Trade Integration and the Trade Balance in China

George Alessandria

Horag Choi

Dan Lu

Rochester

Monash

Rochester

October 2016

https://sites.google.com/site/georgealessandria2/ACL-201606.pdf

Main Question

What accounts for China's trade balance over last 25 years?

Suspects - productivity, monetary, fiscal, demographic, risk, trade

Main Question

What accounts for China's trade balance dynamics over last 25 years?

Suspects - productivity, monetary, fiscal, demographic, risk, trade

Short Answer: Trade integration key driver

- Lower trade barriers easier to run deficits/surpluses
- f 2 Temporary and Asymmetric $f \Delta$ in barrier source of deficits/surplus

China Real Trade balance & Trade share of GDP

Quadrupling of trade \Rightarrow big $\Delta's$ in trade barriers/tastes

Trade Integration - Mechanical Decomposition

$$TB/Y = \frac{X - M}{X + M} \frac{X + M}{Y} = tbtr * try$$

Trade Integration - Mechanical Decomposition

$$TB/Y = \frac{X - M}{X + M} \frac{X + M}{Y} = tbtr * try$$

Consider "counterfactual" holding try at level in early 90s

$$\widetilde{TB/Y} = \frac{X - M}{X + M} \frac{X_{90s} + M_{90s}}{Y_{90s}} = tbtr * \overline{try}$$

Figure 1: China's Real TB/Y TB/Y constant trade .05 1990 1995 2000 2010 2015 2005

- 1. mid-2000's trade surplus not so large
- 2. Trade integration shocks will also affect tbtr

Preview

- Build unified model of China's growth, trade integration, and borrowing/lending.
 - Emphasize changes in trade barriers as source of foreign asset accumulation
- Trade matters for the trade balance when trade cost "shocks" are persistent
 - Asymmetric Δ in trade barriers lead to lending
 - Symmetric Δ in trade barriers lead to net flows with asymmetric countries
- Use model to account for source of integration and dynamics of integration
 - ► Trade slowdown primarily reflects lack of additional integration shocks rather than outright reversal

Model

- Two countries, final NT consumption good, non-contingent bond
- Heterogeneous producers with dynamic exporting decision (sunk cost - Baldwin-Dixit-Krugman)
 - SR/LR trade adjustment (Alessandria/Choi 07, 15)
 - captures expansion in extensive margin of trade
- Pricing-to-market: exporter's demand elasticity depends on RER and relative income.
- Aggregate shocks: productivity, trade costs, and discount factor (China-specific & global)
 - ▶ Range of trade shocks fixed, variable, and phased-in reforms.

Consumers

$$\max E_0 \sum_{t=0}^{\infty} \Theta_t \frac{\left[C^{\gamma} \left(1-L\right)^{1-\gamma}\right]^{1-\sigma}}{1-\sigma},$$

subject to

$$\begin{split} P_t C_t + P_t Q_t \left(1 + \frac{\zeta_b}{2} \frac{B_t}{Y_t^N} \right) B_t &= W_t P_t L_t + P_t B_{t-1} + \Pi_t, \\ \ln \left(\Theta_{t+1} / \Theta_t \right) &= \ln \beta_t = (1 - \rho_b) \ln \overline{\beta} + \rho_b \ln \beta_{t-1} + \varepsilon_\beta, \end{split}$$

- Discount factor shocks capture "savings glut"
- Q_t is bond price and $\frac{\zeta_b}{2} \frac{B_t}{Y_t^N}$ is a bond holding cost.

Aggregators and Prices

Final good produced by competitive retail sector/aggregator sourcing from unit mass domestic producers and set of foreign exporters

$$egin{array}{lcl} C_t &=& \left(Y_{Ht}^{rac{
ho-1}{
ho}} + a^{rac{1}{
ho}}Y_{Ft}^{rac{
ho-1}{
ho}}
ight)^{rac{
ho}{
ho-1}}, \ Y_{Ht} &=& \left(\int_0^1 Y_{hit}^{rac{ ho-1}{ heta}} di
ight)^{rac{ ho}{ heta-1}}, \ Y_{Ft} &=& \left(\int_{i\in\mathcal{E}_t^*} Y_{fit}^{rac{ ho_t-1}{ heta_t}} di
ight)^{rac{ ho_t}{ ho_t-1}}. \end{array}$$

• $\theta_t = \theta (q, y/y^*)$ captures pricing-to-market

Producers - standard sunk cost model (Dixit, 89)

$$V_{t}(\eta, m) = \max_{m', p, p^{*}} pc_{t}(p) + m'p^{*}c_{t}(\xi^{*}p^{*}) - WI$$
$$-m'Wf_{m, t} + Q_{t}EV_{t+1}(\eta', m')$$

- m_{it}: exporting status from previous period indexes fixed export cost
- $y_{it} = e^{z_t + \eta_{it}} I_{it}$, $\eta_{it} \stackrel{iid}{\sim} N\left(0, \sigma_{\eta}^2\right)$
- $\xi_t^* > 1$: variable trade costs for home exporters
- $W_t f_{0,t}$: sunk cost to start
- $W_t f_{1.t}$: sunk cost to continue.
- Trade policy Δ in shocks to trade costs $(\xi_t, f_{0,t}, f_{1,t})$

Export Entry and Exit Thresholds

$$\Delta V_{t}\left(\eta\right) = V_{t}\left(\eta,1\right) - V_{t}\left(\eta,0\right)$$

$$W_{t}f_{0,t} - \pi_{t}^{*}\left(\eta_{0t}\right) = Q_{t}E_{t}\Delta V_{t+1}\left(\eta'\right)$$

$$W_{t}f_{1,t} - \pi_{t}^{*}\left(\eta_{1t}\right) = Q_{t}E_{t}\Delta V_{t+1}\left(\eta'\right)$$

- ullet Endogenous entry/exit & hysteresis $(\eta_{1t} < \eta_{0t}$ when $\mathit{f}_1 < \mathit{f}_0)$
- Distribution of exporters is state variable & gradual entry
- With iid shocks,

$$\mathit{N}_{t+1} = \mathsf{Pr}\left(\eta \geq \eta_{1t}
ight) \mathit{N}_{t} + \mathsf{Pr}\left(\eta \geq \eta_{0t}
ight) (1 - \mathit{N}_{t})$$

Aggregate Shocks - Productivity

$$\begin{aligned} & \ln z_t^* &= & \rho_z^* \ln z_{t-1}^* + \varepsilon_{zt}^*, \ \varepsilon_{zt} \overset{iid}{\sim} N\left(0, \sigma_z^*\right) \\ & \ln z_{dt} &= & \rho_z^d \ln z_{dt-1} + \varepsilon_{zt}^d, \ \varepsilon_{zt}^d \overset{iid}{\sim} N\left(0, \sigma_z^d\right) \\ & \ln z_t &= & \ln z_t^* + \ln z_{d,t} - \bar{z} \end{aligned}$$

- z_t*: Global productivity
- $z_{d,t}$: China-specific productivity
- \bar{z} : China's productivity disadvantage.

Aggregate Shocks - Variable Trade Costs

$$\begin{split} & \ln \xi_t &= & \ln \xi_{ct} + 0.5 \ln \xi_{dt}, \\ & \ln \xi_t^* &= & \ln \xi_{ct} - 0.5 \ln \xi_{dt}. \\ & \ln \xi_{ct} &= & \left(1 - \rho_{\xi_c}\right) \ln \bar{\xi}_c + \rho_{\xi_c} \ln \xi_{ct-1} + \ln \xi_{gt-1} + \varepsilon_{\xi_c t}, \\ & \ln \xi_{gt} &= & \rho_{\xi_g} \ln \xi_{gt-1} + \varepsilon_{\xi_g t}, \\ & \ln \xi_{dt} &= & \left(1 - \rho_{\xi_d}\right) \ln \bar{\xi}_d + \rho_{\xi_d} \ln \xi_{dt-1} + \varepsilon_{\xi_d t}. \end{split}$$

- Transitory: ξ_{ct} : common shock and ξ_{dt} : differential shocks
- Trend common shocks. news aspect know one-year in advance path of liberalization.

Aggregate Shocks - Fixed Trade Costs

$$\ln f_{0t} ~=~ (1-\rho_{f0}) \ln f_0 + \rho_{f0} \ln f_{0t-1} + \varepsilon_{f0,t},$$

$$\ln f_{1t} ~=~ (1-\rho_{f1}) \ln f_1 + \rho_{f1} \ln f_{1t-1} + \varepsilon_{f1,t}.$$
 Constrain $\rho_{f1} = \rho_{f0} = \rho_f$

Calibration/Estimation

Fixed Parameters

$\overline{\beta}$	ζ_b	γ	<i>a</i> ₁	θ
0.96	0.0001	0.30	0.16	5

Estimate

- Shock process: z_c , z_d , ξ_c , ξ_g , ξ_d , f_0 , f_1 , b
- $\bullet \ \ \text{Level of trade costs} \ \left(\bar{\boldsymbol{\xi}}_{c} \ \bar{\boldsymbol{\xi}}_{d} \text{, } \textit{f}_{0} \text{, } \textit{f}_{1}\right) \ \text{and technology} \ \left(\bar{\boldsymbol{z}} \text{, } \sigma_{\eta}\right)$
- Preferences $(\sigma, \rho, \zeta_q, \zeta_y)$

Estimation - Data

- Ratio of China-ROW real income
- Nominal export/import ratio
- Real trade share in China
- Real exchange rate
- Real world output detrended
- Ohinese exporters participation

Figure: Deviations from Steady State of Exogenous State Variables

Estimated Persistence of Shocks

	prior	posterior		90% HPD - interval	prior	prior
	prior	•		90 /0 TIFD - IIItervai	prior	•
	mean	mean	mode			std.dev.
ρ_{z_d}	0.95	0.996	0.999	0.9905 - 1	unif	0.5
ρ_{z_c}	0.7	0.747	0.731	0.5586 - 0.954	unif	0.5
$ ho_{ar{\xi}_c}$	0.79	0.917	0.962	0.8099 - 0.9981	unif	0.5
$ ho_{{oldsymbol{arxi}_d}}$	0.95	0.978	0.992	0.9578 - 0.9998	unif	0.5
$ ho_b^a$	0.945	0.948	0.953	0.9158 - 0.98	norm	0.025
$\rho_{{\xi}_g}$	8.0	0.895	0.975	0.7423 - 0.9978	unif	0.5
$ ho_f$	0.9	0.820	0.853	0.666 - 0.9939	unif	0.5
ho	2	1.7975	1.8167	1.5194-2.0776	invg	1
σ	5	4.7777	4.4192	3.3591-5.9876	invg	1

Notes: Based on annual data from 1990 to 2014.

Shocks are persistent but not permanent - rationale for borrowing/lending

Nominal Export-Import Ratio and Trade Shocks

Consider 1 standard deviation shock that increase trade

 Differential trade shock - relatively cheaper for China to export relatively large impact on net trade flows and weak effect on gross flows

Nominal Export-Import Ratio and Trade Shocks

Consider 1 standard deviation shock that increase trade

- Differential trade shock relatively cheaper for China to export relatively large impact on net trade flows and weak effect on gross flows
- Global shocks have an effect on net trade since countries are of different sizes and hence they have wealth effects
 - Persistent shock- China saves to smooth out shock
 - Trend shock China borrows against future

Decomposition of Trade Balance to GDP

Construct contribution of shocks to Trade-Balance/GDP from contribution to Export-Import Ratio and Trade-GDP Ratio

- Need to account for direct and interaction effects (i.e. discount factor shock has bigger impact with a trade cost shock)
 - Group shocks into trade costs (T), productivity & preferences (P), and Initial Conditions (I)

Trade costs were major source of surpluses in since 2003.

Decomposition of Net Foreign Assets to GDP Ratio

- Construct contribution of shocks to NFA/GDP by accumulating TB
- Specifically, take model's initial assets to GDP $\left(Q_{1990}B_{1990}/Y_{1990}\right)$ and then update Q_tB_t/Y_t using the law of motion

$$\frac{Q_tB_t}{Y_{Nt}} = \left(\frac{Q_{t-1}B_{t-1}}{Y_{Nt-1}}\right)\left(\frac{1}{Q_{t-1}}\right)\left(\frac{Y_{Nt-1}}{Y_{Nt}}\right) + \frac{0.5\ln\left(X_{Nt}/M_{Nt}\right)}{Y_{Nt}},$$

Again need to account for direct and interaction effects

b. Net Foreign Assets/GDP 1.20 1.00 0.80 \square P 0.60 0.40 **■**IxP 0.20 **■**IxT **■**PxT 0.00 **■**IxPxT -0.20 -AII --Data -0.40 -0.60

2005

2010

1990

1995

2000

Table 4: Source of Change in China's Assets-GDP (%)

	Benchmark	No PTM	Static
Data	36.2	36.2	36.2
All	54.9	66.7	71.6
Initial (I)	40.2	1.0	1.4
Productivity-Pref. (P)	3.5	0.8	1.7
Trade (T)	28.3	37.4	17.6
IxP	-28.4	22.3	30.2
IxT	25.3	33.6	40.9
PxT	0	-8.4	3.1
IxPxT	-13.9	-20.1	-23.4
IP	15.2	24.1	33.3
IT	93.8	72.0	59.8
PT	31.7	29.9	22.4

Data is based on WDI. P denotes shocks to $(\mathbf{Z}_c, \mathbf{Z}_d, \boldsymbol{\beta})$, and T denotes shocks to $(\boldsymbol{\xi}_c, \boldsymbol{\xi}_d, \boldsymbol{\xi}_g, \boldsymbol{\tau}_0, \boldsymbol{\tau}_1)$.

Cross (x) denotes interaction effects while IP, IT, PT denotes impact of two determinants together

Global Trade Slowdown

Following Trade collapse and recovery global trade integration has been anemic -

Trade reforms largely complete by 2006

Static vs Dynamic Trade Model: Expected Trade Growth

- Consider how estimated future trade costs depend on model
- Eliminate sunk cost static exporting model
- ullet Re-estimate model with 1 fixed export cost $\emph{f}_0 = \emph{f}_1$

Integration prospects overstated in static models

Summary

- Changes in trade barriers matter for change in net foreign assets
- Chinese trade integration attributed equally to trend, common, differential and productivity.
- Trade slow-down mostly reflects lack of barrier reductions, rather than reversal, and waning influence of past reforms.
 - Expectations for integration have diminished but remain similar to 1999 levels

Estimated Preferences and Technology							
	prior	post	erior	90% HP	D Interval	prior	prior
	mean	mean	mode				std.dev.
\bar{q}	-1	-1.0459	-1.0518	-1.3639	-0.6777	norm	0.25
\bar{Y}_w	-1.335	-1.3198	-1.3273	-1.3958	-1.2479	norm	0.2
ρ	2	1.7975	1.8167	1.5194	2.0776	invg	1
σ	5	4.7777	4.4192	3.3591	5.9876	invg	1
Ī	2.42	2.338	2.3449	2.1749	2.4864	norm	0.1
$ar{ar{\xi}}_c$	0.5	0.5031	0.5045	0.4251	0.5742	norm	0.05
$ar{\xi}_c$	0.1	0.1132	0.1001	-0.0379	0.2631	norm	0.1
ς_q	0	0.0364	0.0526	-0.1515	0.2441	norm	0.15
ζ_y	0	-0.0203	-0.0275	-0.113	0.0888	norm	0.15
f_0	0.37	0.3786	0.3681	0.2969	0.4545	invg	0.05
f_1	0.04	0.0422	0.0428	0.0348	0.0498	invg	0.005
σ_{η}	0.235	0.199	0.186	0.1508	0.2434	invg	0.05

Notes: Based on annual data from 1990 to 2014.

Estimated Shock Std. Deviation

	prior	posterior		90% HPD - interval	prior	prior
	mean	mean	mode			std.dev.
σ_{z_d}	0.07	0.0699	0.0678	0.0527 - 0.0871	invg	0.025
σ_{z_c}	0.033	0.0355	0.0333	0.0267 - 0.043	invg	0.025
σ_{ξ_c}	0.2	0.1602	0.1549	0.1209 - 0.1984	invg	0.05
σ_{ξ_d}	0.124	0.1653	0.1531	0.1276 - 0.2018	invg	0.05
σ_{ξ_g}	0.016	0.0339	0.0118	0.0052 - 0.0692	invg	0.02
σ_{f_0}	0.01	0.007	0.0047	0.0025 - 0.0119	invg	0.05
σ_{f_1}	0.22	0.2213	0.2193	0.2075 - 0.2378	invg	0.01
σ_b	0.005	0.0055	0.0044	0.0029 - 0.0082	invg	0.01

Notes: Based on annual data from 1990 to 2014.

Period is 1990 to 2014

Outline

- Model
- Estimation
- Results decomposition of
 - Net Foreign Assets
 - ► Trade Integration
 - ► Trade Slowdown

Assets-GDP Ratio and Trade cost shocks

Consider 1 standard deviation shock

- Persistent trade cost shocks Δ assets.
- Common increase in trade cost affects China more since it is more open.
 - ▶ + transitory →borrowing
 - + trend shock →savings
- Differential shocks, temporarily cheaper for ROW to consume—savings
- Fixed cost shock: temporarily more expensive for ROW to consume→borrow

