Remarks on
“Central banker’s modeling toolbox: one-for-all or all-for-one”

Raf Wouters (NBB)

Workshop on Central Bank Models: The Next Generation,
Bank of Canada, November 17, 2016
The “one-for-all” model

- The main central bank projection model should deliver:

 - structural interpretation of the state of the economy:
 - real-nominal-financial

 - competitive statistical forecasts: point and density forecasts

 - counterfactual policy simulations for monetary and (macro)prudential policy
 - evaluate objective, indicators and instruments
 - fundamental distortion that motivates policy intervention (3D-project)
 - transmission mechanism for policy interventions:
 endogenous risk and risk-taking are important ingredients

=> integrated macro-finance model
Properties of the “one-for-all” model

- General equilibrium perspective
- Appropriate dataset and stochastic structure
- Explicit modelling of expectations and risk component
- Beyond the standard linear Gaussian setup
- Feasibility
- Arguments for suite of models
General equilibrium perspective

- GE approach is necessary for identifying endogenous risk channel:
 - system of simultaneous equations that contains feedback channels (towards endogenous risk) and that is driven by broad set of exogenous shocks (multidimensional)
 - financial crisis suggests that endogenous risk mechanism is quantitatively important for financial stability and for the business cycle and with an active role for constrained FI
 - efficiency and spillover of policy instruments determine the optimal design of monetary and macroprudential policy: risk taking channel of MP/UMP, real cost of higher CR

- GE perspective is necessary for identification of shocks (Chari et al 2009):
 - use broad information set to overcome identification problem (macroprudential shocks?)

- GE dynamics should be consistent with findings of partial-information early warning models:
 - allow for structural interpretation in terms of underlying shock and friction/distortion (See Brunnermeier-Palia-Sastry-Sims (2016) for such an exercise in SVAR context)
Appropriate dataset and stochastic structure

- Large dataset improves forecast and identification:
 - price and quantity information to identify D/S nature of shocks (labor, oil market)
 - relevant risk premium, financial aggregates and balance sheets (book and market prices), volatility index (indicator for quantity of risk/time variation in second moments), credit standards (indicator for risk aversion and risk taking behavior), etc.
 - survey expectations: timely information, forecast consistent or outperforming surveys, minimize need for judgment (Slobodyan-Wouters 2016)

- Appropriate specification of the stochastic structure:
 - specification of shocks important for optimizing model fit and forecast performances: e.g. risk premium shock (SW 2007), risk shocks (CMR 2014)
 - anticipated/news shocks? (DSGE > VAR)
 - time-varying volatility in exogenous shocks
Identification of expectations and risk component in asset pricing

- Explicit testing and modelling of expectations:
 - rational expectations versus learning (AL or RS)
 - perfect information versus partial/sticky/limited processing capabilities
 - discipline expectations with survey data: anchoring of inflation expectations:
 Andrade et al 2016, Carvalho et al 2015,

- Endogenous risk modelling:
 - multidimensional nature ⇔ one risk indicator
 - various models with non-linear amplification dynamics available
 - risk pricing reflects effective risk aversion of FI as marginal investor +
 feedback is reinforced when financial constraints become binding (He Krishnamurthy 2013)
Towards non-Gaussian non-linear dynamics

==> Feasible to solve and estimate non-linear models with endogenous volatility and risk:

- Models with time varying volatility in exogenous shocks:

- Non-linear models with occasionally binding constraints:
 - OccByn (Guerrieri-Iacoviello 2015) or anticipated shocks (LSW 2015 - LMW 2016)
 - no uncertainty/risk (=> Stochastic extended path Adjemian-Julliard 2013)

- Non-linear model with endogenous risk:
 - Regime Switching in forward looking models: exogenous (LSW2015, DelNegro et al 2014 dynamic prediction pools) or endogenous regime switching (Maih 2014)
 - Perturbation approach: third order pruning gives linear approximation of risk channel (Dewachter-Wouters 2014)

- Bayesian estimation techniques for non-linear model evaluation:
 - efficient SMC sampling techniques (Herbst-Schorfheide 2014,F-Villaverde-Schorfh.2016)
 - deterministic filters: sigma (Binning-Maih 2015), UKF (Andreasen 2013)

- Parallel processing and distributed computing
Arguments for model diversity

- **model uncertainty:**
 - testing and comparing alternative specification of the frictions
 - no generally accepted analytical framework for macroprudential analysis

- **document stylized fact on non-linear or time-varying macro-finance relations**
 - reduced form evidence on crucial variables, non-linear relations and time-varying variances and correlations

- **sector detail:**
 - not all sectors can be analyzed with the same detail in one model: use common core block

- **heterogeneity within sectors:**
 - (macro)prudential policy that is targeting for lower vulnerability and increased resilience is more interested in outcomes for most exposed banks/firms/household not necessary in the average outcome
 - aggregation issues complicate such an analysis in DSGE context