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Abstract 

There is a close link between prices of equity options and the default probability of a 
firm. We show that in the presence of positive expected equity recovery, standard 
methods that assume zero equity recovery at default misestimate the option-implied 
default probability. We introduce a simple method to detect stocks with positive expected 
equity recovery by examining option prices and propose a method to extract the default 
probability from option prices that allows for positive equity recovery. We demonstrate 
possible applications of our methodology with examples that include large financial 
institutions in the United States during the 2007–09 subprime crisis. 

 

Bank topics: Asset pricing; Financial markets; Market structure and pricing 
JEL codes: G13; G33 

 

Résumé 

Il existe un lien étroit entre les prix des options sur actions et la probabilité de défaillance 
d’une entreprise. Nous montrons qu’en présence d’une valeur de recouvrement espérée 
positive des actions, les méthodes usuelles, qui reposent sur l’hypothèse d’un taux de 
recouvrement nul de la valeur des actions en cas de défaillance, estiment mal la 
probabilité de défaillance implicite. Nous présentons une méthode simple, fondée sur 
l’examen du prix des options, pour détecter les actions dont le taux de recouvrement 
espéré est positif. Nous proposons aussi une méthode pour extraire la probabilité de 
défaillance à partir des prix des options, qui postule un recouvrement positif de la valeur 
des actions. Nous illustrons les utilisations possibles de notre démarche en l’appliquant 
entre autres aux cas de grandes institutions financières aux États-Unis durant la crise des 
prêts hypothécaires à risque des années 2007 à 2009. 

Sujets : Évaluation des actifs; Marchés financiers; Structure de marché et fixation des 
prix 
Codes JEL : G13; G33 
 

 
 



 

 

Non-Technical Summary 

Payoffs from a stock option depend on the future price of a stock. As a result, prices of options on a 
given stock contain information on the investors’ predictions of how the stock will perform in the future. 
In particular, it is possible to gauge the investors’ perception of how likely a firm is to default within a 
certain time horizon by observing prices of options written on the firm’s stock. 

Existing methodologies that attempt to link the probability of default of a firm with its stock option 
prices assume that when a firm defaults, the stock price goes to zero. The assumption is valid most of 
the time in practice, but can be violated under some situations. One such example is Chapter 11 
bankruptcy. Unlike Chapter 7 bankruptcy following which a firm is simply liquidated, Chapter 11 
bankruptcy allows for a reorganization of the firm in which bond holders and equity holders can 
renegotiate to avoid liquidation of the firm. Although Chapter 11 bankruptcies are often considered a 
default event, the firm’s stock price under Chapter 11 does not necessarily go to zero immediately 
following the bankruptcy filing. This is because of the possibility of successful reorganization that often 
leaves positive values for equity holders. Another example is government bailout of distressed firms. In 
this case, a firm goes through a near-default event, but its stock price often stays above zero following 
the government’s intervention. 

This study shows that relaxing the assumption of zero stock price at default has implications for pricing 
options and for extracting the probability of default from option prices. We first derive new lower 
bounds that the prices of European call and put options must satisfy when we allow positive stock price 
at default. We show that violations of these new lower bounds can be used to identify firms that are 
likely to have positive stock price at default. Our empirical results based on six large US financial 
institutions during the 2007−09 subprime crisis show that the lower-bound violations were frequent for 
these firms. The result is consistent with the fact that bailout of these institutions by the US government 
was highly anticipated during the crisis.  

In the last part of the paper, we examine the implication of allowing positive stock price at default for 
extracting the probability of default from option prices. We demonstrate that the default probabilities 
estimated allowing positive stock price at default are significantly different from those obtained under 
zero stock price assumption, and much closer to the estimates obtained from the spreads of credit 
default swaps of the same firm.        



1 Introduction

There is a large body of literature linking option pricing models with the prob-
ability of default of a firm, following the seminal work by Merton (1974). Most
of the studies in this literature (e.g., Bayraktar & Yang, 2011; Carr & Linetsky,
2006; Carr & Madan, 2010; Carr & Wu, 2009; and Linetsky, 2006) assume that
there is no residual asset left to pay equity investors in the event of a firm’s
default. That is, the stock price goes to zero when a default occurs. In most
cases, the assumption of zero equity recovery at default is valid. However, in
some instances, there is significant residual value to equity investors even after
a firm defaults.
To file for bankruptcy, a company is supposed to be insolvent, with debts

exceeding assets. Since debt holders must be paid back before shareholders,
firms do not typically have residual funds to pay equity holders. However, some
firms end up in Chapter 11 bankruptcy, not because they are insolvent, but
because they cannot get new loans or refinance existing debt. Furthermore, for
various strategic reasons, both equity holders and debt holders have incentives
to induce bankruptcy well before the equity value reaches zero.1

Ignoring a positive expected equity recovery at default has important im-
plications for pricing options and also for estimating the probability of default
from observed option prices. This study makes two important contributions to
the literature. First, we propose a simple method to detect stocks with posi-
tive expected equity recovery by examining prices of equity options. Second,
we propose a simple closed-form equity call option pricing formula that takes
positive equity recovery into account.
Our methodology is based on new static arbitrage-free lower bounds for

European call and put option prices when the expected default probability and
equity recovery are known. We derive these lower bounds by generalizing the
results of Orosi (2014).
The second part of the paper examines possible applications of the new lower

bounds. Due to data limitation, empirical studies are based on only a small
number of firms that serve an illustrative purpose only. First, we use the prices
of options on General Motors (GM) stock close to its bankruptcy filing in June
2009 to illustrate how the violation of the proposed lower bounds can be used to
detect positive expected recovery for GM. We also apply our method to six large
US financial institutions that were under tremendous stress during the financial
crisis of 2007—09. We find that lower-bound violations occurred frequently for
options on these stocks, indicating that the expected equity recovery rates of
these stocks were often positive during the crisis. The positive equity recovery
rates for these stocks are consistent with what eventually happened to these
firms. Some were acquired by other institutions at very low prices (Bear Stearns
and Merrill Lynch) while one was bailed out by the government (AIG). The
positive expected recovery rates reflect the investors’expectations of what the

1See Leland (1994); Leland and Toft (1996); Fan and Sundaresan (2000); Broadie, Chernov,
and Sundaresan (2007); Hackbarth, Hennessy, and Leland (2007); and Davydenko (2012).
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stocks of these firms would be worth after going through near-default events
such as distressed acquisitions and government bailouts.
The new lower bounds with positive equity recovery can be also used to

extend the closed-form equity option pricing formula of Orosi (2015a). The
model allows us to estimate the equity recovery rate and the probability of
default. We calibrate two versions of the model: the new formula that allows
for positive equity recovery and the formula in Orosi (2015a) that assumes zero
recovery. We then compare the probability of default estimated from the two
versions of the model, with the probability of default estimated from credit
default swaps (CDS) for MGM Resorts International in 2009.
We find that the probabilities of default estimated with positive recovery

are comparable to the CDS-implied probabilities of default, whereas the prob-
abilities estimated under the zero recovery assumption are significantly lower
than those implied from CDS. Our example illustrates that ignoring a positive
expected equity recovery at default has important implications for estimating
probability of default from observed option prices. Therefore, other methods
of estimating probability of default from option prices, such as Carr and Wu
(2011) and Taylor et al. (2014) must be used with caution when the equity
recovery is expected to be positive.
The rest of the paper is organized as follows: In Section 2, we show how

the violation of lower bounds for option prices can be explained by positive eq-
uity recovery at default. Section 3 describes the data. In Section 4, we present
examples of the application of the proposed methodology for detecting posi-
tive expected equity recovery from option prices. In Section 5, we propose an
interpolation-based, closed-form formula that can be used to infer the probabil-
ity of default from equity options when expected recovery is positive. Section 6
concludes the paper.

2 Violation of Lower Bounds for Options on a
Defaultable Asset

The lower bounds for European call and put prices derived in Merton (1973)
(referred to hereafter as Merton’s lower bounds) are based on the assumption
that the underlying asset price follows a strictly positive price process, which
is not the case when there is a positive probability of default. Orosi (2014)
proposes improved lower bounds under the assumption that the underlying asset
can default and the price of the asset at default is zero. In the case of equity
options, this means a zero equity recovery at default.

P (K,T ) ≥ max
(
e−rT ·K · PD, 0

)
, (1)

C(K,T ) ≥ max
(
S0e
−dT − e−rT (1− PD) ·K, 0

)
. (2)

In practice, however, Orosi’s lower bounds are often violated for equity op-
tions. In this section, we first present an alternative derivation of the lower
bounds proposed in Orosi (2014), then show that relaxing the assumption of
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zero equity recovery can explain the presence of violations of Orosi’s bounds in
practice.

2.1 Lower bounds with zero equity recovery

Following Merton (1973), we assume: (i) perfect capital markets; (ii) there
are no arbitrage opportunities; (iii) investors have positive marginal utility of
wealth; and (iv) current and future interest rates are strictly positive. Let
C (K,T ) and P (K,T ) be the current prices of European call and put options
on the stock with strike K and maturity T . r and d denote the interest rate
and the continuous dividend yield, respectively.
Consider a stock that has a current price of S0 with a positive risk-neutral

default probability of PD prior to some time T . Then, since the stock is worth-
less in the case of default,

PD = P (ST = 0),

P (ST > 0) = 1− PD.

Moreover, as De Marco et al. (2013) show, P (ST > 0) can be calculated from
call options using the identity of Breeden and Litzenberger (1978) and is given
by

P (ST > 0) = −e−rT ∂+C (K,T )

∂K

∣∣∣∣
K=0

= −e−rT
(

lim
∆K→0

C (∆K,T )− C (0, T )

∆K

)
.

Then, a digital contract that pays a unit currency at time T if default happens
prior to time T and pays zero otherwise is given by

D(T ) = e−rT · PD,

and can be replicated in terms of call options and cash, as follows:

D(T ) = e−rT · PD = e−rT − e−rTP (ST > 0) =

e−rT +
∂+C (K,T )

∂K

∣∣∣∣
K=0

= e−rT + lim
∆K→0

C (∆K,T )− C (0, T )

∆K
. (3)

Proposition 1 The lower bound of a European put option written on a default-
able asset is

P (K,T ) ≥ e−rT ·K · PD. (4)

Proof. Assuming otherwise, one can assume that (4) does not hold and form
the following zero value portfolio at time zero:

Π = P (K,T )−K ·D(T ) +B,

where B represent the amounts invested in bonds. In the case of default, the
value of the portfolio at the time of expiry is given by:

Π = K −K +BerT = BerT > 0,
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because the payoff of D(T ) = 1. If the asset does not default prior to expiry and
the option does not finish in the money (or ST > K equivalently), then the value
of the portfolio at the time of expiry is given by

Π = BerT > 0

because the put option and D(T ) become worthless. Finally, if the asset does
not default prior to expiry and the option finishes in the money (or ST 6 K
equivalently), then the value of the portfolio at the time of expiry is given by

Π = K − ST +BerT > 0.

Proposition 2 The lower bound of a European call option written on a default-
able asset is

C(K,T ) ≥ S0e
−dT − e−rT (1− PD) ·K. (5)

Proof. Using equation (4) and the put-call parity relationship:

C(K,T ) = S0e
−dT −K · e−rT + P (K,T )

≥ S0e
−dT −K · e−rT + e−rT ·K · PD

≥ S0e
−dT − e−rT (1− PD) ·K.

2.2 Lower bounds with positive equity recovery

We now assume that if a company’s stock price falls below a default barrier, db,
then the company defaults. Moreover, when a firm defaults, the stock price is
worth R ≥ 0, hereafter referred to as equity recovery.

2.2.1 Random equity recovery

We assume that equity recovery at expiry T is a continuously distributed random
variable with a probability density function fR(ρ) at a known recovery value ρ.
Then, we observe that the price of a put option can be written as follows:

P (K,T ) = e−rTE
[
(K − ST )+

]
= (6)

e−rTE
[
(K − ST )+

∣∣D] · PD +

e−rTE
[
(K − ST )+

∣∣ND] · (1− PD)

where E
[
(K − ST )+

∣∣D] is the conditional expectation if default occurs,
E
[
(K − ST )+

∣∣ND] is the conditional expectation if default does not occur,
and PD = P (ST ≤ db). Let E (R), min(R), and max(R) be the expected value,
minimum, and maximum values of the recovery at time T , respectively. Then,
the value of a put option is
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P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] = 0 if K ≤ min(R), (7)

P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] · PD
= e−rT

 K∫
min(R)

(K − ρ) · fR(ρ)dρ

 · PD if min(R) ≤ K ≤ max(R),

P (K,T ) = e−rTE
[
(K − ST )+

∣∣D] = e−rT (K − E (R)) · PD if max(R) ≤ K ≤ db.

The value of a call option follows from the put-call parity as

C (K,T ) = S0e
−dT −Ke−rT if K ≤ min(R), (8)

C (K,T ) = e−rT

 K∫
min(R)

(K − ρ) · fR(ρ)dρ

 · PD + S0e
−dT −K · e−rT

if min(R) ≤ K ≤ max(R),

C (K,T ) = e−rT (K − E (R)) · PD + S0e
−dT −K · e−rT if max(R) ≤ K ≤ db.

Hence, for max(R) ≤ K ≤ db, the values of the options are

P (K,T ) = max(K − E (R) , 0)e−rT · PD, (9)

C(K,T ) = S0e
−dT −K · e−rT + max(K − E (R) , 0)e−rT · PD. (10)

Moreover, since option prices are convex functions of K, the lower bounds of
calls and puts with K ≥ max(R) are

P (K,T ) ≥ max(K − E (R) , 0)e−rT · PD, (11)

C(K,T ) ≥ S0e
−dT −K · e−rT + max(K − E (R) , 0)e−rT · PD. (12)

Note that both calls and puts equal the lower bounds of Merton for K ≤
min(R). Therefore, the lower bounds of the options in the presence of non-
zero recovery is significantly lower than the lower bounds of options with zero
recovery that have the same probability of default. Moreover, in the presence
of recovery, the options equal their lower bounds for strikes K ≥ max(R), and
these values are significantly lower than the lower bounds of the options with
zero recovery.

2.2.2 Constant equity recovery

Note that if one deals only with options for which max(R) ≤ K ≤ db, option
prices are given by

P (K,T ) = max(K − E(R), 0)e−rT · PD,
C(K,T ) = S0e

−dT −K · e−rT + max(K − E(R), 0)e−rT · PD.
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As a consequence of convexity, for options with K ≥ max(R), the lower bounds
of calls and puts are given by

P (K,T ) ≥ max(K − E(R), 0)e−rT · PD,
C(K,T ) ≥ S0e

−dT −K · e−rT + max(K − E(R), 0)e−rT · PD.

The above equations indicate that if one deals with options for which K ≥
max(R), then it is reasonable to replace E (R) by a constant parameter R when
examining lower bounds of European calls and puts. Furthermore, if min(R)
and max(R) are close to each other, then a constant recovery assumption at
expiry is also reasonable. Therefore, the lower option bounds for a constant R
are given by

P (K,T ) ≥ max(K −R, 0)e−rT · PD, (13)

C(K,T ) ≥ max(S0e
−dT −K · e−rT + max(K −R, 0)e−rT · PD, 0).(14)

Although in our subsequent analysis we will frequently use (13) and (14), our
conclusions can be easily generalized for non-constant recovery.

2.2.3 Comparison of lower bounds

Figure 1 (left panel) shows an example of what the proposed call price lower
bounds look like compared with Merton’s lower bound,

C(K,T ) ≥ max
(
Se−dT −Ke−rT , 0

)
. (15)

If we assume that the recovery is zero, then a positive PD simply makes the
sloped portion of the bound steeper. But if we assume a positive recovery and
PD, then the bound coincides with Merton’s bound up to the expected recovery
R and starts decreasing linearly from R at the same slope as the bound with
positive PD and zero recovery.
Figure 1 (right panel) shows what can happen if the recovery is indeed

positive, but we apply the lower bound with zero recovery. In this case, we will
find that some of the observed call prices violate the lower bound. This is an
indication that the zero recovery assumption does not hold for the underlying
stock.

< Figure 1. Lower Bound for Call Prices >

Figure 2 (left panel) shows an example of what the proposed put price lower
bounds look like compared with Merton’s lower bound,

P (K,T ) ≥ max
(
Ke−rT − Se−dT , 0

)
. (16)

Figure 2 (right panel) shows how we can identify the presence of positive recovery
by looking at the observed put prices with respect to the lower bound with
positive PD and zero recovery. If the recovery is positive, then some of the
observed put prices will violate the lower bound with positive PD and zero
recovery.
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< Figure 2. Lower Bound for Put Prices >

3 Data

We obtain data on options on eight stocks from IVolatility.2 The data include
daily end-of-day option settlement prices, dividend rates, and interest rates.
IVolatility uses LIBOR rates for terms up to one year and ISDA(R) interest
rate swaps par mid-rates for longer terms. Our sample includes options on

• General Motors on 15 April 2009,

• MGM Resorts International in 2009,

• Six US financial institutions considered in Taylor et al. (2014) between
2008 and 2009: American International Group (AIG), Bank of America,
Bear Stearns, JP Morgan, Lehman Brothers, and Merrill Lynch.

4 Detecting Positive Equity Recovery with Lower-
Bound Violations

An important implication of (4) and (5) is that these static arbitrage lower
bounds are based on minimal assumptions. If one observes a violation of these
bounds (referred to hereafter as a lower-bound violation), then the non-zero
recovery assumption can be readily rejected.

4.1 Illustrative example: General Motors

General Motors (GM) filed for bankruptcy on June 1, 2009, and the “old”GM
stock started trading over-the-counter (pink sheets) on June 2. Its stock traded
at 75 cents the day before the bankruptcy filing, but shot up to about $1.20 a
share by June 12, less than two weeks after the bankruptcy filing. By April 15,
2009, the bankruptcy of GM was highly anticipated, and the price of GM stock
had plunged to $1.89 from around $40 in 2007. With this background in mind,
we look at the prices of options on GM stock on April 15, 2009.
The bid and ask prices of call options are shown in Figure 3 (left panel),

together with Merton’s lower bound and our new proposed lower bound with
PD = 40 per cent and R = 0. A conservative estimate of the PD of 40 per
cent (adjusted to the option maturity of 0.431 years) was implied from one-year
credit default swaps.
We observe that the observed prices satisfy Merton’s lower bound, but the

prices of some of the lowest strike call options violate our proposed lower bound.
The violations imply that investors could have made arbitrage profits if PD

2See http://www.ivolatility.com.
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was suffi ciently high, which was certainly the case in our example. How can we
explain the presence of these arbitrage opportunities?
One assumption we made in the lower bound plotted in Figure 3 (left panel)

is that the expected equity recovery is zero. We now relax this assumption and
suppose that the expected recovery is $1. The assumption seems reasonable,
since the price of GM stock went from 75 cents to $1.20 in the two weeks
following the bankruptcy. We plot the lower bound with PD = 40 per cent and
R = $1 in Figure 3 (right panel). Since the lower bound under the assumption
of positive expected recovery, R, coincides with Merton’s lower bound when
the strike is between zero and R, none of the observed call prices violate this
new lower bound. Therefore, there were no arbitrage opportunities arising from
lower-bound violations if investors believed that when GM eventually defaults,
the price of its stock would have dropped to $1 or higher, but not to zero.

< Figure 3. Lower-Bound Violations: General Motors >

This example shows that if the probability of default is positive and we find
low strike options violating the lower bound with positive PD, but zero R, then
this can be an indication that the expected equity recovery at default is greater
than zero.

4.2 US financial institutions during the 2007—09 financial
crisis

We apply our proposed methodology to identify stocks that are expected to have
a positive equity recovery at default. We select six large financial institutions in
the United States during the crisis for several reasons. These institutions were
under tremendous stress during the financial crisis. As a result, Lehman Broth-
ers declared bankruptcy, while Bear Stearns and Merrill Lynch were acquired
by JP Morgan Chase and Bank of America, respectively. AIG was bailed out
by the government. The circumstances leading up to the failure of these firms
provide an interesting case study because distressed acquisitions and govern-
ment bailouts are forms of near-default that often leave equity holders of the
firm in distress with small but positive residual value. Moreover, the same set
of firms and time period were used in a related study by Taylor et al. (2014)
to demonstrate their methodology for extracting the probability of bankruptcy
from stock and option prices.
The first step in identifying lower-bound violations is to obtain an estimate

of the PD. We estimate PDs using the methodology in Carr and Wu (2011) de-
scribed in Appendix. One assumption behind the Carr and Wu (2011) method-
ology is that the equity recovery is zero. As a result, for stocks with positive
equity recovery, the methodology results in underestimating PD. Therefore, a
Carr and Wu (2011) PD provides a downward-biased estimate of the actual
PD, which is suffi cient for our purpose of detecting lower-bound violations.
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We then plug the Carr-Wu PDs into Orosi’s call price lower bound, C(K,T ) ≥
max

(
S0e
−dT − e−rT (1− PD) ·K, 0

)
, to determine whether a call price violates

this lower bound. We report the frequency of lower-bound violations in Table
1. Note that the price of an American call is greater than or equal to the price
of the corresponding European call. Hence, if the above procedure yields an
arbitrage violation for an American call, it also implies an arbitrage violation
for the corresponding European call. For the same reason, we use ask quotes
rather than bid quotes.

< Table 1. Lower-Bound Violations: US Financial Institutions >

The results show that lower-bound violations occur frequently, indicating
rejection of the zero recovery assumption for these firms. The frequency of lower-
bound violations is around 80 per cent for three stocks (AIG, JP Morgan, and
Lehman Brothers). Even for the stock with the smallest number of violations,
the frequency of violations is 27 per cent. The high frequency of lower-bound
violations indicates that the expected equity recovery of these stocks during the
crisis is often likely to have been positive. In fact, for Bear Stearns, a positive
expected recovery is consistent with the fact that the firm was eventually sold
to JP Morgan Chase for $10 per share when it failed.
All our examples in this section involve government intervention due to the

systemic importance of the affected institutions. The government’s involvement
distorted the processes and outcomes, stripping bondholders of their priority in
liquidation in some cases. Although such an event is rare, its effect on equity
prices following a bankruptcy is likely to be similar to the result of reorganiza-
tion, where bondholders make concessions voluntarily.

5 Extracting Probability of Default fromOption
Prices When Equity Recovery Is Positive

Assuming zero recovery when the expected recovery is positive can lead to mis-
pricing of options and misestimation of the probability of default from equity
options. There are several ways of estimating the probability of default from
options, namely, Carr and Wu (2011), Taylor et al. (2014), and Orosi (2015a).
In this section, we focus on the method proposed in Orosi (2015a). Since the
formula in Orosi (2015a) does not allow for positive recovery, we first derive an
extension of the formula in Orosi (2015a) for the case of positive recovery. Using
(11) and the results of Orosi (2015a), an analytic expression for European call
options can be derived as:

C (K,T ) =

 S0e
−dT −Ke−rT if K ≤ R

S0e
−dT −Ke−rT + e−rT (K −R) · PD if R ≤ K ≤ db(

S0e
−dT − e−rT ·R · PD

)
· c if db < K

,

(17)
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where

c =
−B2 +

√
(B2)

2 − 4A2C2

2A2

A2 = 1−G(1− PD),

B2 = x(1− PD)− 1 + 2G ·DB(1− PD),

C2 = −G ·DB2(1− PD),

DB = S0e
−dT − e−rT ·R · PD − e−rT (1− PD) · db,

x =
e−rT ·K

S0e−dT − e−rT ·R · PD
.

To derive (17), we extend the methodology in Orosi (2015a) by allowing
non-zero equity recovery at default. We start by observing that equation (11)
gives the following equations for call option prices when K ≤ db :

C (K,T ) =

{
S0e
−dT −Ke−rT if K ≤ R

S0e
−dT −Ke−rT + e−rT (K −R) · PD if R ≤ K ≤ db.

To obtain analytic call option prices for K > db, apply the following transfor-
mations to the strikes and call option prices:

c =
C (K,T )

S0e−dT − e−rT ·R · PD,

x =
Ke−rT

S0e−dT − e−rT ·R · PD.
Note that if R ≤ K ≤ db, the relation between c and x is given by

c = 1− (1− PD) · x,
or equivalently

x =
1− c

1− PD.

To ensure that the transformed call option prices, c, are decreasing and convex

functions of x when K > db, we use the following expression to model the
dependence between these two variables

x =
1− c

1− PD +G
(1− c)2

c
, (18)

where G is a positive constant. Note that the above relation also guarantees the
continuity of call prices at K = db and c→ 0 as x→ 0.

Equation (18) can be rearranged as follows:

c2(1−G(1− PD)) + c(x(1− PD)− 1 + 2G(1− PD))−G(1− PD) = 0.

Finally, equation (17) is obtained as the positive root of the above quadratic
equation.
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5.1 Illustrative example: MGM Resorts International

We calibrate the call option formula in (17) to call options on MGM stock in
2009. We chose MGM because we have access to data on the credit default swaps
and also because MGM did not pay any dividends after 2000. This simplifies
our analysis, since American-style call options have no early exercise premia
when the dividend is zero, and thus can be treated as European options.
We fit two versions of the formula. In Model 1, R, PD, and db are parameters

that are extracted from option prices, whereas Model 2 assumes that R is zero.
For each trading day in the sample, (17) is calibrated by minimizing the root
mean squared per cent pricing errors:√√√√ 1

n

n∑
i=1

(
Cij (θj)− Cij

Cij

)2

, (19)

where θj represents the parameters for the jth given trading day, the {Cij}ni=1
are the observed option prices on the jth trading day (for all strikes and expiries),
and the Cij (θj)-s are the option prices based on the model.
We fit the model to in-the-money call options because Orosi (2015b) points

out that the model provides a poor fit for out-of-the-money calls. On many days,
we cannot find enough in-the-money call options to calibrate the parameters,
so we use simulated prices instead. First, for each trading day in the sample, a
cubic Hermite spline-based interpolant is fitted to all available call options with
the second-longest maturity. The average maturity of the options used is around
0.74 years, which is approximately 9 months. Then, using this interpolant, 15
uniformly distributed call option prices with the same maturity are generated
so that the minimum of the generated strike prices corresponds to 70 per cent
of the minimum values of all available strike prices, and the maximum of the
generated strike prices corresponds to the stock price.

< Table 2. Probability of Default and Equity Recovery Rate: MGM
Resorts International (2009) >

The results of the model calibration are reported in Table 2, and the five-day
moving averages of the estimated PDs are plotted in Figure 4. We also plot the
PDs computed from American put option prices using the methodology in Car
and Wu (2011) for comparison. Moreover, to assess whether the equity implied
probabilities agree with those extracted from credit markets, we use CDS with
a maturity of five years. We first estimate the constant hazard rate, λCDS , from
CDS spreads by using the relation:

λCDS =
SP

1−RBond
,

where SP is the CDS spread andRBond is the bond recovery rate that is assumed
to be 40 per cent.

12



To make the PDs implied from options and those implied from CDS com-
parable in terms of their time horizon, we use the relation in equation (21) to
calculate one-year PDs by adjusting PDs estimated from options of different
maturities and λCDS estimated from five-year CDS spreads.

We report the average estimates of the model parameters for both Model 1
and Model 2 in Table 2. The times-series plot of the PDs computed from Model
1 and Model 2 show that Model 2 significantly underestimates PDs (Figure 4A).
The PDs from Model 1 are comparable with the PDs implied from American
puts or CDS. However, the PDs from Model 2 are significantly lower than the
PDs implied from American puts or CDS.
We also plot the estimated equity recovery and default barrier in Figure 4B.

The average estimated equity recovery and default barrier for MGM in 2009 are
$1.37 and $2.78, respectively. The two quantities are highly correlated, with a
correlation of 0.69. The equity recovery is mildly correlated with the probability
of default, with a correlation of 0.19, whereas the default barrier is negatively
correlated with the probability of default, with a correlation of -0.28. It is
unclear a priori how the expected equity recovery and default barrier should be
related to the probability of default. Moreover, estimating the precise level of
the equity recovery and default barrier is a much harder task than estimating
the probability of default. Therefore, we do not go into a detailed discussion of
the relation among these three variables in this paper.

< Figure 4. Probability of Default, Equity Recovery, and Default
Barrier: MGM >

Our example illustrates that ignoring a positive expected equity recovery at
default has important implications for estimating probability of default from
observed option prices. Therefore, other methods of estimating probability of
default from option prices such as Carr and Wu (2011) and Taylor et al. (2014)
must be used with caution when the equity recovery is expected to be positive.

6 Conclusion

In the presence of positive expected equity recovery, the standard methods that
assume zero equity recovery at default misestimate the probability of default
implicit in option prices. We introduce a simple method to detect stocks with
positive expected equity recovery by examining option prices and propose a
method to extract the probability of default from option prices in the presence
of positive expected equity recovery. Our methodology is based on new lower
bounds for European call and put option prices when the expected default prob-
ability and equity recovery are known. Our empirical results show that assum-
ing zero recovery leads to significant mispricing of options and misestimation of
implied probability of default.
Our methodology is particularly useful in examining firms that are close

to filing or going through Chapter 11 bankruptcy, but with a high probability
of successful reorganization. For these firms, it is important to take positive
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expected equity recovery into account when pricing options. Systemically im-
portant firms such as large financial institutions, automobile companies, and
airlines are special cases in which the possibility of government bailout plays
an important role in inducing a positive expected equity recovery. We leave an
in-depth study of firms in Chapter 11 bankruptcy using our methodology for
future research.

Appendix. Probability of Default Implied from
Puts: Carr and Wu (2011)

Carr and Wu (2011) define a unit recovery claim (URC) as a contract that pays
one dollar at default whenever the company defaults prior to the option expiry
and pays zero otherwise. Under the assumption of a constant default arrival
rate, λ, the value of a URC is given by

U(T ) =

T∫
0

λe−rse−λsds = λ
1− e−(r+λ)T

r + λ
. (20)

The probability of default, PD, can be computed from the default arrival rate,
λ, using the relation,

PD = 1− e−λT . (21)

Carr and Wu (2011) show that for low strike prices, the URC can be replicated
by an American put, PAm(K,T ), the following way:

U(T ) =
PAm(K,T )

K
. (22)

PD can be easily calculated by first calculating the value of U(T ) using (22),

then determining the value of λ from (20), and finally plugging λ into the
equation (21).
To compute U(T ), Carr and Wu (2011) use only options that satisfy the

following criteria: (i) the bid price is greater than zero; (ii) the time-to-maturity
is greater than 360 days; (iii) the strike price is $5 or less; and (iv) the absolute
value of the put’s delta is not larger than 0.15.
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< Table 1. Lower-Bound Violations: US Financial Institutions >

Violations Carr-Wu Prob. of Default # Options
(%) mean (std) filtered

AIG 80 0.12 (0.14) 186
Bear Sterns 27 0.17 (0.17) 51
Bank of America 64 0.12 (0.14) 347
JP Morgan 81 0.08 (0.14) 354
Lehman Brothers 81 0.08 (0.08) 123
Merrill Lynch 53 0.12 (0.14) 73

Note: We report the frequency of violation of Orosi’s lower bound for
call options, C(K,T ) ≥ max

(
S0e
−dT − e−rT (1− PD) ·K, 0

)
, using

all call options on the six US stocks between 2008 and 2009. To do
this, we first compute Carr and Wu (2011) probabilities of default,
PD, by using the methodology described in Appendix. We then
plug the estimated PDs into the lower-bound formula to determine
whether an option price violates it. We also report the number
of options used in estimating Carr-Wu PDs. The filtered options
satisfy the following conditions: (i) the bid price is greater than
zero; (ii) the time-to-maturity is greater than 360 days; (iii) the
strike price is $5 or less; and (iv) the absolute value of the put’s
delta is not larger than 0.15.
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< Table 2. Probability of Default and Equity Recovery Rate: MGM
Resorts International (2009) >

Root Mean
Squared (%Error) G R (%) PD (%) db (%)

Model 1: R>0
Mean 0.83 0.3869 19.11 23.13 35.90
Standard Deviation n/a 0.3037 17.43 21.93 12.41
Model 2: R=0
Mean 2.23 0.61 0 4.52 26.66
Standard Deviation n/a 0.81 n/a 7.53 21.32

Note: We calibrate the call option price formula in (17) to call op-
tions on MGM Resorts International stock in 2009. Model 1 assumes
positive equity recovery and thus estimates R by fitting the observed
call prices to the pricing formula. Model 2 assumes zero recovery and
thus R is simply fixed at zero. For each trading day in the sample,
the model is calibrated by minimizing the root mean squared per
cent pricing errors of generated in-the-money options. To generate
in-the-money call option prices, a cubic Hermite spline-based inter-
polant is fitted to all available call options with the second-longest
maturity. Then, using this interpolant, 15 uniformly distributed call
option prices with the same maturity are generated so that the min-
imum of the generated strike prices corresponds to 70 per cent of
the minimum values of all available strike prices, and the maximum
of the generated strike prices corresponds to the stock price.
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< Figure 1. Lower Bound for Call Prices >

Note: The parameters used are: stock price(S)=$10, riskfree rate(r)=0%,
dividend yield(d)=0%, time-to-maturity(T)=1 year, default barrier(db)=$4.
Merton’s lower bound for call prices, C, is C(K) ≥ max

(
Se−dT −Ke−rT , 0

)
,

where K is the strike price. The lower bound for call prices with
a positive probability of default, PD, is C(K,T ) ≥ S0e

−dT − K ·
e−rT + max(K −R, 0)e−rT · PD. The call prices on the right panel
are generated using (17) with G = 0.12.

< Figure 2. Lower Bound for Put Prices >

Note: The parameters used are: stock price(S)=$10, riskfree rate(r)=0%,
dividend yield(d)=0%, time-to-maturity(T)=1 year, default barrier(db)=$4.
Merton’s lower bound for put prices, P , is P (K) ≥ max

(
Ke−rT − Se−dT , 0

)
,

where K is the strike price. The lower bound for put prices with a
positive probability of default, PD, is P (K,T ) ≥ max(K−R, 0)e−rT ·
PD. The put prices on the right panel are generated using put-call
parity and (17) with G = 0.12.
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< Figure 3. Lower-Bound Violations: General Motors >

Note: We plot the bid and ask prices of call options on General
Motors’ stock on April 15, 2009. The parameters used are: stock
price(S)=$1.89, riskfree rate(r)=0.93%, dividend yield(d)=0%, time-
to-maturity(T)=0.431 year, and probability of default (PD) = 40%.
The probability of default was estimated from credit default swaps
on General Motors. Merton’s lower bound for call prices, C, is
C(K) ≥ max

(
Se−dT −Ke−rT , 0

)
where K is the strike price. The

lower bound for call prices with a positive probability of default,
PD, is C(K,T ) ≥ S0e

−dT −K · e−rT + max(K −R, 0)e−rT · PD.
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< Figure 4. Probability of Default, Equity Recovery, and Default
Barrier: MGM >

Note: We calibrate the call option price formula in (17) to call op-
tions on MGM Resorts International stock in 2009. Model 1 assumes
positive equity recovery and thus estimates R by fitting the observed
call prices to the pricing formula. Model 2 assumes zero recovery and
thus R is simply fixed at zero. For each trading day in the sample,
the model is calibrated by minimizing the root mean squared per
cent pricing errors of generated in-the-money options. To generated
in-the-money call option prices, a cubic Hermite spline-based inter-
polant is fitted to all available call options with the second-longest
maturity. Then, using this interpolant, 15 uniformly distributed call
option prices with the same maturity are generated so that the min-
imum of the generated strike prices corresponds to 70 per cent of
the minimum values of all available strike prices, and the maximum
of the generated strike prices corresponds to the stock price.
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