting of two sets of agents, M and W , each

of cardinality n, whose members must form pairs containing one agent of each set according

to their collection of preferences R = {Rm ∪Rw, m ∈M, w ∈ W}. For concreteness, the

members of M are typically dubbed “men” and those of W , “women.” Utility is ordinal and

non-transferable, so preferences can be thought of as rank lists in which each agent lists all

possible mates in order of preference. It is standard to denote the weak preference relation

“at least as good as” with the letter R indexed by the identity of the agent: for example,

aRib denotes “agent i weakly prefers a to b”. The corresponding strict preference relation

is denoted with Pi, and the indifference relation with ∼i. I will often refer to the number of

agents n on each side of the market as simply the market size.

Given agent preferences, one can use a deterministic or random procedure (mechanism)

to allocate partners. An allocation specifying exactly one partner for every agent is called a

matching, denoted with µ or µn (when desiring to explicitly reference the size of the market).3

Naturally, different preferences can result in different matchings. The notation µ(i) denotes

the partner assigned to agent i by the matching µ. A one-to-one correspondence between k

men and k women (for k < n) is called a k-assignment, so as to distinguish it from a matching

(since the same assignment can occur in different matchings assigning the remaining partners

differently).

A matching µ is Pareto efficient when there exists no other matching ν under which ev-

erybody is at least weakly better off and at least one agent is strictly better off in comparison

to µ. A matching µ is individually rational if every agent weakly prefers his or her match

under µ compared with staying single. Individual rationality is closely linked to the concept

of a blocking individual. The matching µ is blocked by an individual i if i strictly prefers

remaining single to the partner assigned by µ. Thus, a matching is individually rational if

it is not blocked by any individual, thereby guaranteeing that the allocation is not, in some

sense, undesirable. A notion stronger than individual rationality is that of stability, which

involves a more extensive concept of blocking. A matching µ is blocked by a pair (m,w) if m

and w are not assigned to each other, yet both would strictly prefer to be together compared

with the partners assigned to them by µ. When there are no blocking pairs or blocking

2The italicized terms in this section are defined more rigorously in Roth and Sotomayor (1990).
3If an agent remains single, by convention, the agent is matched to himself (herself).
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individuals, we say that the matching is stable.4 The stability of the match — or the lack

thereof — has been successfully linked to the performance of many two-sided markets, such

as the market for resident physicians (Roth, 1984; Roth, 1991). Roth and Vande Vate (1990)

first formally demonstrated that permitting random blocking pairs to match over time can

transform an arbitrary matching into a stable one with probability 1.

My goal is to arrive at a parsimonious representation of a two-sided matching market

with decentralized decision-making, where a large number of heterogeneous agents meet and

match randomly, without exerting a systematic influence on each other’s tastes.5 A conve-

nient way to represent this heterogeneity is to treat individual preferences as independent

random draws from the preference distribution.

I consider several classes of preference-generating processes attaining this goal. For sim-

plicity, I assume that only women’s random preferences are weak ; the case where both sides

of the market admit weak preferences is addressed in the Appendix.

Definition 1. A preference-generating process (PGP) P i for an agent i ∈ M ∪ W
consists of a set of preferences from which i is allowed to choose, together with a distribution

over allowable preferences. A preference-generating process for all agents P is a collection

of processes P i specifying the PGP for each agent i ∈M ∪W .

The default preference-generating process, P0, assumes that agent preferences are drawn

randomly and mutually independently from the uniform distribution over all possible rank-

ings of agents of the opposite sex, so it is used as a benchmark.

Definition 2. The default preference-generating process P0 is defined as follows:

a) Pm
0 : If m is a man, m’s realized preference Pm is drawn from the uniform probability

distribution over all possible strict preferences.

b) Pw
0 : If w is a woman, w’s realized preference Rw is drawn from the uniform probability

distribution over all possible weak preferences.

4One can also define a stricter notion of stability. A matching is strictly stable if it is individually rational
and there is no pair (m,w) such that either wRmµ(m) and mPwµ(w) hold together, or wPmµ(m) and
mRwµ(w) hold together. Throughout the paper, I use the regular notion of stability, sometimes also called
“weak stability” (as in Gusfield and Irving, 1989); it is trivial to see that all strictly stable matchings are
Pareto efficient.

5Preferences are formed before the matching process begins and are not state-dependent.
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c) Individual agents’ draws are mutually independent.

For comparison, section 4 also considers a broad class of symmetric, non-uniform PGPs

P∗, where pairwise indifferences vanish at faster rates. For benchmarking, I also consider

a restricted-preference process P1, defined in the Appendix, where the uniform choice is

restricted only to preferences where two fixed opposite-sex agents are equivalent (the neces-

sary condition for a cycle). This benchmarking yields valuable insight about the symmetry

of the outcome.

When preferences permit indifferences, the number of possible weak preferences over the

opposite sex is substantially larger than with strict preferences. For example, there are only 6

ways to rank strictly three men m1,m2 and m3, but there are 13 ways to order them weakly,

because the order and position of indifference classes matter. In addition to the 6 strict

rankings, one can also create the following 7 rankings containing at least one indifference

class by grouping agents into indifference classes and varying their order:

m1, {m2,m3} ; {m2,m3} ,m1; m2, {m1,m3} ; {m1,m3} ,m2;

m3, {m1,m2} ; {m1,m2} ,m3; {m1,m2,m3} .

These additional seven rankings bring the total number of weak preferences over 3 men to

a total of 13. As the number of agents n grows, it can be shown that the number of weak

rankings grows substantially faster than n!. Thus, simply keeping track of the number of

possible weak preferences becomes a challenge even for market sizes as low as 10 or 15. For

example, the possible number of weak preferences over 10 agents is 102,247,563 and, over 15

agents, equals 230,283,190,977,853.

To facilitate the orderly bookkeeping of weak preferences, it is convenient to think of

them as ordered partitions of the set of agents from the opposite side of the market. Under

this scheme, generating a weak preference involves grouping opposite-side agents into blocks

of various sizes corresponding to indifference classes, and arranging those blocks in order of

preference. For example, the following ordered partition of the set of eight men {m1, ...,m8}

m7 | m2 m3 m5 | m4 | m6 m1 | m8

corresponds to the weak preference

m7, {m2 m3 m5} ,m4, {m6 m1} ,m8.
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Thus, drawing a random preference from the weak-preference distribution is equivalent

to building a random ordered partition of the set of agents from the opposite market side.

I use the equivalence between weak preferences and ordered partitions in order to derive an

expression for the total number of weak preferences and the relative frequency of pairwise

indifferences. As explained in the introduction, the ability to link the relative frequency

of Pareto-improvement cycles and chains to that of pairwise indifferences in the underlying

preference profile is essential for making the problem tractable.

Even with this shortcut, however, it turns out that there is no closed-form expression

for the total number of weak preferences (ordered partitions) Tn of a set with cardinality

n. Instead, using combinatorial methods, I derive a recurrence relation for the total number

of weak preferences. A closely related number of interest is the total number T̃n of cases

where two fixed agents fall in the same indifference class of a weak order. In Theorem 1, I

show that the relative frequency T̃n/Tn approximates the probability that two men admit a

Pareto-improvement cycle (chain) in a decentralized market.

Next I approach Pareto-improvement cycles and chains more rigorously by offering a

formal definition based on the work of Erdil and Ergin (2015). To simplify the discussion,

it is useful to first define the concept of an envy relation. A man m1 weakly envies another

man m2 if m1 weakly prefers m2’s partner to his own match, so that µ(m2)Rm1µ(m1). Envy

relations are denoted with an arrow (m1 → m2); strict envy is analogously defined with a

strict preference.6 The arrow notation makes Pareto-improvement cycles and chains easy to

visualize using the following definition.

Definition 3. Given a matching µ, a Pareto-improvement cycle is a sequence of

men m1,m2, . . . ,mK (K ≥ 2) and their respective partners µ(m1), µ(m2), . . . , µ(mK), such

that:

1. µ(m1)→ µ(m2)→ . . .→ µ(mK)→ µ(m1)

2. mK → mK−1 → . . .→ m2 → m1 → mK ,

where at least one of the envy relations is strict.

A Pareto-improvement chain is a set of men m1, . . .mK and women µ(m2), µ(m3), . . .,

µ(mK), wK , (K ≥ 2) such that:

6For the case where there are single agents, a married agent can also point to (or “weakly envy”) a single
one. In this case, we say m→ w if m weakly prefers the single woman w to his current match. Strict envy
is defined analogously.
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1. m1 and wK are single;

2. m1 → m2, . . . ,mK−1 → mK and mK → wK .

3. wK → µ(mK)→ µ(mK−1)→ . . .→ µ(m1).

4. At least one of the envy relations is strict.

Pareto-improvement cycles and chains are therefore sets of agents who are willing to

exchange partners amongst themselves so that at least one agent in the cycle (chain) is

better off and nobody else is worse off. Using arrows to denote envy relations, Pareto-

improvement cycles and chains can be represented more intuitively as graphs (Fig. 1 and

2).

m1

m2
m3

m4

m5

w1

w2

w5

w4

w3

m1 m2 m3 m4 m5

w5 w1 w2 w3 w4

Figure 1: A Pareto-improvement cycle (left panel) and the Pareto-improving assignment it suggests

(right panel).

w4 w2

m1m3 m2

w3

m1 m2

w2 w3

m3

w4

Figure 2: A Pareto-improvement chain (left panel) and the Pareto-improving assignment it suggests

(right panel).

Whether the graph is a cycle or a chain is closely linked to the concept of acceptability.

A man m is acceptable to a woman w if she ranks him strictly better than remaining single.

When all agents are acceptable, chains cannot form, since no individual wishes to remain

single. To facilitate the exposition, I will assume throughout that all agents are acceptable,

and state the main theorems in terms of cycles, but they remain equally applicable to chains;

the proof is relegated to the Appendix.

Pareto-improvement cycles and chains provide a means to construct a matching that

Pareto dominates a given matching µ, so if a cycle or chain exists, it is immediate that the
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matching µ is inefficient. The converse is also true, so a key feature of Pareto-improvement

cycles and chains is that they identify inefficient matchings:

Lemma 1 (Erdil and Ergin (2015), Theorem 1.) A one-to-one matching is Pareto efficient

if and only if it admits neither Pareto-improvement cycles nor Pareto-improvement chains.

Proof. See Erdil and Ergin (2015), Theorem 1.

The size of the cycle or chain is not indicative of the number of agents who will strictly

improve following the Pareto-improving exchange suggested by the cycle. For example, it

may be the case that only one of the envy relations in the cycle in Fig. 1 (left) is strict, but

nonetheless all 10 men and women involved may have to change partners for one particular

agent to obtain a better mate. In most cases, therefore, the number of agents involved in

Pareto-improvement cycles will overstate the true extent of the inefficiency. Likewise, it

is also possible that most envy relations are strict, in which case most agents involved in

the cycle will improve strictly. This problem is akin to some issues identified in the kidney

exchange literature: sometimes a patient may not be able to get a compatible donor unless

a very large chain of exchanges takes place. Since the population remaining outside Pareto-

improvement cycles cannot improve from a reassignment, the fraction of agents who admit

Pareto-improvement cycles (chains) is a suitably conservative measure of inefficiency.

Similarly, nothing prevents agents from simultaneously participating in different cycles

or chains of various size. In this context, it would make sense to look for the smallest cycle

or chain that can make a fixed number of agents strictly better off. To reflect this, I focus

on the smallest building component of a cycle: two agents from the same side of the market

along with their mates. Two men from a stable matching cannot be part of any cycle unless

at least one of their mates is indifferent between them, because otherwise the matching is

either unstable, or else their mates would be unwilling to switch.

Lemma 2 (Necessary condition for cycle formation). Suppose that µ is a stable matching

and men have strict preferences. Then a given 2-tuple of men (m1,m2) cannot participate

in any Pareto-improvement cycle unless at least one of the partners µ(m1) and µ(m2) is

indifferent between m1 and m2, so that

m1 ∼µ(m2) m2 or m1 ∼µ(m1) m2, or both .7 (1)

When this sufficient condition is met, we say that the 2-tuple (m1,m2) admits a cycle.

7This “non-exclusive OR” and the notation ∪ are used interchangeably in the proofs.
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Proof: See the Appendix.

Clearly, admitting a cycle is only a minimum condition and does not guarantee that a

cycle exists. Therefore, checking if (1) holds for every distinct 2-tuple of men is a suitably

conservative way of gauging the Pareto efficiency of a stable match. It is convenient to

further disaggregate condition (1) in two parts. Rather than checking each unordered pair

(m1,m2) for the two indifferences in (1), it is simpler to consider ordered pairs of men in-

stead, associating one ordered pair with each indifference, and check each ordered pair for

one indifference per the following definition:

Definition 4. An ordered 2-tuple (m1,m2) is said to admit a cycle if m1 ∼µ(m2) m2.

Clearly, if no ordered 2-tuple admits a cycle, no unordered 2-tuple admits a cycle either;

and if no two agents in the problem admit a cycle, then no cycle (of any length) exists, and

the matching is Pareto efficient.

Lemma 2 provides a partial link between cycles and indifferences in agent preferences, but

the link is not complete, because Lemma 2 contains no information about the assignment of

partners under µ. The condition m1 ∼µ(m2) m2 could be read in n different ways, depending

on whether m2 is matched to w1, w2, . . . , or wn. To find how often two given men will admit

a cycle, one needs to know how frequently the random stable mechanism assigns each woman

to each man — both unconditionally and conditional on a pairwise indifference. The next

two results answer this question.

Lemma 3 (Symmetry lemma). Let agent preferences be selected according to the preference-

generating process P0. Then the random stable mechanism assigns any given woman to any

given man with equal probability, so that

Pr
(
µ(w) = m

)
=

1

n
∀(m,w). (2)

Proof: See the Appendix.

Lemma 3 shows that imposing a stability filter on a random matching process preserves

its symmetric properties. However, this statement is unconditional. If one were to condition

a woman w’s weak preferences — for example, by restricting her choice only among those

orders where m1 and m2 are equivalent — then symmetry will not hold, because some

marriages will be made more likely. For instance, any matching in which w is assigned to
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m2 will never be blocked by the pair (m1, w) because of the above indifference; whereas if

w’s preferences were unrestricted, the same assignment would be blocked with a positive

probability, therefore making its stability and consequent selection by the random stable

mechanism less likely.

Since the same outcome — a particular man being assigned to a particular woman —

occurs with a different probability depending on whether or not it is conditioned on an indif-

ference, there is clearly a statistical dependence between the allocation of men to women and

pairwise indifferences in women’s preferences. This renders Lemma 2 of limited usefulness,

as the frequency of a cycle cannot be immediately related to a known quantity.

Fortunately, in large markets with independent preferences, there is sufficient heterogene-

ity for this statistical dependence to become vanishing, which allows one to disentangle the

influence of preferences on the allocation from the influence of the mechanism. In turn, this

allows one to approximate the probability of two agents admitting a cycle with the proba-

bility of a pairwise indifference, which depends only on the preference-generating process.

Theorem 1 a) The stochastic allocation µn attained by the random stable mechanism

in a marriage problem of size n is asymptotically independent of the occurrence of

indifferences in the underlying preference profile in the sense that, as n → ∞, for

every two men m1 and m2 and every woman w, it is true that

Pr
(
µn(m2) = w ∩m1 ∼w m2

)
→ Pr

(
µn(m2) = w

)
Pr(m1 ∼w m2). (3)

b) This implies that, for any two arbitrary men m1,m2 and arbitrary woman w, as n→
∞,

Pr
(
m1 ∼µn(m2) m2

)
→ Pr

(
m1 ∼w m2

)
. (4)

Proof. See the Appendix.

The intuition behind the result in part (a) is that, even though the pair (m1, w) never

blocks the marriage between m2 and w when m1 ∼w m2, nonetheless, as the number of agents

grows, chances increase that at least one other pair, whose preferences are unrestricted, will

block the same marriage. Thus, the marginal absence of a single blocking pair becomes

negligible for large n, and the allocation of men to women is almost symmetric. Since the

mechanism’s outcome retains its symmetry regardless of whether it is conditioned on a fixed

pairwise indifference or not, this also implies that the allocation is independent of pairwise
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indifferences — a fact that permits a more direct link between the frequency of cycles and

that of indifferences.

Theorem 1(b) also shows that, asymptotically, the necessary condition for cycles in

Lemma 2 (which depends on the matching µ) and the indifference draw m1 ∼ m2 by an

arbitrary woman (which does not depend on the matching), are almost the same thing. This

permits a direct link between cycles and indifferences in the underlying preference, which

can be computed based on the (known) preference-generating process.

To make use of Theorem 1, one needs to compute the probability Pr(m1 ∼w m2) of

indifference between two arbitrary men by an arbitrary woman w. When preferences are

uniform, i.i.d., this probability equals

Pr(m1 ∼w m2 ; n) =
# of weak orders where m1 and m2 are in the same partition block

total # of weak orders

≡ T̃n
Tn
,

(5)

where T̃n denotes the number of weak preferences where m1 ∼ m2 and Tn is the total number

of weak preferences (orders).

For example, for a market of size 15,

Pr(m1 ∼w m2 ; n = 15) =
10, 641, 342, 970, 443

230, 283, 190, 977, 853
= 0.0462. (6)

Two things stand out in this example. First, the number of possible weak preferences over

only 15 agents is already around 230 trillion (about 176 times larger than the number of

linear orders, 15!) because of the very large number of ways that agents can be grouped

together in indifference classes and those classes arranged in order of preference. This creates

a significant computational challenge, so a tractable way of finding the numbers Tn and T̃n is

essential. Secondly, despite the large values of T̃n and Tn, their ratio is relatively small: just

below 5%. This is sufficiently low to suggest that perhaps asymptotically, the probability of

a cycle will converge to zero. The next theorem provides a technology for counting the total

number of ordered partitions Tn and the number of cases T̃n where two fixed men occur in

the same block of the ordered partition. As it turns out, there is no closed formula for either

Tn or T̃n, but they still can be found using recurrence relations. Moreover, it turns out that

both numbers can be expressed in terms of the same numerical sequence.
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Figure 3: The sequence Tn−1/Tn. (Source: author’s computations.)

Theorem 2 (a)The total number Tn of weak preferences over n partners satisfies the recur-

rence relation

Tn =
n−1∑
i=0

(
n

i

)
Ti. (7)

(b) The total number T̃n of weak preferences over n partners in which two fixed agents are

in the same indifference class satisfies the recurrence relation

T̃n = Tn−1. (8)

Proof: See the Appendix.

The second part of the theorem allows one to reformulate the probability in terms of a

single numerical sequence, Tn. It implies that

Pr(m1 ∼w m2 ; n) =
Tn−1

Tn
, (9)

thereby making the probability of a pairwise indifference equal to the ratio of two successive

terms in the sequence. The question therefore becomes whether Tn grows sufficiently fast

to make the ratio of two successive terms vanishing. One can form a conjecture about

the asymptotic behavior of this probability by computing and plotting its first few terms

numerically, as shown in Fig. 3. The figure suggests that the sequence likely converges to

zero; that this is indeed the case is verified by the next theorem.
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Theorem 3 Under the default preference-generating process P0, the probability that an

arbitrary woman w is indifferent between two given men m1 and m2 satisfies the limit

lim
n→∞

Pr(m1 ∼w m2 ; n) = lim
n→∞

Tn−1

Tn
= 0. (10)

Proof: See the Appendix.

Corollary 1 Theorems 1 and 3 imply that the probability that an arbitrary ordered 2-tuple

of men (m1,m2) admits a Pareto-improvement cycle also converges to zero:

lim
n→∞

Pr(m1 ∼µ(w2) m2 ; n) = 0. (11)

According to the corollary, the chance that an arbitrary ordered 2-tuple permits a cycle

becomes vanishing for large n. Now it remains only to relate the result obtained for 2-tuples

to individual agents, which provide a more meaningful metric for gauging the inefficiency. I

am particularly interested in two inefficiency metrics: the absolute number and the propor-

tion of men who admit Pareto-improvement cycles. Since, for each market size n, the final

allocation µ is stochastic (on account of the random preferences and the randomness of the

mechanism), I look at these metrics in expectation.

Theorem 4 Let αn denote the expected number of men involved in ordered 2-tuples that

admit cycles in a problem of size n, and let agent preferences be drawn according to the

default preference-generating process P0. Then, as n→∞:

a) The expected number of men αn who admit cycles increases with n:

αn =
1

2
+

1

2

√
1 + 4n(n− 1)

Tn−1

Tn
→ ∞. (12)

b) The expected proportion of men αn

n
who admit cycles converges to 0:

αn
n

=
1

2n
+

1

2n

√
1 + 4n(n− 1)

Tn−1

Tn
→ 0. (13)

Proof: See the Appendix.

The first striking feature of this result is that the expected number of men who admit

cycles grows without bound, despite the vanishing probability of a cycle. The reason for this

is the slow rate of convergence of pairwise indifferences to zero, compared with the speed at

which ordered 2-tuples grow with n. Since ordered 2-tuples grow of the order of n2, while the
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quantity Tn−1/Tn goes to zero of the order of 1/n, the expected number of cycle-admitting 2-

tuples increases too quickly with n. As a result, both the number of cycle-admitting 2-tuples

and the number of men involved in them grow without bound. This might mislead one to

think that all inefficiency metrics behave the same way and that the matching is inefficient;

however, this is not the case.

As shown in part (b), pairwise indifferences still vanish quickly enough to make the

proportion of cycle-admitting men vanish. Given that Tn−1/Tn is of the order of 1/n, the

number of cycle-admitting men αn according to equation (12) grows of the order of
√
n− 1,

which is not fast enough to survive another division by n. Therefore the expected proportion

αn/n of cycle-admitting men goes to zero and the matching becomes asymptotically Pareto

efficient, albeit at a slow rate. This rate of convergence and its practical implications are

discussed in detail in section 4.

This underscores the non-triviality of the main result and disproves the intuitive fallacy

that the zero limit of pairwise indifferences predetermines the outcome. The rate of conver-

gence to zero — a feature determined by the combinatorial properties of ordered partitions

— is much more important.

This discussion naturally opens the question of what happens with preferences where the

chance of a pairwise indifference converges to zero faster than 1/n. Preferences with a larger

(smaller) number of ties can arise naturally in the context of decision costs, where it is more

(less) costly to perform pairwise comparisons, dictating the use of fewer or more “bins.”8 As

shown in the next theorem, if the sequence Tn−1/Tn was instead of the order of 1/n2, the

number of cycle-admitters would converge to a positive constant; and if Tn−1/Tn converged

of the order of 1/n3 or faster, then both the number of men and the fraction of men engaged

in Pareto-improving cycles vanish for large n. However, not all preference-generating pro-

cesses with faster convergence are symmetric, whereas symmetry is essential for making the

analysis tractable, as evident from Theorem 1. Therefore, it is still necessary to place some

restrictions on preferences.

Definition 5. A stochastic PGP is symmetric if and only if Pr(aPb) = Pr(cPd) and

Pr(a ∼ b) = Pr(c ∼ d) for any quadruple of (not necessarily distinct) agents (a, b, c, d).

8Employee recruiting and selection is one practical example.
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Theorem 5 If a stochastic PGP for weak preferences P∗ is symmetric and agent prefer-

ences are mutually independent, then the following statements hold:

a) If the probability of a pairwise indifference Pr(m1 ∼w m2) under P∗ is of the order of

1/n2, then αn → const. and αn

n
→ 0 as n→∞.

b) If the probability of a pairwise indifference Pr(m1 ∼w m2) under P∗ is of the order of

1/nk for k ≥ 3, then αn → 0 and αn

n
→ 0 as n→∞.

Proof: See the Appendix.

An example of a non-uniform but symmetric weak-preference PGP where the chance of

a pairwise indifference converges to zero at a rate faster than 1/n can be devised as follows.

Split the list of all Tn weak orders into two groups: Group 1 containing only strict (linear)

orders, and Group 2 comprising all orders containing at least one indifference. When selecting

a preference, first select a group at random, where Group 1 is chosen with probability 1− 1
n
,

and Group 2 with probability 1
n
. Next, having chosen a group, select a preference uniformly

at random from that group.

With this PGP, it is easy to show that the probability of a pairwise indifference within

Group 2 is
Tn−1

Tn − n!
→ Tn−1

Tn
, (14)

so the chance of a pairwise indifference within Group 2 still goes to zero of the order of

1/n. However, since Group 2 itself is selected with probability 1/n, the overall chance of a

pairwise indifference is now 1
n
Tn−1

Tn
, which is of the order of 1/n2.

By weighting Group 1 and Group 2 with respective probability weights of 1− 1
nk and 1

nk ,

one can similarly generate preferences where the chance of a pairwise indifference goes to

zero at any desired rate of 1/k; the process is symmetric by construction, since the orders

contained within each group are fully symmetric.

4 Discussion of Results

Theorems 4 and 5 permit a practical estimate of how large a market is large enough to

reduce the inefficiency to acceptable levels. Table 1 shows the expected proportion of cycle-

admitting men in the benchmark case with uniform preferences. According to the table,
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Proportion of cycle-admitting men as a function of market size n

n 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90
- 0.2891 0.2027 0.1641 0.1412 0.1257 0.1142 0.1054 0.0983
- 0.2755 0.1976 0.1613 0.1394 0.1244 0.1133 0.1046 0.0977

0.5928 0.2636 0.1929 0.1587 0.1376 0.1231 0.1123 0.1039 0.0971
0.5066 0.2531 0.1885 0.1561 0.1360 0.1219 0.1114 0.1031 0.0964
0.4477 0.2437 0.1844 0.1537 0.1343 0.1207 0.1104 0.1024 0.0958
0.4046 0.2352 0.1805 0.1514 0.1328 0.1195 0.1096 0.1017 0.0953
0.3714 0.2275 0.1768 0.1492 0.1313 0.1184 0.1087 0.1010 0.0947
0.3448 0.2205 0.1734 0.1471 0.1298 0.1173 0.1078 0.1003 0.0941
0.3230 0.2141 0.1701 0.1450 0.1284 0.1163 0.1070 0.0996 0.0936
0.3047 0.2082 0.1670 0.1431 0.1270 0.1152 0.1062 0.0990 0.0930

Table 1: The maximum expected proportion of men who admit Pareto-improvement cycles, as

provided by the sequence αn/n in equation (13). (Source: author’s computations.)

the fraction of cycle-admitters falls quickly before flattening out, and for n larger than 79 is

already below 10%.9 However, even this number in fact overstates the true inefficiency.

To see this, first observe that not every two men who admit a cycle actually participate in

one. Admitting a cycle means simply that the necessary condition for cycles (from Lemma

2) has been met; this in itself does not imply that a cycle is present. Secondly, even when

a cycle is present, not everyone in the cycle needs to improve strictly, since only one of the

envy relations needs to be strict. What is required to form a cycle is that only a single

agent improve while no one else is made worse off, which can result in potentially very large

cycles with only a single agent who benefits strictly from the exchanges.10 Therefore, the

numbers from Table 1 correspond to an absolute worst-case scenario. This suggests that

even in moderate-sized markets with weak preferences, Pareto inefficiency is not a major

concern as long as preferences remain uncorrelated.

Naturally, my approach also has some limitations. From the discussion of Theorem 1

it is clear that anything that upsets the symmetry of the mechanism or the symmetry and

statistical independence of individual preferences also has the potential to affect the main

result.11 Despite that, I consider the random stable mechanism with a large class of non-

9For the case where both sides of the market have weak preferences, the numbers in the table are doubled,
as shown in Theorem 6 in the Appendix.

10This aspect is very similar to the kidney exchange literature: sometimes a patient may not be able to
obtain a compatible donor unless a very large chain of exchanges takes place.

11Other than in very special cases where asymmetric preferences and asymmetries in the selection of a
stable match cancel each other out.
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uniform random preferences and show that, as long as the preference-generating process is

symmetric and preferences remain independent, the same or stronger results hold.

I do not focus on other random mechanisms (e.g., the men-optimal mechanism with tie-

breaking) because the distribution of matched pairs in such multi-step algorithms is path-

dependent. Since a girl can only compare offers from current proposers, the final allocation

depends not only on the presence of ties in each woman’s preference relation, but also on

how such ties were resolved in previous steps. For example, suppose a tie between two men

m′ and m′′ is resolved by a woman w′ in favor of m′ at step k − 1 of the men-optimal

algorithm. This implies that m′′ gets to propose to his next-best choice (say w′′) at the next

step k. Suppose also that w′′ happens to be indifferent between m′′ and some other proposer

m′′′; but if the first tie was resolved the other way and m′′ ended up proposing to w′′ a few

steps later (when a strictly better proposer arrives and bumps him down), then m′′ could

be part of an entirely different proposer set, where the same woman w′′ does not have any

indifferences. Since the technology in this paper does not account for path-dependence, it is

unsuitable for analyzing this question.

Unlike most results related to the marriage problem, my result also does not automatically

extend to many-to-one matching. To see this, consider an example with n students with weak

preferences applying to m colleges, where n ≥ m. A necessary condition for two colleges c1

and c2 to admit a cycle is that at least one student from the set S1 of students admitted

to c1 must be indifferent between schools c1 and c2. The relative frequency of this event is

bounded by the probability

Pr

(⋃
i∈S1

c1 ∼i c2

)
≤
∑
i∈S1

Pr(c1 ∼i c2) = |S1|Pr(c1 ∼i c2).

Whether the sum on the right-hand side converges to zero depends on whether the cardinality

of the set S1 changes faster than the probability Pr(c1 ∼i c2). For example, assume each

college has the same fixed capacity c̄ and students increase in steps of c̄, so that a new college

is added per every c̄ additional students; then |S1| grows of the same order as n, while the

probability Pr(c1 ∼i c2) is of the order of 1/n, causing the right-hand side to converge to a

positive constant that renders the upper bound uninformative.12 Even if colleges do not all

have equal capacities, the average capacity E|S1| will still grow of the order of n, so there

will exist schools for which the probability of a cycle does not converge to zero.

12If instead we choose to have a fixed number of colleges with increasing capacities, then |S1| will still
grow of the order of n and the right-hand side will again tend to a non-zero constant.
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These limitations help outline more clearly the role of the paper in the matching literature.

Firstly, it demonstrates that the absence of a central matchmaker is not necessarily bad news

for the Pareto efficiency of the random outcome in a decentralized weak-preference market.

The analysis shows that even moderate-sized markets with size as low as 79 in practice

attain efficiency levels above 90%, as measured by the fraction of agents who cannot Pareto-

improve from a reassignment. This is a stark result, keeping in mind that the methodology

provides a loose lower bound on efficiency, corresponding to an absolute worst-case scenario.

Similar to Roth and Vande Vate (1990), who show that the random nature of meetings in a

decentralized market is not an obstacle to achieving stability, this paper demonstrates that

randomness is analogously helpful in achieving (approximately) Pareto efficient outcomes

under weak preferences.

5 Conclusion

In decentralized markets without a coordinating body, stability can create perverse incentives

for inefficiently matched agents to stay together. This implies that stable, but inefficient

matches have no tendency to dissolve or improve their efficiency over time. Unlike random

paths to stability, there is no obvious process by which an inefficient stable match could evolve

into a more Pareto efficient one. This raises the question of whether a decentralized market

with weak preferences can attain Pareto efficiency in the absence of a central matchmaker.

To answer this question, I approach it similarly to Kojima and Pathak (2009) and Kojima

and Manea (2010), who show that some shortcomings of stable two-sided matchings, such

as the lack of strategy-proofness, tend to improve in large markets. In the spirit of this

literature, I demonstrate that with weak preferences, a uniformly selected random stable

matching will be approximately Pareto efficient in a large decentralized market.

In practice, even moderate-sized markets can attain good efficiency levels. The market

size necessary to reduce the proportion of agents admitting Pareto-improving exchanges

below 10% is only n = 79 when one side of the market admits weak preferences, and n = 158

when both sides admit weak preferences. This implies that approximate Pareto efficiency is

attainable in a decentralized market even in the absence of a central matchmaker.
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6 Appendix

6.1 Theorem Proofs

Lemma 2 (Necessary condition for cycle formation.) Suppose that µ is a stable matching

and men have strict preferences. Then a given 2-tuple of men (m1,m2) cannot participate

in any Pareto-improvement cycle unless at least one of the partners µ(m1) and µ(m2) is

indifferent between m1 and m2, so that

m1 ∼µ(m2) m2 or m1 ∼µ(m1) m2, or both.

Proof. First consider the preferences of m1. Given any matching µ, the preference is

either µ(m2)Pm1µ(m1), or µ(m1)Pm1µ(m2), because men’s preferences are strict (the case

where both men and women admit weak preferences is addressed in Theorem 5).

Initially, suppose that µ(m1)Pm1µ(m2); then m1 will not be willing to trade with m2,

and m1 and m2 do not admit a Pareto-improvement cycle.

Now suppose instead that µ(m2)Pm1µ(m1) and consider the weak preferences of µ(m2).

If m1Pµ(m2)m2, then the pair (m1, µ(m2)) is a blocking pair and µ is not stable, a contradic-

tion. If m2Pµ(m2)m1, then µ(m2) cannot point to µ(m1), so by Definition 3, m1 and m2 do

not admit a Pareto-improvement cycle. The only remaining preference of µ(m2) consistent

with a Pareto-improvement cycle is m1 ∼µ(m2) m2. Reversing the places of m1 and m2 yields

the second part of the necessary condition, m1 ∼µ(m1) m2. �

Lemma 3 Let agent preferences be selected according to the preference-generating process

P0. Then the random stable mechanism assigns any given woman to any given man with

equal probability, so that

Pr
(
µ(w) = m

)
=

1

n
∀(m,w). (15)

Proof. The proof is by contradiction. Suppose the random stable mechanism is not

symmetric. Then there exists a woman w∗ and men m∗ and m′∗ such that w∗ is assigned to

m∗ more frequently than to m′∗ in a stable matching, so that

Pr
(
µ(w∗) = m∗

)
> Pr

(
ν(w∗) = m′∗

)
, (16)

where µ and ν denote the respective different assignments produced by the random stable

mechanism.
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Since the realized stable matching µ is chosen from the uniform distribution over all stable

matchings (as determined by each joint preference draw), each stable matching has an equal

chance of being picked. Then the asymmetry (16) means that the assignment ν(w∗) = m′∗

is blocked more frequently than the assignment µ(w∗) = m∗. This implies that there exists

at least one pair, denoted without loss of generality as (m,w), that blocks the assignment ν

of woman w∗ to m′∗ more frequently than her assignment µ to man m∗.

For the man and woman (m,w) to block the fixed assignment ν (and all matchings

containing it), they must prefer each other strictly, relative to the respective partners assigned

to them under ν. Hence for the ν to be blocked more frequently by the pair (m,w), it must

be true that

Pr

(⋂w Pm ν(m)
m Pw ν(w)

)
> Pr

(⋂w Pm µ(m)
m Pw µ(w)

)
. (17)

Combining (17) with the fact that preferences Pm and Pw are drawn independently implies

that

Pr

(⋂w Pm ν(m)
m Pw ν(w)

)
= Pr

(
w Pm ν(m)

)
Pr(m Pw ν(w)

)
>

>Pr

(⋂w Pm µ(m)
m Pw µ(w)

)
= Pr

(
w Pm µ(m)

)
Pr
(
m Pw µ(w)

) (18)

or in other words, that

Pr
(
w Pm ν(m)

)
Pr
(
m Pw ν(w)

)
> Pr

(
w Pm µ(m)

)
Pr
(
m Pw µ(w)

)
. (19)

Each of these probabilities expresses the chance of one fixed element preceding another

in the respective preferences of the man m and woman w. However, since every possible

preference is equally likely, preferences are symmetric and therefore13

Pr
(
w Pm ν(m)

)
= Pr

(
w Pm µ(m)

)
and

Pr
(
m Pw ν(w)

)
= Pr

(
m Pw µ(w)

)
,

(20)

which implies that (19) should hold with equality, a contradiction.

Therefore a random stable matching must be symmetric in that each man and each

woman are matched with the same probability as any other man-woman pair. �

13To prove equation (20) formally, let the number of strict (weak) orderings of the set of women where
any given woman w precedes another w′, be denoted by Ns (Nw for the weak order, respectively). Since
the two elements w and w′ are arbitrary, we can replace the pair w,w′ with the pair w,w′′ and the total
number of cases where w precedes w′′ would still be Ns (Nw, respectively). Hence, there are just as many
strict (weak) orderings where w precedes w′ as there are strict (weak) orderings where w precedes w′′, and
because preferences are picked uniformly, Pr(wPw′) = Pr(wPw′′).
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Theorem 1

a) The stochastic allocation µn attained by the random stable mechanism in a marriage

problem of size n is asymptotically independent of the occurrence of indifferences in the

underlying preference profile in the sense that, as n → ∞, for every two men m1 and

m2 and every woman w, it is true that

Pr
(
µn(m2) = w ∩m1 ∼w m2

)
→ Pr

(
µn(m2) = w

)
Pr(m1 ∼w m2). (21)

b) This implies that, for any two arbitrary men m1,m2 and arbitrary woman w, as n→
∞,

Pr
(
m1 ∼µn(m2) m2

)
→ Pr

(
m1 ∼w m2

)
. (22)

Proof. (a). I construct the proof by showing that the probability that a matching

containing the fixed assignment νn(w) = m2 is stable does not depend on whether one

conditions on a particular fixed indifference or not.

Let {νn} be a sequence of matchings of increasing size n, containing the fixed assignment

νn(w) = m2. For each problem size n, I fix the matching νn and let agent preferences

vary. For νn to be stable, no blocking pairs should exist. For a problem of size n, there

are n(n − 1) potential blocking pairs, since a man will never form a blocking pair with his

wife. The potential blocking pairs and married pairs could be visualized in the set M ×W
as follows:

(m1, w1) (m1,w2) · · · (m1, wn)
(m2,w1) (m2, w2) · · · (m2, wn)

...
...

. . .
...

(mn, w1) (mn, w2) · · · (mn,wn)

(23)

where the bolded pairs are married pairs from an example matching

η(m1,m2, . . . ,mn) = (w2, w1, . . . , wn),

and the remaining n(n − 1) pairs are potential blocking pairs that can block the example

matching if they draw the right combination of preferences. For any fixed matching, we

group the matched pairs in a set V ⊂M ×W . The probability that a given matching νn is

stable under the standard PGP with unrestricted preferences P0 can therefore be expressed

as

Pr(νn is stable |P0) = Pr

 ⋂
(m,w)∈(M×W )\V

(m,w) does not block νn

 . (24)
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I will show that this probability has the same limit, regardless of whether it is conditioned

a fixed pairwise indifference (which is required to enable cycles). To condition on such an

indifference, I define a restricted PGP P1.

Definition 6. The restricted preference-generating process P1 is defined as follows:

a) For every m ∈M , Pm
1 is the same as Pm

0 .

b) For every woman ω 6= w, Pω = Pω
0 . For woman ω = w, the preference Rw is drawn

from the uniform distribution over the subset of weak preferences where m1 ∼w m2.

c) Individual agents’ draws are mutually independent.

Showing that the probability Pr(νn is stable |P0)→ Pr(νn is stable |P1) will imply that

the stability of νn is independent of the occurrence of a fixed pairwise indifference when n is

large. This is the crux of the proof.

However, the probability (24) cannot be easily decomposed as a product, because poten-

tial blocking pairs are not all independent in blocking νn. The reason for this is that some

pairs contain overlapping agents, whose preferences introduce correlation. For example, pairs

(m1, w1) and (m1, w3) are not independent in blocking the example matching η because the

man’s necessary condition to prefer w1 to his current match also depends on whether he likes

w3 better than his current match:

Pr
(
w1Pm1η(m1) | w3Pm1η(m1)

)
=

2

3
6= 1

2
= Pr

(
w1Pm1η(m1)

)
. (25)

On the other hand, given a matching νn, I claim that there are always at least n potential

blocking pairs in the set (M ×W )\V that are mutually independent in blocking νn, as these

pairs share no agents in common. One can always select a set of n such pairs according to

the following algorithm:

1. For every matched pair (mk, wj) ∈ V , select its right-hand adjacent pair (mk, wj+1) if

j + 1 ≤ n;

2. Where j + 1 > n, select the leftmost pair in the same row, i.e., (mk, w1).

This algorithm ensures that, from each row and each column of the matrix (M ×W )\V ,

exactly one potential blocking pair is selected, which ensures no agents in common and guar-

antees mutual independence of agent preferences. Therefore, we will split the set of potential
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blocking pairs, (M ×W )\V , into a subset of mutually independent pairs I and all remaining

pairs R. Let us denote with An the event that νn is stable under the standard (unrestricted)

uniform preference-selection process P0, and decompose An into an “independent” compo-

nent AI,n and a remaining component AR,n:

An ≡

 ⋂
(m,w)∈(M×W )\V

(m,w) does not block νn


AI,n ≡

 ⋂
(m,w)∈I

(m,w) does not block νn


AR,n ≡

 ⋂
(m,w)∈R

(m,w) does not block νn

 .

(26)

Then we can represent the event An that νn is stable as follows:

An = (AI,n ∩ AR,n) ⇒ An ⊂ AI,n ⇒ Pr(An) < Pr(AI,n). (27)

I will show that Pr(AI,n) → 0 and therefore also Pr(An) → 0. Since the pairs in I are

mutually independent in blocking νn, and the set I was constructed with cardinality n,

Pr(AI,n) =
∏

(m,w)∈I

Pr((m,w) does not block νn) =

= [Pr
(
(m,w) does not block νn

)
]n =

=

[
1− Pr

(⋂w Pm νn(m)
m Pw νn(w)

)]n
→

→
[
1− 1

2
· 1

2

]n
=

[
3

4

]n
→ 0,

(28)

where in the last line we used the fact that for women, whose preferences are weak, the

probability of one fixed mate being preferred to another tends to 1/2:

Pr(mPwνn(w)) + Pr(νn(w)Pwm) + Pr(νn(w) ∼w m)︸ ︷︷ ︸
→0 by Theorem 3

= 1⇒

⇒ 2 Pr(mPwνn(w))→ 1⇒ Pr(mPwνn(w))→ 1

2
as n→∞.

(29)

Since Pr(AI,n) > Pr(An) and Pr(AI,n)→ 0, this implies

Pr(An) ≡ Pr(νn is stable |P0)→ 0. (30)

Next I will show that the chance that νn is stable under the restricted preference-

generating process P1 converges to the same limit, i.e.,
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Pr(νn is stable |P1)→ 0.

Consider the restricted preferences case (P1) where m1 ∼w m2 and choice among pref-

erences is uniform. Given the sequence of matchings νn, and recalling that it is specially

constructed to always contain the fixed assignment νn(w) = m2, if we further restrict pref-

erences to those orders where m1 ∼w m2, then there is exactly one pair — the pair (m1, w)

— that will never block νn, all else equal, so that Pr
(
(m1, w) does not block νn

)
= 1. Then

we proceed as follows:

• If the pair (m1, w) ∈ I, then the exponent n in (28) becomes n− 1, because one of the

potential blocking pairs never blocks νn. This change does not alter the limit (28) as

n→∞.

• If (m1, w) ∈ R, the proof in (28) holds without change, because the cardinality of I
that drives the convergence is unaffected.

Thus we arrive at

Pr(νn is stable |P1)→ 0. (31)

Now let ε be a positive constant. Since under both P0 and P1, the probability that νn

is stable has the same limit, given ε > 0, one can always find N large enough so that for

n ≥ N ,

|Pr(νn is stable|P1)− Pr(νn is stable|P0)| < ε, (32)

which implies that

Pr(νn is stable|P1)→ Pr(νn is stable|P0). (33)

Now, given the key fact that the random stable mechanism selects among stable match-

ings uniformly at random, this means that

Pr(νn is the selected stable matching by the RSM |P1)→

→Pr(νn is the selected stable matching by the RSM |P0).
(34)

However, recalling that the sequence {νn} is specially constructed so that each νn contains

the fixed assignment νn(w) = m2, this implies that, as n→∞, the probability that the final

matching µn selected by the random stable mechanism assigns w to m2 converges to

Pr
(
µn(w) = m2|P1

)
→ Pr

(
µn(w) = m2|P0

)
, (35)
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where P1 is the restricted PGP conditioned on a fixed indifference by w between m1 and

m2, and P0 is the unrestricted preference process.

Written out fully, this means that, as n→∞,

Pr
(
µn(m2) = w|m1 ∼w m2

)
→ Pr

(
µn(m2) = w

)
, or (36)

Pr
(
µn(m2) = w ∩m1 ∼w m2

)
→ Pr

(
µn(m2) = w

)
Pr(m1 ∼w m2), (37)

which is the asymptotic independence property we were seeking to prove.

(b) Recall we already proved that the RSM is symmetric, so that for every pair (m,w),

it is true that Pr(µn(m) = w) = 1/n. Combining this fact with equation (37), we obtain the

following sequence of transformations:

Pr
(
µn(m2) = w ∩m1 ∼w m2

)
→ 1

n
Pr(m1 ∼w m2) (multiply by n)

nPr
(
µn(m2) = w ∩m1 ∼w m2

)
→ Pr(m1 ∼w m2) (i.i.d preferences ∀w)

n∑
i=1

Pr
(
µn(m2) = wi ∩m1 ∼wi

m2

)
→ Pr(m1 ∼w m2) (disjoint assignments µn(wi))

Pr

(
n⋃
i=1

[µn(m2) = wi ∩m1 ∼wi
m2]

)
→ Pr(m1 ∼w m2) (LHS is the desired prob)

Pr
(
m1 ∼µn(m2) m2

)
→ Pr(m1 ∼w m2).

(38)

This proves part (b). �

Theorem 2 (a)The total number Tn of weak preferences over n partners satisfies the

recurrence relation

Tn =
n−1∑
i=0

(
n

i

)
Ti. (39)

(b) The total number T̃n of weak preferences over n partners in which two fixed agents are

in the same indifference class satisfies the recurrence relation

T̃n = Tn−1. (40)

Proof. (a). The first partition block of size k (1 ≤ k ≤ n) can be selected from the set

of n partners in exactly
(
n
k

)
ways, because within blocks, order does not matter. To each

selection of this first k-block, there corresponds a subset of (n−k) remaining elements to be
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partitioned into ordered blocks, which can be done in exactly Tn−k ways. Summing over all

possible sizes k = 1, 2, . . . , n results in the sum

Tn =
n∑
k=1

(
n

k

)
Tn−k =

n∑
k=1

(
n

n− k

)
Tn−k =

n−1∑
i=0

(
n

i

)
Ti, (41)

where i = n− k.

(b). Let the set of men M be of cardinality n. If two fixed elements m1,m2 ∈M always

appear in the same block of an ordered partition of M , one can treat them as a single element

m̄ for partitioning purposes. The resulting set {m̄,m3,m4, . . . ,mn} consists of n−1 elements

and can therefore be partitioned into ordered blocks in exactly Tn−1 ways. Therefore the

number of ordered partitions T̃n in which the two fixed elements m1 and m2 always occur in

the same block, satisfies the recurrence relation T̃n = Tn−1. �

Theorem 3 Under the default preference-generating process P0, the probability that an

arbitrary woman w is indifferent between two given men m1 and m2 satisfies the limit

lim
n→∞

Pr(m1 ∼w m2 ; n) = lim
n→∞

Tn−1

Tn
= 0. (42)

Proof. Since this fact can be proven in a number of ways, here I offer an exact proof not

involving approximations; for a different proof based on an asymptotic approximation of the

sequence Tn, see Barthélémy (1980).

Denoting ∆Tn ≡ (Tn − Tn−1), observe that

Tn−1

Tn
=

Tn−1

Tn−1 + ∆Tn
=

1

1 + ∆Tn
Tn−1

. (43)

I will prove that ∆Tn
Tn−1

→∞, which implies that Tn−1/Tn → 0. The recurrence relation

Tn =
n−1∑
i=0

(
n

i

)
Ti, (44)

in conjunction with the fact that T0 = 1 and
(
n
0

)
=
(
n−1

0

)
= 1, implies that

∆Tn ≡ Tn − Tn−1 = (45)

=

[(
n

1

)
−
(
n− 1

1

)]
T1 + . . .+

[(
n

n− 2

)
−
(
n− 1

n− 2

)]
Tn−2 +

(
n

n− 1

)
Tn−1. (46)
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One can simplify this using Pascal’s formula
(
n
k

)
−
(
n−1
k

)
=
(
n−1
k−1

)
and the fact that

(
n
n−1

)
= n,

obtaining

∆Tn = nTn−1 +
n−3∑
i=0

(
n− 1

i

)
Ti+1. (47)

The last equation implies that the percentage change in Tn exceeds n in magnitude, because

∆Tn
Tn−1

= n+

∑n−3
i=0

(
n−1
i

)
Ti+1

Tn−1︸ ︷︷ ︸
≡Z(n)>0

. (48)

Therefore,

lim
n→∞

∆Tn
Tn−1

= lim
n→∞

[n+ Z(n)] =∞, (49)

and hence,

lim
n→∞

Tn−1

Tn
= lim

n→∞

1

1 + ∆Tn
Tn−1

=
1

1 +∞
= 0. � (50)

Theorem 4 Let αn denote the expected number of men involved in ordered 2-tuples that

admit cycles in a problem of size n, and let agent preferences be drawn according to the

default preference-generating process P0. Then, as n→∞:

a) The expected number of men αn who admit cycles increases with n:

αn =
1

2
+

1

2

√
1 + 4n(n− 1)

Tn−1

Tn
→ ∞. (51)

b) The expected proportion of men αn

n
who admit cycles converges to 0:

αn
n

=
1

2n
+

1

2n

√
1 + 4n(n− 1)

Tn−1

Tn
→ 0. (52)

Proof. (a) For a given problem size n, let Yi,n be a random variable such that Yi,n = 1 if the

ordered 2-tuple of men indexed by i admits a cycle, and Yi,n = 0 otherwise. Since the number

of men is n, there are a total of n(n− 1) ordered 2-tuples of men: i ∈ {1, . . . , n(n− 1)}.
Now define the proportion of ordered 2-tuples admitting a cycle as

πn ≡
1

n(n− 1)

n(n−1)∑
i=1

Yi,n. (53)

Therefore, given a problem of size n, the expected proportion of 2-tuples admitting a cycle

is

Eπn =
1

n(n− 1)

n(n−1)∑
i=1

EYi,n = �����n(n− 1)

�����n(n− 1)
Pr(Yi,n = 1) =

= Pr(m1 ∼µ(m2) m2)→ Pr(m1 ∼w m2),

(54)
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according to Theorem 1. But as shown in Theorem 3, the probability Pr(m1 ∼w m2)

converges to 0. Therefore, as n→∞,

Eπn → 0. (55)

In the same way we compute the expected number γn of ordered 2-tuples of men who

admit a cycle as

Eγn =

n(n−1)∑
i=1

EYi,n = n(n− 1) Pr(Yi,n = 1) = n(n− 1) Pr(m1 ∼µ(m2) m2)→

→ n(n− 1) Pr(m1 ∼w m2) = n(n− 1)
Tn−1

Tn
,

(56)

according to Theorems 1 and 3.

Denote the expected number of men who participate in (ordered) 2-tuples that admit

cycles with αn. Since αn men form exactly αn(αn−1) ordered 2-tuples, we can find the total

number of men who admit cycles by solving

αn(αn − 1) = n(n− 1)
Tn−1

Tn
. (57)

The only positive root of this quadratic is

αn =
1

2
+

1

2

√
1 + 4n(n− 1)

Tn−1

Tn
. (58)

As it turns out, Tn−1

Tn
is of the order of 1

n
, which implies that the number of men who

admit cycles actually grows with n and is of the order of
√

(n− 1). To demonstrate this

formally, we can use Barthélémy’s (1980) asymptotic approximation for the sequence Tn,

from which it follows that Tn−1

Tn
→ ln 2

n
. Substituting this in (58) yields

αn →
1

2
+

1

2

√
1 + 4(n− 1) ln 2→∞, (59)

which is unbounded and strictly increasing in n.

(b) Equation (58) also implies that the expected proportion of men who admit any cycle

is
αn
n

=
1

2n
+

1

2n

√
1 + 4n(n− 1)

Tn−1

Tn
. (60)

Now it is easy to show that the expected proportion of men admitting a cycle, as a

fraction of all men, converges to zero. The limit of αn/n can be found as

lim
n→∞

(αn
n

)
= lim

n→∞

(
1

2n
+

√
1 + 4(n− 1) ln 2

4n2

)
=

= lim
n→∞

√
1

n2
+
n− 1

n2
ln 2 = lim

n→∞

√
ln 2

n
= 0.

(61)
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Theorem 5 If a stochastic preference-generating process for weak preferences P∗ is

symmetric and agent preferences are mutually independent, then the following statements

hold:

a) If the probability of a pairwise indifference Pr(m1 ∼w m2) under P∗ is of the order of

1/n2, then αn → const. and αn

n
→ 0 as n→∞.

b) If the probability of a pairwise indifference Pr(m1 ∼w m2) under P∗ is of the order of

1/nk for k ≥ 3, then αn → 0 and αn

n
→ 0 as n→∞.

Proof. To prove this result, replace the expression Tn−1/Tn with the expression n−k in

formulas (60) and (58) and take the limit n→∞ to obtain

αn
n

=
1

2n
+

√
4n1−k(n− 1)

4n2
→
√
n−k = n−k/2 → 0 (∀k > 0);

αn =
1

2
+

1

2

√
1 + 4n1−k(n− 1)→

{
→ (1 +

√
5)/2 if k = 2

→ 1 if k ≥ 3
.

(62)

The result αn → 1 obtained for k ≥ 3 implies that, on average, only one man will admit a

cycle when n → ∞. However, recalling from the definition of a cycle that a man can never

form a cycle alone (without envying another agent), in reality this implies that there are no

2-tuples that form cycles; thus we must round the expected number of participants in such

2-tuples down to zero: αn → 0.

Notice the principal difference with the case where k = 2 and αn → (1+
√

5)/2. Although

the limit (1 +
√

5)/2 ≈ 1.62 is also a small number, it rounds up to 2, the smallest possible

number of cycle participants. Therefore the difference between the case where k = 2 and

k = 3 is that in the former case, one (minimal) cycle is admitted in expectation, while in

the latter case, there are none. �

6.2 Extension 1: Pareto-improvement Chains

Here I drop the assumption that all agents are acceptable. Partners who appear as choices

worse than i are unacceptable for i, and if µ(i) = i we say that agent i remains single under

the matching µ. If an agent remains single, he or she cannot be part of a Pareto-improvement

cycle, but may still be part of a Pareto-improvement chain.
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In a setting with single agents, a man can point to either a matched man or a single

woman, so instead of 2-tuples of men of the type mi → mj, now I will consider generalized

envy 2-tuples of the kind m→ i where the envied agent i can be either a matched man or a

single woman.

Given a matching µ, denote the set of matched men as M and the set of single women

as W ; I consider 2-tuples of the type (m, i) so that i ∈ M ∪W . Note that for every single

man there is exactly one single woman, so |M |+ |W | = n.

Lemma 4 (Necessary condition for Pareto-improvement cycles and chains.) Suppose that

µ is a stable matching. Then the 2-tuple of agents m ∈M and i ∈M ∪W does not admit a

Pareto-improvement cycle or Pareto-improvement chain unless

m ∼µ(i) i or m ∼µ(m) i, or both. (63)

Proof. First suppose that µ(i)Pmµ(m), where m ∈ M and i ∈ M ∪ W . (If instead

µ(m)Pmµ(i), agents m and i will never voluntarily trade partners.)

1. Proof for cycles: Suppose not, so m 6∼µ(i) i. Then either µ(m2) will be unwilling to trade,

or else (m1, µ(m2)) form a blocking pair, so µ is not stable.

2. Proof for chains: If both m and i are matched men, the proof is the same as for cycles. If

m ∈M (so m has a partner) and i ∈ W (i.e., i is a single woman), then obviously µ(i) = i.

If i is not indifferent between m and remaining single, either she will not agree to trade, or

else (m, i) are a blocking pair. Alternatively, if m is a single man, then i is a matched man,

and if m 6∼µ(i) i, again µ(i) will either refuse to trade, or form a blocking pair with m.

It is also possible that µ(m)Piµ(i); in this case, simply reverse the roles of m and i in the

proofs above to obtain the second part of the necessary condition m ∼µ(m) i. (If instead

µ(i)Piµ(m), agents m and i will not want to trade.) �

The main difference from the baseline case is that now each woman’s preference is defined

over n + 1 agents: the n men plus herself. As before, we will say as a matter of convention

that the ordered 2-tuple (m, i) admits a cycle if m ∼µ(i) i. Therefore we have

Pr(m ∼µ(i) i)→ Pr(m ∼j i) =
Tn
Tn+1

→ 0 (64)

because the problem is now of size n + 1. Since |M | + |W | = n, the total possible number

of ordered envy 2-tuples is n(n− 1) as before, so the remainder of the proofs in Theorem 4

carry over without change.

33



6.3 Extension 2: Weak Preferences for Men and Women

Similar results hold when both men and women have weak preferences, except that in this

case the inefficiency vanishes slower. Given a market size n, now each man and woman

independently draws weak preferences from the uniform distribution over all possible weak

preferences over the n agents of the opposite side. The draw is repeated for each market

size n; successive draws are independent. In this setting, cycles can occur more frequently,

because there are more indifferent agents who can agree to switch partners. The necessary

condition for a cycle involving two fixed men m1 and m2 is now the following.

Lemma 5 Suppose that µ is a stable matching. Then two fixed men m1 and m2 do not

admit a Pareto-improvement cycle unless at least one of the following four conditions holds:

m1 ∼µ(m1) m2; m1 ∼µ(m2) m2; µ(m1) ∼m1 µ(m2); µ(m1) ∼m2 µ(m2). (65)

Proof. The first two indifference conditions, m1 ∼µ(m1) m2 and m1 ∼µ(m2) m2, follow with-

out change from the proof of Lemma 2. In addition, however, now a cycle can also occur

when one of the women µ(m1), µ(m2) has a strict preference over the men m1, m2, but one

of these men is indifferent between µ(m1) and µ(m2). Again, if m1Pµ(m1)m2, then µ(m1)

and µ(m2) will not trade, and when m2Pµ(m1)m1, the two fixed men cannot be in the same

cycle unless µ(m1) ∼m2 µ(m2); the same logic applies to µ(m1), resulting in the indifference

[µ(m1) ∼m1 µ(m2)]. �

Theorem 6 Let µ be a random stable matching selected by the RSM and let preferences for

both men and women be randomly drawn according to a preference-generating process P ′
0,

whereby both men and women have weak, uniformly drawn preferences as in Definition 2(b).

Then the probability that two arbitrary fixed men m1 and m2 admit a Pareto-improvement

cycle satisfies the limit

Pr
(
(m1,m2) admit cycle

)
→ 0 as n→∞. (66)

Proof. When both sides of the market have weak preferences, I will say that the ordered

2-tuple (mj,mk) admits a cycle if and only if the event [mj ∼µ(mk) mk]∪ [µ(mj) ∼mk
µ(mk)]

occurs.
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The probability that an arbitrary ordered pair of men (m1,m2) admits a cycle is

Pr
(
(m1,m2) admit cycle

)
= Pr

(
[m1 ∼µ(m2) m2] ∪ [µ(m1) ∼m2 µ(m2)]

)
≤

≤ Pr
(
m1 ∼µ(m2) m2

)
+ Pr

(
µ(m1) ∼m2 µ(m2)

)
=

= 2 Pr(m1 ∼µ(m2) m2).

(67)

But according to Theorems 1(b) and 3, we have

2 Pr(m1 ∼µ(m2) m2)→ 2 Pr(m1 ∼w m2) = 2
Tn−1

Tn
→ 0, (68)

which implies that Pr
(
(m1,m2) admit cycle

)
→ 0. �

Having established this fact, the remaining proofs (Theorem 4) apply directly without

change, except that the rate of convergence to zero is twice larger. This completes the

extension to weak preferences for both sides of the market.
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