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Abstract 

This paper shows point identification in first-price auction models with risk aversion and 

unobserved auction heterogeneity by exploiting multiple bids from each auction and 

variation in the number of bidders. The required exclusion restriction is shown to be 

consistent with a large class of entry models. If the exclusion restriction is violated, but 

weaker restrictions hold instead, the same identification strategy still yields valid bounds 

for the primitives. We propose a sieve maximum likelihood estimator. A series of Monte 

Carlo experiments illustrate that the estimator performs well in finite samples and that 

ignoring unobserved auction heterogeneity can lead to a significant bias in risk-aversion 

estimates. In an application to U.S. Forest Service timber auctions we find that the 

bidders are risk neutral, but we would reject risk neutrality without accounting for 

unobserved auction heterogeneity. 

JEL classification: C57, C14, D44, L00 

Bank classification: Econometric and statistical methods 

Résumé 

Nous présentons une méthode d’identification ponctuelle dans le cadre de modèles 

d’enchères au premier prix où sont prises en compte l’aversion au risque et une 

hétérogénéité non observée des enchères. La méthode d’identification proposée s’appuie 

sur de multiples offres tirées de chaque enchère et sur le nombre variable d’offreurs. 

L’hypothèse d’exclusion retenue est compatible avec une classe étendue de modèles 

formalisant les décisions d’entrée. Si cette hypothèse d’exclusion est violée mais que des 

restrictions moins strictes demeurent, la même stratégie d’identification aboutit à des 

bornes valides pour les primitives. Nous proposons un estimateur du maximum de 

vraisemblance par tamisage local. À partir d’une série de simulations de Monte-Carlo, il 

est montré que cet estimateur donne de bons résultats sur des échantillons finis et que ne 

pas prendre en compte l’hétérogénéité non observée des enchères peut causer un biais 

significatif des estimations de l’aversion au risque. En appliquant notre méthode aux 

enchères organisées par le Service des forêts des États-Unis pour l’adjudication de bois 

d’œuvre, nous constatons que les offreurs sont neutres à l’égard du risque; cependant, en 

ignorant l’hétérogénéité non observée des enchères, nous rejetterions cette neutralité. 

Classification JEL : C57, C14, D44, L00 

Classification de la Banque : Méthodes économétriques et statistiques 



Non-Technical Summary 

 

Bidders’ risk attitude is crucial to auction design. It greatly influences the optimal format of the 
auction, as well as the optimal reserve price in first-price auctions. Previous papers show that one 
can estimate bidders’ risk attitude from bid data, and they find that bidders are risk averse using 
U.S. Forest Service (USFS) timber auctions. However, these papers ignore unobserved 
heterogeneity of auctions, which refers to characteristics of auctioned objects that are observed 
by the bidders but not by the econometricians. Unobserved auction heterogeneity is common in 
many auction environments and can potentially bias the estimates. 

This paper shows that by exploiting multiple bids from the same auction and variation in the 
number of bidders, risk attitudes can be identified in auctions with unobserved heterogeneity. We 
propose a sieve maximum likelihood estimator to estimate the bidders’ risk attitudes. Evidence 
from the USFS timber auctions shows that bidders are close to risk neutrality and that ignoring 
unobserved heterogeneity leads to significant overestimation of bidders’ risk aversion. 
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1 Introduction

Estimating the risk aversion of bidders is important for auction design. Risk aversion leads

to more aggressive bidding in first-price auctions with independent private values, whereas

bidding in English auctions is not affected. Therefore, first-price auctions generate higher

revenues than English auctions if the bidders are risk averse (Holt (1980)).1 In first-price

auctions, risk aversion reduces the optimal reserve price, because aggressive bidding does not

have to be induced with the help of a high reserve price (Riley and Samuelson (1981), Hu,

Matthews, and Zou (2010)).2

This paper studies identification and estimation of risk aversion in first-price auctions with

unobserved auction heterogeneity, which is ubiquitous in applications to field data. We con-

sider the workhorse model with symmetric independent private values and one-dimensional

unobserved auction heterogeneity. We begin by showing point identification under an exclu-

sion restriction, which proceeds in two steps.

In the first step, multiple bids from the same auction are used to identify the bid distri-

bution conditional on the unobserved auction heterogeneity. This step builds on results of

Krasnokutskaya (2011), Hu, McAdams, and Shum (2013), and d’Haultfoeuille and Février

(2010b), who apply techniques from the measurement error literature. Intuitively, the bid

distributions conditional on the unobserved auction heterogeneity can be identified using the

dependence among bids from the same auction that is created by the unobserved auction

heterogeneity. Applying the techniques from the non-separable measurement error literature

to first-price auctions with risk-averse bidders is not straightforward because it requires the

highest bid to be strictly increasing in the unobserved auction heterogeneity. We provide new

comparative statics results for auctions with risk-averse bidders to establish this monotonicity

condition.

1This result holds for a given number of risk-averse bidders. The revenue ranking is preserved in the entry
model of Levin and Smith (1994a) but Smith and Levin (1996) show that it can be reversed with endogenous
entry and decreasing absolute risk aversion. Matthews (1987) compares auction formats from the perspective
of risk-averse bidders.

2Maskin and Riley (1984) study the optimal auction mechanism under risk aversion.
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In the second step, we apply the identification result of Guerre, Perrigne, and Vuong (2009)

to the bid distributions conditional on the unobserved auction heterogeneity to recover the

primitives. The exclusion restriction required for point identification is that the distribution

of valuations conditional on the unobserved auction heterogeneity does not depend on the

number of bidders. Hence, bidders are allowed to select into auctions based on the unobserved

auction heterogeneity. We show that the exclusion restriction is satisfied under a wide range

of entry models if the entry signals and valuations are independent across potential bidders,

conditional on the unobserved auction heterogeneity. Intuitively, if the entry signals and

valuations are independent across potential bidders, so are their entry decisions. Therefore,

after conditioning on unobserved auction heterogeneity, an entrant’s valuation is independent

of other potential bidders’ entry decisions. Hence, the distribution of valuations conditional

on the unobserved auction heterogeneity does not depend on the number of entrants.

We also discuss the case where the exclusion restriction is violated such that the (con-

ditional) valuation distribution in an auction with more bidders first-order stochastically

dominates the valuation distribution with fewer bidders. We provide a condition for the

bid distributions that guarantees robustness with respect to this violation in the following

sense: the primitives recovered under the violated exclusion restriction still bound the true

primitives in this case, and if risk neutrality is rejected, this conclusion remains valid.

Next, we turn to estimation. In light of the typical sample size available in applications,

we consider a semi-parametric specification with constant relative risk aversion and multiplic-

ative unobserved auction heterogeneity.3 We propose a sieve maximum likelihood estimator

and show its consistency under low-level conditions.4 Monte Carlo experiments show that

the estimator performs well with sample sizes commonly found in applications.

3Earlier applied work also considered multiplicative unobserved auction heterogeneity (e.g., Krasnokut-
skaya (2011) or Athey, Levin, and Seira (2011)).

4Deriving the asymptotic distribution of the estimator is beyond the scope of this paper due to the non-
regular likelihood function and the semi-parametric specification. Ackerberg, Chen, and Hahn (2012) show
that for a regular likelihood function, treating the problem as parametric is numerically identical to using the
asymptotic formula for semi-parametric estimation. While this result does not apply here, the Monte Carlo
results suggest that treating the problem as parametric works well in practice.
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The Monte Carlo study also shows that ignoring unobserved auction heterogeneity can

lead to a significant bias in risk-aversion estimates. Interestingly, the sign of the bias depends

on the correlation between the unobserved auction heterogeneity and the number of bidders,

because there are two opposing effects. First, if auctions with better unobserved auction

heterogeneity attract more bidders, the shift of the (unconditional) bid distribution as the

number of bidders increases is amplified. This effect leads us to underestimate risk aversion

because risk aversion has the opposite effect on the bid distribution.5 Second, the unobserved

auction heterogeneity increases the dispersion of bids. This effect leads us to overestimate

risk aversion because risk aversion has the same effect on the bid distributions.6 Which of

the two effects dominates depends on how strongly the number of bidders is correlated with

the unobserved auction heterogeneity.

In an application, we study U.S. Forest Service (USFS) timber auctions. We find that

the bidders are close to risk neutral, but we would reject risk neutrality without allowing for

unobserved auction heterogeneity.

This paper connects two separate strands of the structural auction literature: unobserved

auction heterogeneity and risk-averse bidders. Krasnokutskaya (2011) and Krasnokutskaya

(2012) consider identification and estimation with separable unobserved auction heterogen-

eity in first-price auctions while Hu, McAdams, and Shum (2013) consider identification in

the non-separable case. Several papers have documented unobserved auction heterogeneity

in USFS timber auctions (e.g., Aradillas-López, Gandhi, and Quint (2013a), Aradillas-López,

Gandhi, and Quint (2013b), Roberts and Sweeting (2013), Roberts and Sweeting (forthcom-

ing) and Athey, Levin, and Seira (2011)).

The empirical literature on risk aversion in first-price auctions started with laboratory

experiments where risk aversion had been proposed as an explanation of the overbidding

5Risk aversion tends to attenuate the shift of the bid distribution as the number of bidders increases,
because it leads to aggressive bidding. Therefore, bids are close to valuations even for a low number of
competitors, and the bid distribution cannot shift much as the number of bidders increases.

6Risk aversion also increases the dispersion of bids, because the bid function at the lower bound of the
valuation distribution is not affected by risk aversion, while bidders with higher values bid more aggressively.
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puzzle.7 Bajari and Hortacsu (2005) apply structural auction methods to experimental data

and conclude that the canonical auction model with risk-averse bidders fits experimental

data better than some alternative models, which give up the assumption of Bayesian Nash

Equilibrium. Several papers found the bidders in USFS timber auctions to be risk averse,

relying on different restrictions for the identification of risk aversion.8

The only other paper we are aware of that considers nonparametric identification with

risk-averse bidders and unobserved auction heterogeneity is Guerre, Perrigne, and Vuong

(2009).9 They provide conditions to ensure that the model can be identified if an instrument

is available, which affects the number of bidders but not the distribution of valuations.10 As

such an instrument is difficult to find in many applications, we exploit multiple bids from the

same auction to achieve identification with unobserved auction heterogeneity.

In a complementary paper to ours, Gentry, Li, and Lu (2015) also consider identification

and estimation of risk aversion in first-price auctions. In contrast to this paper, they consider

a model where the bidders do not know the number of entrants when they submit their bid.

Therefore, the result of Guerre, Perrigne, and Vuong (2009) no longer applies in their model,

and identification is more challenging. They show that a parametric restriction on the copula

governing entry usually restores the point identification of all primitives, while a parametric

restriction of the utility function leads to point identification of the utility function and to

7The overbidding puzzle refers to the common finding in laboratory experiments that bidders bid more
aggressively than predicted by the risk-neutral Bayesian Nash Equilibrium (e.g. Cox, Smith, and Walker
(1988)). For further references, see the excellent surveys by Kagel (1995) and Kagel and Levin (2010).

8For example Lu and Perrigne (2008) use variation in the auction format, while Campo, Guerre, Perrigne,
and Vuong (2011) impose mild parametric restrictions to identify risk aversion. For risk aversion in timber
auctions, see also Baldwin (1995) and Athey and Levin (2001). Campo (2012) finds evidence of risk aversion
in construction procurement auctions. Kong (2015) finds moderate levels of risk aversion in oil and gas
auctions which explains the revenue difference between first-price and ascending auctions.

9Kim (2015b) and Zincenko (2014) propose nonparametric estimators to implement their main identific-
ation result without unobserved auction heterogeneity.

10They consider two alternative conditions to achieve identification: under the first condition, there is
a monotone mapping between the number of bidders and the unobserved auction heterogeneity. Under
the second condition, there is a monotone mapping between the instrument and the unobserved auction
heterogeneity. These monotonicity assumptions allow the econometrician to identify the unobserved auction
heterogeneity for each auction, and then proceed as if the unobserved auction heterogeneity is observed, in
order to identify the distribution of valuations and the utility function. In contrast, our approach does not
allow us to recover the unobserved auction heterogeneity for each auction, but identifying the bid distribution
conditional on the unobserved auction heterogeneity is sufficient to identify the utility function.
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partial identification of the remaining primitives.

The rest of the paper is organized as follows. Section 2 presents the identification results.

In Section 3, we propose a semi-parametric sieve maximum likelihood estimator. Section 4

conducts Monte Carlo experiments to evaluate the finite sample performance of the estimator

and to illustrate the bias of risk-aversion estimates if unobserved auction heterogeneity is

ignored. Section 5 is an application to USFS timber auctions, and Section 6 concludes.

2 Identification

There are n ≥ 2 active bidders with independent private values. Their values, v, are inde-

pendent draws from the distribution F (·|u, n) with a continuous density f (·|u, n) supported

on [v (u) , v (u)], where 0 ≤ v (u) < v (u) ≤ ∞. The econometrician does not observe the

one-dimensional auction characteristic u, which follows the distribution F u (·|n). The bidders

share a common utility function, U , where U ′ (·) ≥ 0, U ′′ (·) ≤ 0, and U ′′ is continuous. The

utility function is normalized such that U (0) = 0 and U (1) = 1.11 Define λ (·) = U (·) /U ′ (·).

The equilibrium bidding strategy sn (·, u) is characterized by the following first-order condi-

tion:

∂sn (v, u)

∂v
= (n− 1)

f (v|u, n)

F (v|u, n)
λ (v − sn (v, u)) ,

with the boundary condition sn (v (u) , u) = v (u). Guerre, Perrigne, and Vuong (2009, Pro-

position 3) showed that if u is observed, F and U are point identified from bid data under

the following restriction:

Assumption 1. F (·|u, n) = F (·|u).

In a model of entry, F (·|u, n) is generated by the equilibrium of an entry game among

potential bidders.12 If the potential bidders observe u before making their entry decision,

11As we normalize the utility function such that U (1) = 1, we implicitly assume that max
v∈[v(u),v(u)]

v −

sn (v, u) ≥ 1. If this condition is violated, identification of λ and F is not affected, but we would have to
choose a smaller point for the normalization to solve the differential equation λ (·) = U (·) /U ′ (·) for U .

12The primitive of this bigger model is the distribution of valuations conditional on u and the number of
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they will select into auctions based on u. Therefore, the distribution of valuations without

conditioning on u generally does vary with n. Once we condition on all the variables that

are observed by the potential bidders, however, the distribution of valuations for entrants

generally does not depend on n.13 Indeed, we show in Appendix B.1 that Assumption 1

holds in many common entry models, including the Affiliated Signal Entry Model (Ye (2007),

Gentry and Li (2014)) and its two polar cases considered in Levin and Smith (1994a) and

Samuelson (1985).14 The exclusion restriction is therefore consistent with selective entry once

we condition on u. Even if Assumption 1 is violated, the estimated primitives still bound the

true primitives under weaker restrictions, as shown in Theorem 3.

In applications to field data, we have to confront the possibility that u is not observed.

Previous work studying such environments has assumed that bidders are risk neutral and

focused on the identification of F (·|u) (Krasnokutskaya (2011) and Hu, McAdams, and Shum

(2013)). The identification strategy exploits the fact that the data contain more than one

bid for each auction. The unobserved auction heterogeneity creates dependence among bids

from the same auction, which allows the researcher to separately identify the distribution of

u and the bidders’ private information. We combine this strategy with Guerre, Perrigne, and

Vuong (2009). The first result is an extension of Krasnokutskaya (2011) that considers cases

where valuations consist of two independent and separable components.15

Theorem 1. Suppose that Assumption 1 holds and we observe at least two randomly selected

bids from auctions with n1, n2 ≥ 2 bidders. Suppose one of the following conditions holds:

(1). F (v|u) = F ∗ (v − u) for all v and u, for some F ∗ with density f ∗. In addition, As-

potential bidders, whereas F (·|u, n) is no longer a primitive.
13We also have to condition on the number of potential bidders if it varies across auctions.
14Notice that, like most of the literature, we assume that the bidders know when they bid how many of

their rivals decided to enter the auction. See Gentry, Li, and Lu (2015) for identification of risk aversion in
first-price auctions if the bidders do not know when they bid how many of their rivals decided to enter the
auction.

15It is worth noting that the assumption of independence between u and v∗ is imposed on bidders who
decided to enter the auction. In Appendix B.2, we impose the same assumption on potential bidders and
ask for which entry models independence of u and v∗ carries over to entrants. We show that independence is
preseved if the potential bidders observe a signal for v∗ or u, but generally not if they observe both.
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sumption 7(1) (Appendix A.1) holds.

(2). F (v|u) = F ∗ (v/u) for all v and u, for some F ∗with density f ∗. Bidders have con-

stant relative risk aversion (CRRA) with CRRA-coefficient σ ∈ [0, 1). In addition,

Assumption 7(2) (Appendix A.1) holds.

Normalize the lower bound of the support of f ∗ to 1. Then U , F ∗, F u (·|n1) and F u (·|n2)

are identified.

One insight from this result is that there is an important distinction between additive and

multiplicative auction heterogeneity if the bidders are risk averse. If the unobserved auction

heterogeneity enters valuations additively, then it also enters the equilibrium bid function

additively – regardless of the utility function. If the unobserved auction heterogeneity enters

valuations multiplicatively and the bidders have CRRA utility, then it also enters the bid

function multiplicatively. If the utility function is not of the CRRA form, however, then the

bidding strategy is not separable in u and the deconvolution techniques in Kotlarski (1967)

can therefore no longer be applied.16

The result requires a location normalization. To see why, consider the additive case

(Theorem 1(1)). If F ∗ is shifted to the right by 1 while F u (·|n1) and F u (·|n2) are shifted to

the left by 1, the distribution of v, and therefore the bid data, remains unchanged. Hence,

this shifted set of primitives is observationally equivalent to the original set of primitives. An

analogous argument can be made for the multiplicative case in Theorem 1(2).

Besides allowing for risk aversion, Theorem 1 also generalizes Krasnokutskaya (2011) to

accommodate unbounded unobserved auction heterogeneity and unbounded private values.

This is achieved by building on an extension of Kotlarski (1967) by Evdokimov and White

(2012).

If the unobserved auction heterogeneity does not enter in a separable way, establishing

identification is more involved. Hu, McAdams, and Shum (2013) show identification under

16This case will be covered in Theorem 2.
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the following monotonicity restriction on F if bidders are risk neutral and u takes on a finite

number of different values .

Assumption 2. F (v|u1, n) ≤ F (v|u2, n) for all v, u1 > u2, and n, and there exists v such

that F (v|u1, n) < F (v|u2, n).

Proposition 1. Suppose Assumption 2 holds and v̄ (u) <∞ for every u, then sn (v̄ (u1) , u1) >

sn (v̄ (u2) , u2).

This result says that the highest bid is strictly increasing in u. This is an important

requirement to apply the techniques from the non-separable measurement error literature.

Hu, McAdams, and Shum (2013) establish this property by exploiting the closed form of the

bidding strategy if the bidders are risk neutral. If the bidders are risk averse the bidding

strategy typically does not have a closed form, and establishing strict monotonicity of the

highest bid is therefore more involved.17

Theorem 2. Suppose that Assumptions 1 and 2 hold and we observe three randomly selected

bids from each auction with n1, n2 ≥ 3 bidders. Then U and F are identified if one of the

following two conditions is satisfied:

(1). Discrete u: The support of u is 1, 2, ...K, with K <∞ for n1 and n2.

(2). Continuous u:

(a) [u (n1) , u (n1)] ∩ [u (n2) , u (n2)] 6= ∅.

(b) v (u) is strictly increasing in u.

(c) Assumption 8 (Appendix A.1) holds.

(d) u = v (u).

17To the best of our knowledge, this is a new comparative statics result for auctions with risk-averse bidders.
To show identification, we only need to establish strict monotonicity of the highest bid in u, but the proof in
Appendix A.3 shows that the whole bid distribution is (weakly) shifted to the right as u increases.
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Here, [u (n) , u (n)] is the support of the unobserved auction heterogeneity in an n-bidder

auction. Theorem 2(1) extends the result of Hu, McAdams, and Shum (2013) for discrete u.

Theorem 2(2) builds on d’Haultfoeuille and Février (2010a) and applies to cases where u is

continuous.

The condition for Theorem 2(1) can be broken up into three parts. First, the support

of u has a finite number of points. Second, the support is the same for n1 and n2. Third,

the support is normalized to 1, 2, ...K. Next, we turn to the condition for Theorem 2(2).

First, we require that for some u we observe n1- and n2-bidder auctions — otherwise, we

could not exploit variation in the number of bidders conditional on u for identification.

Second, we assume that v (u) is strictly increasing in u. Together with Proposition 1, this

implies that the lowest and the highest bid are both strictly increasing in u. The third

assumption is a smoothness condition. The fourth assumption is a normalization of u, which

is required because observationally equivalent primitives can be constructed by applying

monotone transformations to u.18

In both cases, the support restrictions for u allow us to match bid distributions from n1−

and n2-bidder auctions on u. If u is discrete, we match bid distributions based on their first-

order stochastic dominance ranking. To guarantee that the bid distributions with the same

ranking correspond to the same u, the support of u must be invariant. If u is continuous,

we can match the bid distributions based on the lower bound of their support due to the

additional assumption that v (u) is strictly increasing. Therefore, it is sufficient if the two

supports overlap.19

It is important that Theorems 1 and 2 allow the distribution of u to depend on the

number of bidders. Intuitively, if the bidders observe u before they make their entry decision,

then auctions with better unobserved auction heterogeneity might attract more bidders.

In Appendix B.3, we confirm this intuition for the separable case covered in Theorem 1.

18Formally, consider ũ = h (u) for some increasing function h and F̃ (·|u, ·) = F
(
·|h−1 (u) , ·

)
, which lead

to the same distribution of valuations and bids.
19It is worth noting that the model with discrete u could also be identified with strictly increasing v (u)

and overlapping support.
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Formally, we show that the distribution of the unobserved auction heterogeneity is increasing

in n in the sense of first-order stochastic dominance.

Next, we relax Assumption 1 such that valuations are increasing in n in the sense of

first-order stochastic dominance.

Assumption 3. F (v|u, n1) ≥ F (v|u, n2) for all v, u and n1 < n2.

Define

Ri (α, u) =
1

ni − 1

α

g (bni (α, u) |u, ni)
,

where i = 1, 2, α ∈ [0, 1], g (·|u, n) is the bid density, and bn (α, u) is the α-th quantile of the

bid distribution.

Condition 1. Let n1 < n2. There is u∗ such that

(1). bn1 (0, u∗) = bn2 (0, u∗).

(2). R1 (α, u∗) > R2 (α, u∗) for all α > 0 .

This is not an assumption on primitives but a condition for the bid distribution. Therefore,

it can be checked once the bid distribution conditional on u has been recovered. The first

part of this condition states that the lowest bid in n1- and n2-bidder auctions is the same. To

interpret the second part, note that the first-order condition for an i bidder auction can be

written as Ri (α, u) = λ (v (α, u)− bni (α, u)). Therefore, the condition says that bid shading

is larger at the α-th quantile in an n1-bidder auction than in the more competitive n2-bidder

auction.

Let λ̃ with λ̃ (0) = 0 be consistent with the bid distributions given u∗ if we (incor-

rectly) impose Assumption 1 for n1 and n2. Let x = λ̃−1

(
max
α∈[0,1]

R1 (α, u∗)

)
. Let Ũ (x) =

exp
(´ 1

x
log
(
λ̃(t)

))
dt for x ∈ [0, 1] and Ũ (x) = exp

(
−
´ x

1
log
(
λ̃(t)

))
dt for x ∈ [1, x).

Theorem 3. Suppose that u is observed and that Assumption 3 and Condition 1 hold, then

(1). λ (x) ≥ λ̃ (x) for x ∈ [0, x), U (x) ≥ Ũ (x) for x ∈ [0, 1], and U (x) ≤ Ũ (x) for

x ∈ [1, x).
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(2). bni (α, u∗) ≤ F−1 (α|u∗, ni) ≤ λ̃−1 (Ri (α, u
∗)) + bni (α, u∗) for i = 1, 2.

To shorten the statement of the result, it is assumed that u is observed, but the extension

to unobserved u along the lines of Theorems 1 and 2 is straightforward.

The first part of the result shows that λ̃ bounds the true λ from below. By integrating

λ (·) = U (·) /U ′ (·) with U (1) = 1, this bound can be translated into a bound on U . The

second part shows that the valuations are bounded from below by the bids and from above

by the inverse bid function consistent with λ̃.

This is a robustness result. It provides conditions to ensure that the primitives recovered

under Assumption 1 remain meaningful as bounds even if the assumption is violated. For

example, suppose we estimate λ̂ under Assumption 1 and conclude that the bidders are risk

averse because λ̂ (x) > x for some x. This conclusion remains valid if Assumption 1 is violated

but Assumption 3 and Condition 1 are satisfied. The primitives can be partially identified

under Assumption 3, even if Condition 1 does not hold. In this case, however, the bounds

no longer coincide with the primitives recovered under Assumption 1.

3 Estimation

In light of the typical sample size in applications, we consider a semi-parametric specification

with constant relative risk aversion, multiplicative observable auction characteristics and mul-

tiplicative unobserved auction heterogeneity. A bidder’s valuation is v = v∗u exp [log (X) γ].

The bidder’s private value, v∗, follows the distribution F ∗ with density f ∗.20 To simplify the

notation, let F u
n denote the distribution of the unobserved auction heterogeneity and let fun be

its density. The private values v∗ and the unobserved auction heterogeneity u are independ-

ent of each other. The p-dimensional vector X contains observable auction characteristics.

We assume that X is independent of both v∗and u. Bidders share a CRRA utility function

with coefficient σ. Following Proposition 1 in Krasnokutskaya (2011), it can be shown that

20Notice that this notation implicitly imposes Assumption 1.
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u exp [log (X) γ] enters the bidding strategy multiplicatively (see Appendix A.2.1).

The data contain L auctions. Let Ln denote the number of auctions with n ≥ 2 act-

ive bidders. Let N be the set of n such that Ln > 0. For the `-th auction, we observe

Z` = (b`, X`, n`). Here, b` is the vector of all bids, X` is the vector of observed auction

characteristics, and n` is the number of active bidders. We also denote the i-th element of

b` as bi,`. The primitives of the model are
(
σ, γ, f ∗, {fun}n∈N

)
. This specification satisfies the

assumptions of Theorem 1(2) if N has at least two elements.

We develop a sieve maximum likelihood estimator (sieve MLE) based on the joint densities

of all the bids from the same auction. We propose a computationally feasible method to

compute the joint bid densities. We also show that the estimator is consistent under low-

level conditions.21,22

3.1 Parameter Space

The supports of the densities of unobserved auction heterogeneity and the private values are

[µ, u+ µ] and [1, v∗ + 1], with u > 0 and v∗ > 0 known.23 Here, u and v∗ are the lengths of

the supports, which may be infinite, and µ is the unknown lower bound of the support of u.

It lies in some known closed interval I ⊂ R with a lower bound greater than 0. Without loss

21Formally deriving the asymptotic distribution of the estimator is beyond the scope of this paper. The
major difficulty is that the likelihood is non-regular, because the support of the bid densities depends on the
parameters. Therefore, the results from Ackerberg, Chen, and Hahn (2012) do not apply here. The Monte
Carlo experiments show that treating the model as parametric and using the asymptotic results from Smith
(1985) performs well in practice. It is worth noting that the bid density does not jump at the boundary of
its support, so the results in Donald and Paarsch (1993); Chernozhukov and Hong (2004); and Hirano and
Porter (2003) do not apply.

22An alternative frequentist estimator would be the simulated method of moments estimator proposed by
Bierens and Song (2011), which has been extended to the case with unobserved auction heterogeneity by
Grundl and Zhu (2015). We found that the standard errors for estimates of the CRRA coefficient with the
sieve MLE are about 60% smaller than with the simulated method of moments with an exponential or uniform
weight function (results available upon request). Consequently, the test of risk neutrality has more power.
The precision with the simulated method of moments could be improved by estimating the optimal weight
function. We were not able to obtain satisfactory risk-aversion estimates with two-step estimators where the
effect of unobserved auction heterogeneity is separated out in a first step as in Krasnokutskaya (2011). For
Bayesian estimation approaches for first-price auctions, see Kim (2015a), Kim (2015b) and Aryal, Grundl,
Kim, and Zhu (2015).

23Alternatively, we could assume that u and v∗ are unknown but finite and treat them as parameters. In
practice, it is difficult to distinguish a large upper bound with thin density from a small lower bound.

14



of generality, the lower bound of v∗ is normalized to be 1.

Instead of working directly with primitives, we transform them into the parameter θ =(
σ, γ, µ, ψ∗, {ψun}n∈N

)
, where µ is the lower bound of unobserved auction heterogeneity and

the ψs are functions supported on [0, 1], which take on values no less than −1 and integrate

up to 0. f ∗, {fun}n∈N can be expressed in terms of ψ functions. To do so, first choose some

base density functions hu and h∗ supported on [0, u] and[1, v∗ + 1], respectively. Let H∗ and

Hu be their corresponding distributions. With some abuse of notation, let the densities given

θ be f ∗ (x; θ) = [Tψ∗] (H∗ (x))h∗ (x) and fun (x; θ) = [Tψun] (Hu (x))hu (x), where

[Tψ] (x) =
[1 + ψ (x)]2

1 +
´
ψ (x)2 dx

.

It is easy to show that for any primitives f ∗ and fun , we can find θ such that f ∗ (·) = f ∗ (·; θ)

and fun (·) = fun (· − µ; θ). This transformation allows us to work with functions supported

on [0, 1].24

Let θ0 =
(
σ0, γ0, µ0, ψ

∗
0,
{
ψu0,n

}
n∈N

)
be the true parameter under h∗ and hu, which lives

in a known space Θ = Σ×Kp × I × A . Σ = [0, 1− η], K ⊂ R is a compact set, and I is a

closed interval with a lower bound greater than 0. A = Ψ (B)n+1 where

Ψ (B) =

ψ ∈ Cq [0, 1] :

ˆ
ψ (x) dx = 0,

ˆ
ψ2 (x) dx <∞, ψ + 1 ≥ η,

∑
0≤k≤q

ˆ
ψ(k) (x)2 dx ≤ B

 ,

and where η is some arbitrarily small positive number. B is a known positive constant and

q is a positive integer. Notice that Ψ (B) only contains functions that are smooth enough to

guarantee that Ψ (B) is compact under the sup-norm. Therefore, we avoid the inconsistency

problem due to an ill-posed inverse problem.25

Define α =
(
ψ
∗
, {ψun}n∈N

)
, so θ = (σ, γ, µ, α).With some abuse of notation, let ‖ψ‖∞ =

24This transformation follows Bierens and Song (2012).
25This regularization follows Santos (2012).
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supx∈[0,1] |ψ (x)| and

‖α‖∞ = max

{∥∥ψ∗∥∥∞ ,max
n∈N

{∥∥ψu

n

∥∥
∞

}}
,

where‖·‖E is the standard Euclidean norm. One can show that Θ is a compact space under

‖·‖s where

‖θ1 − θ2‖s = max {|σ1 − σ2| , |µ1 − µ2| , ‖γ1 − γ2‖E , ‖α1 − α2‖∞} .

3.2 Sieve Maximum Likelihood Estimator

One difficulty in constructing the sieve MLE is computing the joint bid densities. These

potentially high-dimensional objects are complicated functions of θ and have no closed forms.

We compute the bid densities numerically by exploiting the separable form of the bidding

function. Let gn (·; θ) be the joint density of bids given θ in n-bidder auctions if logX = 0.

gn (b; θ) =

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ) fun (u− µ; θ) du. (1)

Here, g∗n is the marginal bid distribution in an auction with n-bidders whose value density

is f ∗ (·; θ). g∗n (b∗; θ) can be obtained by exploiting the first-order condition of the bidding

strategy. Notice that

g∗n (b∗; θ) =


1−σ
n−1

F ∗(s∗−1
n (b∗;θ);θ)

s∗−1
n (b∗;θ)−b∗ if 1 < b∗ ≤ s∗n (v̄∗; θ) ;

0 otherwise,

where s∗−1
n (·; θ) is the inverse of the bidding strategy

s∗n (v; θ) = v −
ˆ v

1

[
F ∗ (x; θ)

F ∗ (v; θ)

]n−1
1−σ

dx.
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The likelihood function can be written as

l (Z`; θ) = l (Z`; (σ, γ, µ, α)) =
∑
n∈N

1{n`=n} log gn (exp (log b` − logX`γ) ; θ) .

The sieve maximum likelihood estimator is defined as

θ̂L = arg max
θ∈ΘkL

1

L

∑
l (Z`; θ) . (2)

ΘkL = Σ × Kp × I × AkL is the sieve space, where AkL is a sequence of finite dimensional

spaces that grows with the sample size. The estimator of the CRRA coefficient σ̂L is the first

element of θ̂L. Let E0 be the expectation under the true primitives.

Assumption 4. (1). hu and h∗ are bounded and strictly bigger than 0 in the interior of

their support, and they have bounded continuous derivatives.

(2). limv↓1 h
∗ (v) / (v − 1)ε = C as v ↓ 1 for some ε ≥ 0 and C > 0.

(3). lim supv→∞ h
∗ (v) v2+δ < C and lim supv→∞ h

u (v) v2+δ < C for some C, δ > 0.

Assumption 5. The sieve space satisfies:

(1). {AkL}
∞
L=1 is an increasing sequence of closed subsets of A.

(2). supα∈AkL
‖α−A‖∞ = o (1).

Assumption 6. E0

[
logXT logX

]
has eigenvalues bounded away from 0 and ∞.

Assumption 4 includes requirements for the choice of h∗ and hu. Many commonly used

density functions satisfy these requirements. Assumption 4 and the definition of Θ imply that

the densities of the primitives are their corresponding base densities multiplied by functions

bounded from above and bounded away from 0.26 Assumption 5(1) requires that the sieve

space is closed and increasing so that the maximization problem in equation (2) is well

26Therefore, we rule out densities with unconnected support, unbounded first moments, and unbounded
values.
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defined. Assumption 5(2) requires that AkL approximates A well enough. In Assumption 6,

XT is the transpose of X. This assumption guarantees that γ0 is identified.

Proposition 2 (Consistency). If Assumptions 4, 5, and 6 hold, θ̂L
p−→ θ0 as L→∞ under

‖·‖s. In particular, σ̂L
p−→ σ0.

The proof is based on Theorem 5.14 in van der Vaart and Wellner (2000) and generalizes

Wald’s consistency proof to the sieve MLE. The complication in this case is that the expected

log likelihood function can take on the value −∞ for some θ. Bierens (2014) considers a

similar case, but he requires the parameters at which the expected log likelihood is greater

than −∞ to be dense in the parameter space. One can show that in the case considered

here, the set of θ such that E0l (Z`, θ) = −∞ has interior points. It is worth noting that

Assumptions 4, 5, and 6 are low-level conditions. A key step to prove consistency is to show

that under these low-level conditions, the likelihood function and the sieve spaces satisfy

certain regularity conditions. In particular, we need to show that l (Z; θ) is upper semi-

continuous in θ, Z-a.e., and that there exists θ0,kL ∈ ΘkL such that ‖θ0,kL − θ0‖s → 0 and

E0l (Z`, θ0,kL)→ E0l (Z`, θ0). Lemmas that establish these regularity conditions are collected

in the Appendix.

4 Monte Carlo Experiments

4.1 Setup

Each generated sample has 900 auctions, and the number of bidders n ranges from 2 to 5.27

We consider three different data-generating processes (DGPs). In all DGPs, v = v∗uXγ0 ,

with logX
iid∼ N (0, 1) and γ0 = 0.9. The unobserved auction heterogeneity is drawn from

an χ2 distribution. In DGP 1, there is no selection on u, and the χ2 parameter is 2 for all

n. In DGP 2, there is weak selection on u, and the χ2 parameter increases from 2 for n = 2

27The probabilities are 36% for n = 2, 27% for n = 3, 21% for n = 4, and 16% for n = 5.
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to 2.6 for n = 5. In DGP 3, there is strong selection on u, and the χ2 parameter increases

from 2 for n = 2 to 6.5 for n = 5. In all DGPs, bidders’ private values v∗ are drawn from a

χ2-distribution with parameter 3. We consider the CRRA coefficients σ0 = 0, 0.1, 0.2 and

0.3 to assess how well the estimation method can distinguish risk neutrality and moderate

levels of risk aversion. We repeat the Monte Carlo experiment 1,000 times.

4.2 Estimators

Results for two estimators are reported. The first estimator is the sieve MLE estimator

proposed in section 3.2. H∗ and Hu are both exponential with parameter 8. ψ∗ and ψ∗n are

both fourth-order Legendre polynomials. We compute bidding strategies at 3,000 points and

interpolate linearly.28

As a benchmark, we also obtain estimates without taking unobserved heterogeneity into

account, following the method used in Bajari and Hortacsu (2005) (BH estimator).29 This

estimator is computationally light and therefore a natural choice for a specification without

unobserved auction heterogeneity. It is a two-step estimator. First, we estimate the following

equation by ordinary least squares regression (OLS):

log bi,` = c+ γ logX` + εi,`.

Let γ̂ be the OLS estimate. We then construct the residual bids b̂∗i,` = exp (bi,` − γ̂ logX`).

Next, we estimate the following equation by OLS:

b̂∗n1
(q)− b̂∗n2

(q) = (1− σ)

 qi

ĝn2

(
b̂∗n2

(q)
)

(n2 − 1)
− qi

ĝn1

(
b̂∗n1

(q)
)

(n1 − 1)

 . (3)

Here, q ∈ [0, 1] and b̂∗n (q) is the q-th quantile in the empirical distribution of b̂∗i,`, given that

28The grid points are chosen such that the grid is finer for low values, because the bidding strategy there
can be very nonlinear.

29Bajari and Hortacsu (2005) used this estimator for experimental data without unobserved auction het-
erogeneity.

19



n` = n and ĝn

(
b̂∗n (q)

)
is the corresponding density. A Gaussian kernel with the rule-of-

thumb bandwidth is used to estimate ĝn . Equation (3) is estimated at 100 equally spaced

quantiles ranging from 0.25 to 0.75.30 We restrict the estimates to be between 0 and 1. We

report results for n1 = 2 and n2 = 4.31

4.3 Results

The discussion in this section focuses on the results for the CRRA coefficient shown in Table

1. Appendix D.2 contains the results for the value distribution and the distribution of the

unobserved auction heterogeneity.

First, consider the results if unobserved auction heterogeneity is taken into account using

the sieve MLE estimator shown in the upper half of Table 1. The estimator works well for all

three DGPs. The bias is very small (at most 0.014) if σ0 6= 0, but if the parameter is on the

boundary of the parameter space (σ0 = 0) it is somewhat larger (up to 0.048). The standard

deviation is at most 0.102.

Now consider the result if we ignore unobserved auction heterogeneity, using the two-step

BH estimator shown in the lower half of Table 1. Ignoring unobserved auction heterogeneity

can lead to a significant bias in risk-aversion estimates. Interestingly, the sign of the bias

depends on the DGP. The CRRA coefficient is significantly overestimated under DGPs 1 (no

selection) and 2 (weak selection), but it is underestimated under DGP 3 (strong selection).

Section 4.4 provides some intuition to understand why the sign of the bias depends on the

correlation between the number of bidders and the unobserved auction heterogeneity.

We also test risk neutrality using the sieve MLE estimator H0 : σ0 = 0, H1 : σ0 > 0.

To construct the test, we treat the model as parametric and use the asymptotic distribution

of the estimator.32 Notice that under the null hypothesis, σ0 is on the boundary of the

30To avoid boundary effects, we exclude quantiles close to 0 and 1. We experimented with different quantile
ranges and found similar results (available upon request).

31The two-step estimator does not allow us to combine more than two n in an efficient manner. Results
for other pairs of n are similar.

32To estimate the asymptotic distribution, we need the joint bid densities to vanish smoothly at the
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parameter space. Following the insight from Andrews (1999), σ̂ is asymptotically truncated

normal. Therefore, it is still valid for the one-sided test to reject the null hypothesis if

σ̂ divided by the standard error exceeds the corresponding quantiles of a standard normal

random variable.

Table 2 shows the results for testing risk neutrality. We consider significance levels of

5% and 10%. The test has good size control. For all three DGPs, the rejection probability

is close to the significance level if σ0 = 0. The test also performs well in terms of power.

The rejection probability for a 10% significance level increases from about 30% if σ0 = 0.1

to about 70% if σ0 = 0.2 and about 92% if σ0 = 0.3. In light of the sample size and the

flexibility of the model, it is not surprising that it is difficult to distinguish σ0 = 0.1 from risk

neutrality.

σ0 = 0 σ0 = 0.1 σ0 = 0.2 σ0 = 0.3

Allowing for Unobserved Heterogeneity

DGP 1: No Selection
Mean 0.046 0.114 0.202 0.292
Std 0.069 0.086 0.102 0.094

DGP 2: Weak Selection
Mean 0.041 0.108 0.188 0.284
Std 0.063 0.090 0.096 0.097

DGP 3: Strong Selection
Mean 0.048 0.109 0.198 0.288
Std 0.074 0.093 0.105 0.102

Ignoring Unobserved Heterogeneity

DGP 1: No Selection
Mean 0.698 0.714 0.737 0.754
Std 0.205 0.160 0.146 0.138

DGP 2: Weak Selection
Mean 0.540 0.554 0.578 0.606
Std 0.232 0.193 0.174 0.156

DGP 3: Strong Selection
Mean 0.019 0.007 0.001 0.000
Std 0.134 0.083 0.032 0.000

Table 1: Results of the Monte Carlo study for two estimators of the CRRA coefficient, σ.
The upper half of the table shows results if unobserved auction heterogeneity is taken into
account using the Sieve MLE described in section 3. The lower half of the table shows
results if unobserved auction heterogeneity is ignored using the two-step estimator proposed
by Bajari and Hortacsu (2005).

boundary of their supports. Hence, we require that at least the fun vanish smoothly at their boundaries.
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Sig. Level σ0 = 0 σ0 = 0.1 σ0 = 0.2 σ0 = 0.3

DGP 1: No Selection
10 8.8 34.3 72.5 93.8
5 5.7 24.4 57.6 88.2

DGP 2: Weak Selection
10 7.6 27.7 69.5 91.9
5 4.9 19.8 53.1 85.9

DGP 3: Strong Selection
10 10.1 30.1 71.7 92.2
5 7.1 21.2 58.3 84.7

Table 2: This table shows the probability (in %) that risk-neutrality (σ0 = 0) is rejected if
the unobserved auction heterogeneity is taken into account (Sieve MLE).

4.4 Understanding the Bias If Unobserved Heterogeneity Is Ig-

nored

Figure I(a) shows bid functions of risk-neutral and risk-averse bidders in two- and four-bidder

auctions. Private values are on the horizontal axis and the corresponding bids on the vertical

axis. The solid blue line and the solid red line depict a risk-neutral bidder’s strategies in

two- and four-bidder auctions, respectively. The dashed lines depict a risk-averse bidder’s

strategies. Figure I(b) shows the corresponding bid distributions.

Consider risk-neutral bidders first. Their bid shading depends only on the distribution

of valuations and the number of opponents. Intuitively, the bidders shade their bids more

if the values are more dispersed and the bidders have more private information and thereby

more market power. If the number of competitors increases, market power declines and the

bidders shade their bids less. This shift in the bid function is smaller if the values are not very

dispersed, because then the bids are close to values even for a small number of competitors.

Hence, the bid distribution tends to respond more to changes in n if the values (and therefore

the bids) are more dispersed.

Now consider risk-averse bidders who bid more aggressively. Risk aversion affects how

much the bid distribution responds to changes in n and the dispersion of bids. Risk-averse
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Figure I: This graph illustrates how risk aversion is identified by variation in the number
of bidders. The left panel shows bid functions and the right panel the corresponding bid
distributions. Solid lines depict risk-neutral bidders and dashed lines show risk-averse bidders.
Blue lines show two bidder auctions and red lines show four bidder auctions.

bidders respond less to changes in n because the bids are close to values even for a small

number of competitors. The dispersion of their bids is larger, because risk aversion has no

effect for bidders at the lower bound of the valuation distribution but increases the bids of

bidders with higher values. Therefore, the econometrician concludes that the bidders are

risk averse if the bid distribution does not respond much to increases in n relative to the

dispersion of the bids.

If unobserved auction heterogeneity is ignored, the (unconditional) bid distributions ap-

pear very dispersed, as variation in bids due to unobserved auction heterogeneity is attributed

to bidders’ private information. In addition, if auctions with higher unobserved auction het-

erogeneity attract more bidders, this increases the shift of the (unconditional) bid distribution

as n increases. The first effect increases the dispersion of bids and therefore leads to overes-

timation of risk aversion. The second effect increases the shift of the bid distribution as n

increases and therefore leads to underestimation of risk aversion. Which of these two effects

dominates — and, therefore, the sign of the bias — depends on how strongly the number of
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bidders is correlated with the unobserved auction heterogeneity.

5 Empirical Application

5.1 Data Description

We estimate the risk aversion of bidders in USFS timber auctions.33 The data can be down-

loaded from Phil Haile’s website.34 Lu and Perrigne (2008) and Campo, Guerre, Perrigne,

and Vuong (2011) found the bidders to be risk averse.35 Other work documented unobserved

auction heterogeneity in these auctions (e.g., Aradillas-López, Gandhi, and Quint (2013a);

Aradillas-López, Gandhi, and Quint (2013b); Roberts and Sweeting (2010); Roberts and

Sweeting (2013); and Athey, Levin, and Seira (2011)).

Following Haile and Tamer (2003), we construct a subsample of scaled sales with contract

lengths of less than one year between 1982 and 1990, for which the assumption of private

values is plausible.36 Geographically, we focus on timber tracts from the Southern Region,

ranging from Texas and Oklahoma to Florida and Virginia, where most of the first-price

auctions take place.

To limit the number of parameters in the distributions of the unobserved auction het-

erogeneity, we further restrict the sample to auctions with two to five bidders. Intuitively,

auctions with few competitors contain the most information about risk preferences. As the

number of competitors increases, the effect of risk aversion on bids becomes small because

33Baldwin, Marshall, and Richard (1997, Appendix A) provide a detailed description of the auction pro-
cedure and some background on the timber industry.

34http://www.econ.yale.edu/˜pah29/timber/timber.htm.
35The findings in these papers cannot be directly compared to the findings in this paper because they

do not rely on variation in the number of bidders for the identification of risk aversion. Lu and Perrigne
(2008) use variation in the auction format, while Campo, Guerre, Perrigne, and Vuong (2011) impose mild
parametric restrictions. For risk aversion in timber auctions, see also Baldwin (1995) and Athey and Levin
(2001).

36In scaled sales, bidders pay only for the timber that is actually harvested; this insures the bidders against
the risk of overestimating the volume of timber and reduces the common value component in the valuations.
Short-term contracts with a contract length of less than one year limit resale opportunities and thereby reduce
the common value component generated by the resale market. In 1981, the Forest Service introduced new
policies designed to limit subcontracting and speculative bidding (Haile (2001)). Therefore, only auctions
after 1981 are included. The data do not include sales after 1990 for this region.
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competition drives bids close to the values even for risk-neutral bidders. To reduce the in-

fluence of the extreme bids, we also discard eight auctions with bids more than eight times

the appraisal value.37 The final sample includes 370 two-bidder, 263 three-bidder, 172 four-

bidder, and 105 five-bidder auctions. Our estimates condition on the appraisal value provided

by the US Forest Service, which is designed to summarize all relevant information about the

timber tract.

5.2 Results and Discussion

The point estimate for the CRRA coefficient is 0.0018. The p-value for testing risk neutrality

is 0.4914, and the 95% confidence interval for σ0 is [0, 0.163]. Hence, we reject high levels of

risk aversion.

For comparison, Table 3 shows results if unobserved auction heterogeneity is ignored, using

the estimator in Bajari and Hortacsu (2005) as described in Section 4. We report results for

different pairs of auction sizes. To assess the robustness of the results, we report estimates

based on three choices of quantile ranges. The bandwidth for the bid density estimators are

chosen to be std(b)L
−1/4
n .38 The point estimates for the CRRA coefficient range from 0.547

to 0.708. The estimated confidence intervals do not cover any values below 0.324.

Hence, we find that the bidders are close to risk neutral if we allow for unobserved auction

heterogeneity, but reject risk neutrality in a specification without unobserved auction het-

erogeneity. This pattern is consistent with a low correlation between the unobserved auction

heterogeneity and the number of bidders, as explained in Section 4.4. Indeed, we find that the

distribution of the unobserved auction heterogeneity for different numbers of bidders is fairly

similar. A possible explanation is that the unobserved auction heterogeneity is observed by

the bidders only after they decided to enter the auction. For example, some characteristics

are only observable to entrants who typically cruise the auctioned tract, but not to potential

37The remaining bids are all less than four times the appraisal value. Therefore we believe that the bids
above eight times the appraisal value can plausibly be considered outliers.

38The results are robust to different bandwidth choices we tried.
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bidders.

We follow most of the structural auction literature in assuming that the bidders know

the number of their opponents who also decided to enter when they submit their bid.39

Intuitively, a violation of this assumption would bias our risk-aversion estimates upward. To

see this, consider the case where the number of potential bidders is the same for all auctions.40

In this case, the bid distribution would not vary with the number of entrants. Through the

lens of our model, this is consistent with extreme levels of risk aversion such that the bids

are very close to valuation regardless of the number of bidders.

2 and 3 bidders 2 and 4 bidders 2 and 5 bidders
Quantiles σ̂ 95% CI σ̂ 95% CI σ̂ 95% CI

[0.20, 0.80] 0.708 [0.501, 1.000] 0.666 [0.480, 0.898] 0.694 [0.552, 0.912]

[0.25, 0.75] 0.652 [0.406, 1.000] 0.606 [0.398, 0.913] 0.635 [0.450, 0.913]

[0.30, 0.70] 0.615 [0.333, 1.000] 0.547 [0.324, 0.891] 0.568 [0.357, 0.870]

Table 3: Estimates of the CRRA coefficient σ in a specification without unobserved auction
heterogeneity.

6 Conclusion

This paper extends the point-identification result in Guerre, Perrigne, and Vuong (2009) to

environments with unobserved auction heterogeneity and provides conditions to ensure that

the primitives recovered under the exclusion restriction for the number of bidders remain

meaningful as bounds of the true primitives, even if the exclusion restriction is violated.

We propose a sieve maximum likelihood estimator and show its consistency under low-level

conditions. We explain why the bias in risk-aversion estimates, if unobserved auction het-

39Athey, Levin, and Seira (2011) argue that this is a reasonable assumption for timber auctions, as the
bids are highly correlated with the number of active bidders even after controlling for a variety of variables,
including the number of potential bidders. See Gentry, Li, and Lu (2015) for identification of risk aversion
in first-price auctions if this assumption does not hold.

40Alternatively, we could condition on some measure for the number of potential bidders.
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erogeneity is ignored, depends on the correlation between the number of bidders and the

unobserved auction heterogeneity. The application underscores the importance of accounting

for unobserved heterogeneity, as we find that the bidders are risk neutral, but we would reject

risk neutrality if unobserved heterogeneity is ignored.

We see several avenues for future research. First, relaxing the assumptions of symmetric,

independent and private values are important extensions for many applications. Relaxing

the assumption of independent values is perhaps most pertinent, because this creates an

additional source of correlation among bids from the same auction. The researcher then

faces the challenging task of disentangling which part of this correlation can be attributed to

the unobserved auction heterogeneity and which part to the correlation of values conditional

on the unobserved auction heterogeneity. A second avenue would be allowing for unobserved

heterogeneity in the framework of Gentry, Li, and Lu (2015) where bidders do not know

the number of entrants. For this extension, we would have to confirm that the conditions

to apply the techniques from the measurement-error literature are still satisfied. Lastly, it

would be useful to develop an estimator for the case with non-separable unobserved auction

heterogeneity. Maximum likelihood estimation is challenging in this case, because we can

no longer exploit the separability to reduce the computational burden when the likelihood

function is evaluated.
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A Identification

A.1 Technical Assumptions

Assumption 7. Technical Assumptions for Theorem 1.

(1). Additive Case:

(a) The density f ∗has non-negative interval support and f ∗ (x) < a1 exp (−a2 |x|) for

some constants a1, a2 > 0. In addition,
´
|u| dF u (u|n) <∞ for all n.

(b) λ (x) < exp (a3x) for some a3 > 0. In addition, either ∃a4 > 0 such that

lim inf
x→∞

λ (x) / exp (a4x) > 0 or a3 < a2.

(2). Multiplicative Case: The density f ∗ has positive interval support and
´
|v| dF ∗ (v) <∞.

In addition,
´
|log u| dF u (u|n) <∞ for all n.

Assumption 8. Technical Assumptions for Theorem 2.

(1). F u (·|n) has a continuous density fu (·|n) supported on [u (n) , u (n)].

(2). F (·|·, n) is continuously differentiable on {(v, u) : v ∈ [v (u) , v (u)] , u ∈ [u (n) , u (n)]}.

A.2 Proof of Theorem 1

In Theorem 1 (1), bids are additive in u and in Theorem 1 (2), log bids are additive in log (u).

This follows from a slight generalization of Proposition 1 in Krasnokutskaya (2011) presented

in section A.2.1. The main identification proof is presented in section A.2.2.

A.2.1 Bidding Strategy

Lemma 1. Let sn (v, u) be the bidding strategy for a bidder with value v in an auction with

unobserved heterogeneity u and s∗n be the bidding strategy under F ∗.

(1). If F (v|u) = F ∗ (v − u), then sn (v, u) = s∗n (v − u) + u for all u ≥ 0 and v ≥ u+ 1.
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(2). If F (v|u) = F ∗ (v/u) and the bidders have constant relative risk aversion, then sn (v, u) =

s∗n (v/u)u for all u > 0 and v ≥ u .

Proof. The bidding strategy under F ∗ is given by the boundary condition s∗n (1) = 1 and the

first-order condition

ds∗n (v)

dv
= (n− 1)

f ∗ (v)

F ∗ (v)
λ (v − s∗n (v)) .

If F (v|u) = F ∗ (v − u), then sn (v, u) = s∗n (v − u)+u satisfies the initial condition sn (v (u) , u) =

v (u) and the first-order condition holds:

∂sn (v, u)

∂v
=
ds∗n (v − u)

dv
= (n− 1)

f∗ (v − u)

F ∗ (v − u)
λ (v − u− s∗n (v − u)) = (n− 1)

f∗ (v|u)

F ∗ (v|u)
λ (v − sn (v, u)) .

If F (v|u) = F ∗ (v/u) , then sn (v, u) = s∗n (v/u)u satisfies the initial condition sn (v (u) , u) =

v (u) and

∂sn (v, u)

∂v
=
ds∗n

(
v
u

)
dv

= (n− 1)
f∗
(
v
u

)
F ∗
(
v
u

)λ(v
u
− s∗n

(v
u

))
= (n− 1)

f∗ (v|u)

F ∗ (v|u)
λ

(
v − sn (v, u)

u

)
u.

The first-order condition is satisfied by sn (v, u) = s∗n (v/u)u only if the bidders have CRRA

utility because otherwise λ (·/u)u 6= λ (·).

A.2.2 Proof of Theorem 1

Proof. Let G∗n and g∗n be the bid distribution and the corresponding bid density in an n-bidder

auction if u = 0 in Theorem 1 (1) or if u = 1 in Theorem 1 (2).

The proof proceeds in two steps. First, we identify g∗n1
and g∗n2

building on Lemma 2 in

Evdokimov and White (2012). Second, we identify the model primitives from g∗n1
and g∗n2

building on Proposition 3 in Guerre, Perrigne, and Vuong (2009). Please refer to Evdokimov

and White (2012) and Guerre, Perrigne, and Vuong (2009) for these results. Here, we only

show that the joint bid distributions satisfy the conditions in Lemma 2 of Evdokimov and

White (2012) for both cases in Theorem 1.

For Theorem 1 (1), we can rewrite the model as v = v∗ + u with v∗ independent of u.
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The bidding strategy in an auction with n bidders, u, is u + s∗n (v∗) , where s∗n (1) = 1 and

for v∗ > 1,

ds∗n (v∗)

dv∗
= (n− 1)

f ∗ (v∗)

F ∗ (v∗)
λ (v∗ − s∗n (v∗)) .

To apply Lemma 2 from Evdokimov and White (2012), we need to show that (a)E [|u|+ |s∗n (v∗)|] <

∞ and (b) g∗n has a tail bounded by an exponential function. Condition (a) is guaranteed

by the fact that E |s∗n (v∗)| < E |v∗| < ∞ and the assumption
´
|u| dF u (u|n) < ∞. For

condition (b), notice that, by assumption, ∃C > 0 such that for v∗ > C > 0, we have

ds∗n (v∗)

dv∗
= (n− 1)

f∗ (v∗)

F ∗ (v∗)
λ (v∗ − s∗n (v∗)) < (n− 1) 2a1 exp (−a2v

∗) exp (a3 (v∗ − s∗n (v∗))) .

The inequality uses the exponential bound for f ∗ and λ. Let s1
n (v∗) be a function that solves

ds1
n (v∗)

dv∗
= (n− 1) 2a1 exp (−a2v

∗) exp
(
a3

(
v∗ − s1

n (v∗)
))
, (4)

with s1
n (C) = s∗n (C). Then s1

n (v∗) > s∗n (v∗) if v∗ > C.41

If a3 < a2, it is easy to see that s1
n is bounded, so g∗n has bounded support and is bounded

by an exponential tail.

If a2 < a3, (4) has the solution exp (s1
n (v∗)) = c1 exp

(
a3−a2
a3

v∗
)

+ c2, where c1 > 0 and c2

are constants. As a3−a2
a3

< 1, s∗n (v∗) < s1
n (v∗) < c2v

∗, with 0 < c2 < 1 for v∗ large enough.

Then, from the first-order condition, the density of s∗n (v∗) satisfies

g∗n (s∗n (v∗)) =
f ∗ (v∗)
ds∗n(v∗)
dv∗

=
F ∗ (v∗)

(n− 1)λ (v∗ − s∗n (v∗))

<
F ∗ (v∗)

(n− 1) exp (a4 (1− c2) v∗)
<

1

(n− 1) exp
(
a4(1−c2)

c2
s∗n (v∗)

) .
The first inequality follows from the assumption that λ (x) > exp (a4x) for large enough x.

Hence, g∗n has an exponential bound.

For Theorem 1 (2), we can rewrite the model as v = v∗u, with v∗ independent of u . The

41This follows from a standard contradiction argument.
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bidding strategy is us∗n (v∗) , with

ds∗n (v∗)

dv∗
= (n− 1)

f ∗ (v∗)

F ∗ (v∗)
(1− σ) (v∗ − s∗n (v∗)) < (n− 1)

f ∗ (v∗)

F ∗ (v∗)
(1− σ) v∗.

Now we need to show that (a) E [|log u|+ |log s∗n (v∗)|] < ∞ and that (b) log s∗n (v∗) has a

density with a tail bounded by an exponential function. First, let v∗ be the lower bound of

v∗. Then s∗n (v∗) ≤ (n− 1)
´ v∗
v∗

f∗(v)
F ∗(v)

(1− σ) vdv is bounded from above by the assumption

that
´
vf ∗ (v) dv < ∞. In addition, the bidding function is bounded away from 0. Hence,

the density of log s∗n (v∗) has a bounded support. Hence, the density satisfies (b), which also

suggests E |log s∗n (v∗)| < ∞. In addition, E |log u| < ∞ by assumption, which implies that

(a) is satisfied.

We normalize the lower bound of the support of f ∗and thereby the lower bounds of the

supports of g∗n for all n to one. It follows from Lemma 2 in Evdokimov and White (2012)

that g∗nand fu (·|n) are identified for n = n1, n2.

Next, we apply Proposition 3 in Guerre, Perrigne, and Vuong (2009) to g∗n1
and g∗n2

. This

allows us to identify f ∗ and U .

A.3 Proof of Proposition 1

To simplify the notation, let Fi (·) = F (·|ui) , vi (α) = F−1
i (α) , and sin (·) be the bidding

strategy under Fi for i = 1, 2. In addition, bin (α) = sin (vi (α)) is the αth quantile of the bid

distribution.

As v′ (α) f (v (α)) = 1, we can rewrite the first-order condition as follows:

dbin (α)

dα
=


(n− 1) 1

α
λ (vi (α)− bin (α)) if α > 0

(n−1)λ
′
(0)

(n−1)λ′ (0)+1
1

fi(vi(0))
if α = 0.

(5)

Before we prove Proposition 1, we illustrate the main idea of the proof by showing that
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the stronger assumption v1 (α) > v2 (α) for all α implies that b1
n (α) > b2

n (α) for all α.

To see this, notice that b1
n (0) > b2

n (0). Now suppose toward contradiction that for some

α > 0, we have b1
n (α) ≤ b2

n (α). By the continuity of the bid functions, there exists α1 =

min {α : b1
n (α) = b2

n (α)} > 0. Notice that by construction, b1
n (α) > b2

n (α) for α < α1 . At

the same time, we have ∂
∂α
b1
n (α1) > ∂

∂α
b2
n (α1) because v1 (α1) > v2 (α1). Therefore, there

exists some α slightly smaller than α1 such that b1
n (α) < b2

n (α) , which is a contradiction.

The proof of Proposition 1 follows a similar idea but is more involved.

Lemma 2. Under Assumption 2, b1
n (α) ≥ b2

n (α) for all α ∈ [0, 1].

Proof. First, notice that b1
n (0) ≥ b2

n (0) as v1 (0) ≥ v2 (0). Now, suppose toward contradiction

that there is α2 > 0 such that b1
n (α2) < b2

n (α2). Define α1 = max {α : b1
n (α) ≥ b2

n (α) , α ≤ α2}.

By construction, b1
n (α) < b2

n (α) for α ∈ (α1, α2). As v1 (α) ≥ v2 (α) for all α, we have

db1n(α)
dα

> db2n(α)
dα

for all α ∈ (α1, α2). This implies that b1
n (α2) = b1

n (α1)+
´ α2

α1

db1n(α)
dα

> b2
n (α2) =

b2
n (α1) +

´ α2

α1

db2n(α)
dα

, which is a contradiction.

Lemma 3. Under Assumption 2 , if v1(α) > v2(α), then b1
n (α) > b2

n (α), for α ∈ [0, 1].

Proof. For α = 0, this holds because bin (0) = vi(0) for i = 1, 2. Now, suppose toward

contradiction that b1
n(α) ≤ b2

n(α) for some α ∈ (0, 1] such that v1(α) > v2(α). This implies

that db1n(α)
dα

> db2n(α)
dα

. Therefore, we can find α1 slightly smaller than α such that b1
n(α1) <

b2
n(α1), which contradicts Lemma 2.

Proof of Proposition 1. Suppose toward contradiction that b1
n (1) = b2

n (1) and v1 (1) = v2 (1).

This is the only case left to be ruled out, because the remaining cases where b1
n (1) ≤ b2

n (1) are

covered by Lemmas 2 and 3. Define ∆b (α) = b1
n (α)−b2

n (α), ∆v (α) = v1 (α)−v2 (α) , and let

α = inf {α : v1 (α) = v2 (α) on [α, 1]} > 0. Notice that ∆b (α) = 0 for all α ∈ [α, 1].42 Take

the difference of the first-order conditions for b1
n and b2

n and apply the mean value theorem

42On this region, both bid functions can be derived by solving the same differential equation given by
equation 5 and the end condition b1n (1) = b2n (1).
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twice to obtain

α∆b′ (α) = (n− 1)λ
(
v1 (α)− b1

n(α)
)
− (n− 1)λ

(
v2 (α)− b2

n(α)
)

= (n− 1)λ
′
(r̄ (α)) (∆v (α)−∆b (α))

= (n− 1)λ
′ (
v1 (α)− b1

n(α)
)

(∆v (α)−∆b (α))

+ (n− 1)λ
′′

(r̃ (α))
(
r̄ (α)−

(
v1 (α)− b1

n(α)
))

(∆v (α)−∆b (α)) (6)

= (n− 1) (c+ δ (α)) (∆v (α)−∆b (α)) .

Here, r̄ (α) is some value between v1 (α)−b1
n(α) and v2 (α)−b2

n(α), r̃ (α) is some value between

r̄ (α) and v1 (α)−b1
n(α), c = λ

′
(v1 (α)− b1

n(α)) ≥ 1, and δ (α) = λ
′′

(r̃ (α)) (r̄ (α)− (v1 (α)− b1
n(α))) .

If α→ α then vi (α)−bin(α)→ v1 (α)−b1
n(α) for i = 1, 2. Consequently, r̄ (α)→ v1 (α)−b1

n(α)

and δ (α)→ 0 as α→ α. As c ≥ 1, we can find an ε > 0 such that α− ε > 0 and c+δ (α) > 0

for all α ∈ [α− ε, α]. Suppose we know δ, then we can solve the differential equation (6) for

∆b on [α− ε, α] with the end condition ∆b (α) = 0 . The closed form solution is

∆b (α) = −
´ α
α

[c+ δ (w)] ∆v (w) exp
´ w
α−ε

c+δ(z)
z

dzdw

exp
´ α
α−ε

c+δ(z)
z

dz
< 0.

This contradicts Lemma 2. Therefore, b1
n (1) > b2

n (1).

A.4 Proof of Theorem 2

Proof. The bid distribution given u in an n-bidder auction is denoted by Gn (·|u) and the

corresponding density by gn (·|u). First, consider the case where u is discrete. As the support

of u does not depend on the number of bidders, we can normalize u such that it takes values on

1, 2, 3, · · · , K for n1 and n2. Hu, McAdams, and Shum (2013) show that Gn (·|u) is identified

if the highest bid is strictly increasing in u. This is satisfied by Proposition 1. We then pair

Gn1 (·|u) and Gn2 (·|u) to identify U and F by applying Proposition 3 in Guerre, Perrigne,
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and Vuong (2009).

Now, consider the case where u is continuous. We show that the relevant conditions for

Steps 1 and 2 in the proof of Theorem 2.1 in d’Haultfoeuille and Février (2010b) are satisfied:

First, the highest bid given u is strictly increasing in u by Proposition 1. Second, the lowest

bid is assumed to be strictly increasing in u. Third, Gn (·|·) , sn (v̄ (u) , u) and sn (v (u) , u) are

continuously differentiable. To see this, notice that F (·|·) and the utility function U are both

continuously differentiable by Assumption 8. By Theorem 1 in Campo, Guerre, Perrigne,

and Vuong (2011), the bidding strategy sn (v, u) is continuously differentiable on the support

of F (·|·) . Hence the highest bid sn (v̄ (u) , u) is continuously differentiable with respect to

u, and Gn (·|·) is continuously differentiable. Therefore, sn (v (u) , u) = v (u) is continuously

differentiable. We normalize u = v (u). Now we can apply Theorem 2.1 from d’Haultfoeuille

and Février (2010b) to show that Gn (·|v (u)) is identified for n1 and n2. As the supports of

fun1
and fun2

overlap, we can find some v (u) such that we observe Gn (·|v (u)) for n = n1, n2.

We then invoke Proposition 3 in Guerre, Perrigne, and Vuong (2009) to identify U and F .

A.5 Proof of Theorem 3

Proof. Let G1 and G2 be the bid distributions from n1− and n2− bidder auctions. We

first prove that the bid distribution G2 first-order stochastically dominates G1. To simplify

notation, we suppress u∗ from now on. Suppose toward contradiction that G2 does not first-

order stochastically dominate G1. Let v denote the common lower bound of the support of

both bid distributions (Condition 1(1)). Guerre, Perrigne, and Vuong (2009, Theorem 1)

establish that the slope of the bid function at v is strictly higher in the n2− bidder auction.

Moreover, Assumption 2 implies that the density of valuations in the n2− bidder auction is

weakly lower at v. Therefore, g2 (v) < g1 (v) and, at the smallest point, b̃ > v such that

G1

(
b̃
)

= G2

(
b̃
)

= α < 1, so we must have g2

(
b̃
)
≥ g1

(
b̃
)

. The first-order condition of the
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bidding strategy can be written as

gi

(
b̃
)

=
1

ni − 1

α

λ
(
vi (α)− b̃

) for i = 1, 2,

where vi (α) is the α-th quantile of the valuation distribution. As n2 > n1 and v2 (α) ≥ v1 (α),

we must have g2

(
b̃
)
< g1

(
b̃
)
, which is a contradiction. Therefore, G2 must first-order

stochastically dominate G1.

As in Guerre, Perrigne, and Vuong (2009), we construct a decreasing sequence of αs

such that R1 (αt) = R2 (αt−1) , with R1 (α0) = x. As R1 (αt−1) > R2 (αt−1), R1 (0) = 0 <

R2 (αt−1) , and R1 is continuous, there exists an αt ∈ (0, αt−1) such that R1 (αt) = R2 (αt−1)

by the intermediate value theorem. Therefore, such a decreasing sequence of αs exists. In

addition, this sequence converges to 0. This can be shown by contradiction. First, notice

that the sequence is decreasing and bounded from below by 0. Hence, it must converge to

some non-negative number c. Suppose towards contradiction that c > 0. As R1 and R2 are

both continuous,

R1 (c) = R1

(
lim
t→∞

αt

)
= lim

t→∞
R1 (αt) = lim

t→∞
R2 (αt−1) = R2

(
lim
t→∞

αt−1

)
= R2 (c) .

This violates the condition that R1 (α) > R2 (α) for α > 0 .

We want to bound λ−1 (x). We define λ̃ as the strictly increasing function satisfying

λ̃−1 (R1 (α)) − λ̃−1 (R2 (α)) = b2 (α) − b1 (α) for α ∈ [0, 1] , with λ̃ (0) = 0. Notice that if

Assumption 1 is violated the existence of this function is no longer guaranteed. We assume

that it exists henceforth. Using the α sequence and recursive substitution, λ̃ can be expressed

as follows:

λ̃−1 (x) =
∞∑
t=0

[b2 (αt)− b1 (αt)] =
∞∑
t=0

b2 (αt)− b1 (αt) =
∞∑
t=0

∆b (αt) ,
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with x ∈
[
0, max

α∈[0,1]
R1 (α)

)
. This infinite sum exists because for any finite T ,

∑T
t=0 ∆b (αt) ≤

λ̃−1 (x) and ∆b (αt) ≥ 0 by the first-order stochastic dominance of bid distributions shown

above. The true λ satisfies the first-order condition Ri (α) = λ (vi (α)− bi (α)) for i = 1, 2,

so

∞∑
t=0

b2 (αt)− b1 (αt) ≥
∞∑
t=0

[b2 (αt)− b1 (αt) + v1 (αt)− v2 (αt)]

=
∞∑
t=0

[
λ−1 (R1 (αt))− λ−1 (R2 (αt))

]
= λ−1 (R1 (α0))− lim

t→∞
λ−1 (R2 (αt)) = λ−1 (x) .

The inequality follows from Assumption 2. The last equality uses the fact that lim
t→∞

λ−1 (R2 (αt)) =

0 because the α sequence converges to zero. Hence λ̃−1 (·) ≥ λ−1 (·) and therefore λ̃ (·) ≤ λ (·).

The bounds for the utility function are obtained by solving the differential equation λ(x) =

U(x)
U ′(x)

with the boundary condition U (1) = 1.

The underlying valuations recovered under Assumption 1 bound the actual valuations

from above: F−1 (α|u, ni) = λ−1 (Ri (α, u)) + bi (α, u) ≤ λ̃−1 (Ri (α, u)) + bi (α, u) for i = 1, 2.

Moreover, the valuations are bounded from below by the bids: F−1 (α|u, ni) ≥ bi (α, u) for

i = 1, 2.

B Entry

B.1 Entry and Assumption 1

In this section, we show that Assumption 1 is satisfied in a fairly general entry framework

with (conditionally) independent signals. There are N potential entrants. Prior to bidding,

a potential bidder i observes a vector of auction characteristics X, including the number

of potential entrants and a private signal ξi (possibly multi-dimensional). Bidder i′s entry

strategy is a function φi : (X, ξi)→ {0, 1}. If φi takes the value 1, the potential bidder enters.
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Most commonly considered entry models fit into this framework for some φi.
43 To simplify

the notation, we suppress the argument of φi from now on.

Let −→v = (v1, v2, · · · , vN) ,
−→
ξ = (ξ1, ξ2, · · · , ξN) , and

−→
φ = (φ1, φ2, · · · , φN). We use the

subscript −i to denote the vector of variables from bidders other than i. Let FA,B|C (·, ·|·)

denote the joint distribution of A and B conditional on C. For instance, F−→v ,−→ξ |X (·, ·|·) is the

joint distribution of the value and signal for bidder i given X. The next lemma provides a

sufficient condition to ensure that an entrant’s value distribution depends only on his identity

and X. Therefore, if the bidders are symmetric, an active bidder’s value distribution does

not vary with n, and Assumption 1 holds.

Lemma 4. If (vi, ξi) ⊥
X

−→
ξ −i for all i, then for every i, Fvi|φi,φ−i,X (v|1, ·, x) = Fvi|φi,X (v|1, x),

x-a.e.

Proof. Notice that (vi, ξi) ⊥
X

−→
ξ −i implies that (vi, φi) ⊥

X

−→
φ −i. By conditional independence,

Fvi|φi,φ−i,X (v|1, ·, x) =
Fvi,φi,φ−i|,X (v, 1, ·|x)

P (φi = 1, φ−i = ·|x)
=
Fvi,φi,φ−i|,X (v, 1|x)P (φ−i = ·|x)

P (φi = 1|x)P (φ−i = ·|x)
= Fvi|φi,X (v|1, x) .

Notice that Lemma 4 holds even if potential bidders do not observe all components of

X at the entry stage. In this case φi depends only on a subvector of X. Conditional on

this subvector, i.e. from the perspective of the potential bidders, the signals are therefore

correlated. Such situations are not considered in the Affiliated Signal Entry Model (Ye (2007),

Gentry and Li (2014)).

B.2 Independence of v∗ and u with Entry

Proposition 3. Suppose v∗ and u are independent for potential bidders; then v∗and u are

independent among entrants conditional on n if one of the following conditions holds:

43For example, in the Affiliated Signal Entry model studied in Li, Lu, and Zhao (2015), bidders observe X
in the entry stage. Entry strategy can be described by φi (X, ξi) = 1 (ξi > c (X)) where c (X) is a cutoff that
makes potential bidders indifferent between entering and not entering.
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(1). Potential bidders do not observe any information about v∗ or u.

(2). Potential bidders observe only u.

(3). Potential bidders observe a signal si of v∗, which is independent across bidders and

independent of u.

Proof. We must allow for the possibility of mixed entry strategies. Bidder i uses a random-

ization device that generates a random variable εi independent of (u, v∗) to implement the

mixed strategy.

For Proposition 3(1), the entry strategy can be described by some function φ (εi) that

takes the value 0 or 1. Therefore, the joint distribution of (u, v∗) for entrants is

Pr (u ≤ x, v∗ ≤ y|φ (εi) = 1) = Pr (u ≤ x, v∗ ≤ y) = Pr (u ≤ x)P (v∗ ≤ y) .

For Proposition 3(2), the entry strategy can be described by φ (u, εi), so the joint distribution

for entrants is

Pr (u ≤ x, v∗ ≤ y|g (u, εi) = 1) = E {E [1 (u ≤ x, v∗ ≤ y) |u, εi] |φ (u, εi) = 1} .

= E [1 (u ≤ x)E [1 (v∗ ≤ y) |u, εi]φ (u, εi) = 1]

= Pr (v∗ ≤ y) Pr (u ≤ x|φ (u, εi) = 1) .

The last step follows because v∗ is independent of (u, εi).

Lastly, following an analogous argument, one can show for Proposition 3(3) that

P (u ≤ x, v∗ ≤ y|φ (si, εi) = 1) = P (v∗ ≤ y|φ (si, εi) = 1)P (u ≤ x) .

This result does not cover the case where bidders obtain some information about the

private information v∗ and about the unobserved auction heterogeneity u before they enter.

38



In this case, v∗and u are generally no longer independent for entrants.

B.3 Selection on u

With some abuse of notation, let F ∗ and F u denote the distributions of v∗ and u for potential

bidders, and F ∗ ( ·|n) and F u ( ·|n) the distributions of v∗ and u for a given number of active

bidders n. Let N be the number of potential bidders. For simplicity, assume that fu has

a bounded interval support [u, u]. The entry cost is k. Potential bidders share a wealth

level W > k and a utility function U. Define U (x) = U (x+W − k) − U (W − k) as the

re-centered utility function. We assume that at the bidding stage the bidders know their own

v∗, u, and n.

Proposition 4. Suppose that u is separable as in Theorem 1. Potential bidders observe only

u, but no signal for v∗. Let n < n
′
. Then, F u (u|n′) ≤ F u (u|n) for all u ∈ [u, u] and

F u (u|n′) < F u (u|n) for all u such that the entry probability is not 0 or 1.

Proof of Proposition 4. We begin with the multiplicative case with CRRA utility. At the

bidding stage, bidder i solves the following problem:

max
bi

[U (v∗i u− bi +W − k)−U (W − k)]P

(
Sn

(
max
j 6=i

v∗j , u

)
≤ bi

∣∣∣∣u)n−1

+ U (W − k)

= max
bi

(v∗i u− bi)
1−σ

P
(
Sn
(
v∗j , u

)
≤ bi

∣∣u)n−1
+ U (W − k)

= u1−σ (v∗i − s∗n (v∗i ))
1−σ

F ∗ (v∗i ) n−1 + U (W − k) . (7)

Here, Sn is the bidding strategy, and s∗n is the bidding strategy if u = 1. Let

πn (u, v∗i ) = u1−σ (v∗i − s∗n (v∗i ))
1−σ F ∗ (v∗i )

n−1.

Let Πn (u) =
´
πn (u, v∗i ) dF

∗ (v∗i ) . Notice that Πn (u) = u1−σΠn (1).

In a symmetric entry equilibrium, potential bidders enter randomly with some probability,

which is a function of u. The entry probability p (u) satisfies

1. p (u) = 0 if u ≤
[

U(W )−U(W−k)
Π1(1)

] 1
1−σ0 = u1.
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2. p (u) = 1 if u ≥
[

U(W )−U(W−k)
ΠN (1)

] 1
1−σ0 = u2.

3. For u ∈ (u1, u2), p (u) solves

N∑
n=1

 N − 1

n− 1

 [1− p (u)]N−n p (u)n−1 Πn (1) =
U (W )− U (W − k)

u1−σ . (8)

Next, we show that p is strictly increasing in the third case by differentiating (8):44

p′ (u) = − (1− σ)
U (W )− U (W − k)

u2−σ (A1 + A2)
,

where

A1 = −
N−1∑
n=1

 N − 1

n− 1

 (N − n) [1− p (u)]N−n−1 p (u)n−1 Πn (1)

A2 =
N∑
n=2

 N − 1

n− 1

 (n− 1) [1− p (u)]N−n p (u)n−2 Πn (1) .

Notice that

(1− p (u)) p (u)A1 = −
N−1∑
n=1

 N − 1

n

n [1− p (u)]N−n p (u)n Πn (1)

(1− p (u)) p (u)A2 =
N−1∑
n=1

 N − 1

n

n [1− p (u)]N−n p (u)n Πn+1 (1)

Therefore,

A1 + A2 =
1

(1− p (u)) p (u)

N−1∑
n=1

 N − 1

n

n [1− p (u)]N−n p (u)n (Πn+1 (1)− Πn (1)) .

44This part of the proof is similar to the proof of Lemma 1 in Levin and Smith (1994b).

40



Now, we show that Πn (1) is decreasing in n. To see this, recall that

Πn (1) =

ˆ
(v∗i − s∗n (v∗i ))

1−σ F ∗ (v∗i )
n−1dF ∗ (v∗i ) .

Here, v∗ − s∗n (v∗) and F ∗ (v∗)n−1 are both decreasing in n. Therefore, the integrand and

Πn (1) are decreasing in n. Consequently, A1 + A2 < 0 and p′ (u) > 0.

The distribution of u conditional on n is:

F u (u|n) =

ˆ u

u

p (x)n [1− p (x)]N−n fu (x) dx/C (n) ,

with C (n) =
´ ū
u
p (x)n [1− p (x)]N−n fu (x) dx. Notice that the support of fu (u|n) is [u1, u2]

for n < N and [u1, u] for n = N .

Now consider

fu (u|n)

fu (u|n′)
=

C (n) p (u)n [1− p (u)]N−n

C (n′) p (u)n
′
[1− p (u)]N−n

′ =
C (n)

C (n′)

[
1− p (u)

p (u)

]n′−n
.

As n
′
> n and p is strictly increasing on (u1, u2), the density ratio fu (u|n) /fu

(
u|n′

)
is strictly

decreasing in u on (u1, u2). Moreover, as u goes to u1 from above, p (u) goes to zero and the

ratio of densities goes to infinity. Hence, fu (u1 + ε|n) > fu
(
u1 + ε|n′

)
for sufficiently small

ε > 0. We know that F u (u1|n) = 0 for all n, so this implies F u (u1 + ε|n) > F u
(
u1 + ε|n′

)
for sufficiently small ε > 0.

Now, suppose toward contradiction that F u
(
u|n′

)
≥ F u (u|n) for some u ∈ (u1, u2)

and denote the smallest one of these points by ũ. As F u (u1 + ε|n) > F u
(
u1 + ε|n′

)
for

sufficiently small ε > 0, fu (ũ|n) ≤ fu (ũ|n). As fu (u|n) /fu
(
u|n′

)
is strictly decreasing,

fu (u|n) < fu (u|n) for u ∈ (ũ, u2). Therefore, this would imply that F u (u2|n) < F u
(
u2|n

′)
.

This is a contradiction because we know that F u (u2|n) = 1 for n < N and F u (u2|N) ≤ 1.

Hence, F u
(
u|n′

)
< F u (u|n) for all u ∈ (u1, u2).

To summarize, F u (u|n) = 0 for all n and u ≤ u1, F u
(
u|n′

)
< F u (u|n) for all u ∈ (u1, u2)
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and n
′
> n, and F u (u2|n) = 1 for n < N and F u (u2|N) ≤ 1.

Next consider the additive case. If n > 1, the bidding strategy for an entrant with v∗ in

an n-bidder auction with u is sn (v∗, u) = s∗n (v∗) + u , where s∗n (v∗) = sn (v∗, 0). If n = 1,

sn (v∗, u) = 0. Therefore,

Πn (u) = Ev∗ [U (v∗ + u− u− s∗n (v∗) +W − k)− U (W − k)]F ∗ (v∗)n−1 = Πn (0)

for all n > 1 while Π1 (u) = Ev∗ [U (v∗ + u+W − k)− U (W − k)]. Notice that Π1 (u) is

strictly increasing in u.

All potential bidders enter for all u if

ΠN (0) + U (W − k) > U (W ) .

In this case there is no variation in n, so we assume henceforth that this condition does not

hold. Then no bidder enters for

u < Π−1
1 [U (W )− U (W − k)] = u1.

For u > u1 the entry probability solves

(1− p (u))N−1 Π1 (u)+
N∑
n=2

 N − 1

n− 1

 (1− p (u))N−n p (u)n−1 Πn (0)+U (W − k)−U (W ) = 0.

Applying a similar argument as for the multiplicative case we obtain

p′ (u) = − p (u) (1− p (u))N Π
′
1 (u)

∑N−1
n=1

 N − 1

n

n [1− p (u)]N−n p (u) n (Πn+1 (u)− Πn (u))

> 0.

Here we used the fact that Πn (u) = Πn (0) for n > 1 and that Πn (u) is decreasing in n.
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Notice that while p is strictly increasing in u it never reaches 1.

Following the same argument as in the multiplicative case, we can now show that F u (u|n′) <

F u (u|n) for u > u1 and n
′
> n.

C Proof of Proposition 2

Proof. Assumption 6 and the identification result imply that E0l (Z`; θ) is uniquely maximized

at θ0. l (Z`; θ) is bounded from above by a constant because by Lemma 8, g∗n is bounded.

Then E0l (Z`; θ) is upper semi-continuous by Lemma 10 and the Reverse Fatou Lemma,

lim sup
k→∞

E0l (Z`; θk) ≤ E0 lim sup
k→∞

l (Z`; θk) ≤ E0l (Z`; θ) .

As Θ is compact, for any ε > 0, there exists a δ > 0 such that

E0l (Z`, θ0)− sup
‖θ−θ0‖s≥ε

E0l (Z`, θ) > δ.

Define Θ (ε) = {θ ∈ Θ : ‖θ − θ0‖s ≥ ε}. For any θ ∈ Θ (ε), let N (θ) be a closed ball around

it. Let lN (θ) (Z`) = supθ′∈N (θ) l
(
Z`, θ

′)
. By Lemma 10, l (Z`, θ) is continuous in θ Z`-a.s.

Hence, if N (θ) ↓ θ, lN (θ) (Z`) ↓ l (Z`, θ) almost surely. By the monotone convergence the-

orem, E0lN (θ) (Z`) ↓ E0l (Z`, θ). Therefore, for any θ ∈ Θ (ε), there exists N (θ) such that

E0l (Z`, θ0)−E0lN (θ) (Z`) > δ/2. Then Θ (ε) ⊆ ∪θ∈Θ(ε)N (θ). Because Θ (ε) is a closed subset

of a compact space Θ, it is also compact. Hence, there exist sets Nj = N (θj) indexed by

j = 1, 2, · · · , J that cover Θ (ε). By Lemma 5 and Lemma 8, gn (b, θ) is bounded from above,

as is l (Z`, θ) and lNj (Z`). Therefore, we can still apply the law of large numbers even if the

expectation may be −∞ :

sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≤ sup

j

1

L

∑
lNj (Z`)→a.s. sup

j
E0lNj (Z`) < E0l (Z`, θ0)− δ/2. (9)
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There exists sequence {θ0,kL}
∞
kL=1, θ0,kL ∈ ΘkL such that limkL→∞ ‖θ0,kL − θ0‖s = 0, and

E0l (Z`, θ0,kL)− E0l (Z`, θ0)→ 0 by Lemma 11. Therefore, we can find K large enough such

that |E0l (Z`, θ0,kL)− E0l (Z`, θ0)| < δ/4 and θK ∈ Θ (ε)c ∩ ΘkL for all kL ≥ K. By this

definition and (9),

E0l (Z`, θK)− sup
j
E0lNj (Z`) > δ/4. (10)

For large enough L,

{
θ̂L ∈ Θ (ε)

}
⊆

{
sup

θ∈Θ(ε)∩ΘkL

1

L

∑
l (Z`, θ) ≥ sup

θ∈Θ(ε)c∩ΘkL

1

L

∑
l (Z`, θL)

}

⊆

{
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥ sup

θ∈Θ(ε)c∩ΘkL

1

L

∑
l (Z`, θL)

}

⊆

{
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

}
.

The probability of
{

supθ∈Θ(ε)
1
L

∑
l (Z`, θ) ≥ 1

L

∑
l (Z`, θK)

}
converges to 0 because

lim sup
L→∞

P

(
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

)
≤ lim sup

L→∞
P

(
sup
j

1

L

∑
lNj (Z`) ≥

1

L

∑
l (Z`, θK)

)
≤ P

(
sup
j
E0lNj

(Z`) + δ/8 ≥ E0l (Z`, θK)− δ/8
)

+ lim sup
L→∞

P

(
1

L

∑
l (Z`, θK)− E0l (Z`, θK) < −δ/8

)
+ lim sup

L→∞
P

(
sup
j

1

L

∑
lNj

(Z`)− sup
j
E0lNj

(Z`) > δ/8

)
≤ P

(
E0l (Z`, θK)− sup

j
E0lNj

(Z`) ≤ δ/4
)

+ lim sup
L→∞

P

(
sup
j

1

L

∑
lNj

(Z`)− sup
j
E0lNj

(Z`) > δ/8

)
+ lim sup

L→∞
P

(
1

L

∑
l (Z`, θK)− E0l (Z`, θK) < −δ/8

)
= 0.

The last step follows from (10) and the law of large numbers:

P
(
θ̂L ∈ Θ (ε)

)
≤ P

(
sup
θ∈Θ(ε)

1

L

∑
l (Z`, θ) ≥

1

L

∑
l (Z`, θK)

)
→ 0.
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D Supplementary Materials

D.1 Lemmas for the Proof of Proposition 2

Throughout this section, C and any C with a subscript are generic finite positive constants

that may take different values at different places.

Lemma 5. f ∗ (·; θ) and fun (·; θ) satisfies the following:

(1). η2

1+B
h∗ (·) ≤ f ∗ (·; θ) ≤

(
1 + 3

√
B
)2

h∗ (·), η2

1+B
hu (·) ≤ fun (·; θ) ≤

(
1 + 3

√
B
)2

hu (·).

Hence, f ∗ (·, θ) and fun (·, θ) are uniformly bounded from above.

(2). η2

1+B
H∗ (·) ≤ F ∗ (·; θ) ≤

(
1 + 3

√
B
)2

H∗ (·), η2

1+B
Hu (·) ≤ F u

n (·; θ) ≤
(

1 + 3
√
B
)2

Hu (·).

(3). supx ‖f ∗ (x; θ1)− f ∗ (x; θ2)‖∞ ≤ C ‖θ1 − θ2‖s ∀θ1, θ2 ∈ Θ for some C < ∞. The same

holds for fun (·; θ) ∀n ∈ N.

(4). supx ‖F ∗ (x; θk)− F ∗ (x; θ)‖∞ ≤ C ‖θ1 − θ2‖s ∀θ1, θ2 ∈ Θ for some C < ∞. The same

holds for F u
n (·; θ) ∀n ∈ N.

Proof. We start with the first claim. ψ ∈ Ψ (B) implies |ψ (x)| ≤ 3
√
B. To see this, notice

|ψ (0)| ≤ 2
√
B for any ψ ∈ Ψ (B). If not, we can find a ψ ∈ Ψ (B) such that |ψ (0)| > 2

√
B.

Without loss of generality, we can assume that ψ (0) > 2
√
B. Then,

ψ (x) = ψ (0) +

ˆ x

0
ψ′ (y) dy ≥ ψ (0)−

ˆ x

0

∣∣ψ′ (y)
∣∣ dy ≥ ψ (0)−

√ˆ 1

0
|ψ′ (y)|2 dy >

√
B,

which suggestsψ /∈ Ψ (B). This is a contradiction. Therefore, ψ (0) ≤ 2
√
B and

|ψ (x)| =
∣∣∣∣ψ (0) +

ˆ x

0
ψ′ (y) dy

∣∣∣∣ ≤ |ψ (0)|+
ˆ x

0

∣∣ψ′ (y)
∣∣ dy ≤ |ψ (0)|+

√ˆ 1

0
|ψ′ (y)|2 dy ≤ 3

√
B. (11)

Because |ψ (x)| ≤ 3
√
B,

η2

1 +B
≤ (1 + ψ (x))2

1 +
´
ψ (x)2 dx

≤
(

1 + 3
√
B
)2

. (12)
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Then we have

(
1 + 3

√
B
)2

hu (x) ≥ fun (x; θ) = (Tψun) [Hu (x)]hu (x) ≥ η2

1 +B
hu (x) .

The same inequalities hold for f ∗ (x; θ). The second claim holds by integrating the above

inequalities.

Next, we prove the third claim. We only need to show that the mapping Tψ = [1+ψ(·)]2
1+
´
ψ2(x)dx

is continuous in ψ under ‖·‖∞ on Ψ (B). If ‖ψk − ψ‖∞ → 0 as k →∞,

‖Tψ1 − Tψ2‖∞ = sup
x∈[0,1]

∣∣∣∣∣ [1 + ψ1 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

2 (x) dx

∣∣∣∣∣
≤ sup

x∈[0,1]

∣∣∣∣∣ [1 + ψ1 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

1 (x) dx

∣∣∣∣∣
+ sup

x∈[0,1]

∣∣∣∣∣ [1 + ψ2 (x)]2

1 +
´
ψ2

1 (x) dx
− [1 + ψ2 (x)]2

1 +
´
ψ2

2 (x) dx

∣∣∣∣∣
≤ ‖ψ1 − ψ2‖∞

(
2 ‖ψ1‖∞ + 2 ‖ψ2‖∞ + 4 (1 + ‖ψ2‖∞)2) .

By (11), ‖Tψ1 − Tψ2‖∞ ≤
(

6
√
B + 4

(
1 + 3

√
B
)2
)
‖ψ1 − ψ2‖∞ ≡ C2 ‖ψ1 − ψ2‖∞ , which

is Hölder continuous in ψ. Trivially,

|fun (x; θ1)− fun (x; θ2)| =
∣∣(Tψun,1) [Hu (x)]hu (x)−

(
Tψun,2

)
[Hu (x)]hu (x)

∣∣
≤ C2 ‖hu‖∞ ‖ψ1 − ψ2‖∞ ≤ C2 ‖hu‖∞ ‖θ1 − θ2‖s ,

which is Hölder continuous in θ. Notice that the bound of the above expression does not de-

pend on x. The same holds for f ∗ (x, θ). For the last claim, just notice that |F u
n (x; θ1)− F u

n (x; θ2)| ≤
´
|fun (x; θ1)− fun (x; θ2)| dx ≤ C ‖θ1 − θ2‖∞ . The same inequality holds for F ∗ (·; θ) .

Lemma 6. supv∈[1,v̄∗+1] |s∗n (v; θk)− s∗n (v; θ)| → 0 if ‖θk − θ‖s → 0.

Proof. First, suppose v∗ < ∞. We first show that s∗n (·; θk) converges to s∗n (·; θ) uniformly
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on [1 + ε, v∗ + 1] for any ε > 0.

|s∗n (x; θk)− s∗n (x; θ)| =

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θk)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θ)

]n−1
1−σ

dv

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θk)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

] n−1
1−σk

dv

∣∣∣∣∣
+

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

] n−1
1−σk

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

]n−1
1−σ

dv

∣∣∣∣∣
+

∣∣∣∣∣
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θk)

]n−1
1−σ

dv −
ˆ x

1

[
F ∗ (v; θ)

F ∗ (x; θ)

]n−1
1−σ

dv

∣∣∣∣∣
= A1 (x) +A2 (x) +A3 (x) .

A1 (x),A2 (x) and A3 (x) have bounds independent of x.

A1 (x) ≤ 1

F ∗ (x; θk)
n−1
1−σk

ˆ x

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv
≤ 1

F ∗ (x; θk)
n−1
1−σk

ˆ v̄∗+1

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv
Because x > ε, F ∗ (x) > 2δ for some δ > 0. F ∗ (v; θk) → F ∗ (v; θ) uniformly by Lemma 5.

Hence, there exists a K such that for all k > K, F ∗k (x) > δ for all x > 1 + ε. Therefore, for

sufficiently large k,

A1 (x) ≤ 1

δ
n−1
1−σk

ˆ v̄∗+1

1

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv.
In addition, notice σk → σ, δ

n−1
1−σk → δ

n−1
1−σ . Therefore, for large enough k

A1 (x) ≤ 2

δ
n−1
1−σ

ˆ v∗+1

0

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ dv.
Because

∣∣∣F ∗ (v; θk)
n−1
1−σk − F ∗ (v; θ)

n−1
1−σk

∣∣∣ → 0 uniformly, A1 (x) → 0 uniformly in x. We can

apply a similar argument to A2 (x) and A3 (x) to conclude that they converge to 0 uniformly

in x. Therefore, |s∗n (x; θk)− s∗n (x; θ)| converges to 0 uniformly on [1 + ε, 1 + v∗]. Because
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s∗n (1; θk) = s∗n (1; θ) = 1 and bid functions are continuous and increasing, for any δ > 0 we

can find an ε such that s∗n (ε; θ) < δ/3. There exists a K such that for all k > K,

|s∗n (x; θk)− s∗n (x; θ)| < δ/3, ∀x ∈ [1 + ε, 1 + v∗] .

If x ∈ [1, 1 + ε], one can easily show that if k > K,

|s∗n (x; θk)− s∗n (x; θ)| ≤ sup (|s∗n (1; θk)− s∗n (ε; θ)| , |s∗n (ε; θk)− s∗n (1; θ)|) < δ.

Because the above inequality holds for all δ > 0 and is independent of x, we can conclude

s∗n (·; θk) converges to s∗n (·; θ) uniformly on [1, 1 + v̄∗] if ‖θk − θ‖s → 0 and if v̄∗ <∞.

If v̄∗ =∞, by the above argument, for any c <∞, supv∈[1,c+1] |s∗n (v; θk)− s∗n (v; θ)| → 0.

By the first-order condition, for any θ ∈ Θ,

∂s∗n (v; θ)

∂v
=
n− 1

1− σ
f ∗ (v; θ)

F (v; θ)
(v − s∗n (v; θ)) ≤ C

n− 1

η

h∗ (v)

H (v)
v

for some constant C. The last inequality holds because of Lemma 5 and s∗n (v; θ) ≥ 0. By

Assumption 4, h∗ (v) has a tail bounded by C/v2+δ for some δ > 0, for large enough v1 > v2,

|s∗n (v2; θ)− s∗n (v1; θ)| ≤ C

ˆ v1

v2

h∗ (v)

H (v2)
vdv ≤ C

H (v2)
v−δ2 .

Hence, for any ε > 0, there exists a v (ε) <∞ such that for v > v (ε), |s∗n (v (ε) ; θ)− s∗n (v; θ)| ≤

ε. Therefore,

sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v; θ)|

≤ sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v (ε) ; θk)|+ sup
v≥v(ε)

|s∗n (v; θ)− s∗n (v (ε) ; θ)|

+ |s∗n (v (ε) ; θk)− s∗n (v (ε) ; θ)| ≤ 2ε+ |s∗n (v (ε) ; θk)− s∗n (v (ε) ; θ)| .

Consequently, supv∈[1,v∗+1] |s∗n (v; θk)− s∗n (v; θ)| → 0, because the following holds for any
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ε > 0:

sup
v∈[1,∞]

|s∗n (v; θk)− s∗n (v; θ)| ≤ sup
v∈[1,v(ε)]

|s∗n (v; θk)− s∗n (v; θ)|+ sup
v≥v(ε)

|s∗n (v; θk)− s∗n (v; θ)|

≤ 2ε+ 2 sup
v∈[1,v(ε)]

|s∗n (v; θk)− s∗n (v; θ)| → 2ε.

Lemma 7. For every n ∈ N and θk, θ ∈ Θ, if ‖θk − θ‖s → 0, then g∗n (x; θk) → g∗n (x; θ)

x-a.e.

Proof. Because s∗n (v; θ) is strictly increasing on [1, v∗ + 1] for all θ ∈ Θ, by Lemma 6, for any

1 < x < s∗n (v̄∗; θ), s∗−1
n (x; θk) → s∗−1

n (x; θ). If not, we can find a v 6= s∗−1
n (x; θ) such that

s∗n (v; θ) = x, which violates the strictly increasing property. For such an x, s∗−1
n (x; θk)−x→

s∗−1
n (x; θ)− x > 0,

∣∣F ∗ (s∗−1
n (x; θk) ; θk

)
− F ∗

(
s∗−1
n (x; θ) ; θ

)∣∣
≤

∣∣F ∗ (s∗−1
n (x; θk) ; θk

)
− F ∗

(
s∗−1
n (x; θ) ; θk

)∣∣+
∣∣F ∗ (s∗−1

n (x; θ) ; θk
)
− F ∗

(
s∗−1
n (x; θ) ; θ

)∣∣
≤ ‖f ∗ (·; θk)‖∞

∣∣s∗−1
n (x; θk)− s∗−1

n (x; θ)
∣∣+ ‖F ∗ (·; θ)− F ∗ (·; θk)‖∞

≤ C
(∣∣s∗−1

n (x; θk)− s∗−1
n (x; θ)

∣∣+ ‖θk − θ‖s
)
→ 0.

In addition, 1−σk
n−1
→ 1−σ

n−1

g∗n (x; θk) =
1− σk
n− 1

F ∗ (s∗−1
n (x; θk) ; θk)

s∗−1
n (x; θk)− x

→ 1− σ
n− 1

F ∗ (s∗−1
n (x; θ) ; θ)

s∗−1
n (x; θ)− x

= g∗n (x; θ) .

It is easy to see that for any x < 1, gn (x; θk) = gn (x; θ) = 0. In addition, if x > s∗n (v∗ + 1; θ),

x > s∗n (v∗ + 1; θk) for large enough k by Lemma 6. Hence, gn (x; θk) = gn (x; θ) = 0 for all

large enough k. If x = 1, gn (1; θk) = f∗(1;θk)(1−σk)
n−σk

→ gn (1; θ). Hence, g∗n (x; θk) → g∗n (x; θ)

x-a.e.

Lemma 8. There exists a constant C > 0 such that g∗n (·; θ) ≤ C for all θ ∈ Θ.
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Proof. For any v ∈ [1, v∗ + 1], the first-order condition implies

g∗n (s∗n (v; θ) ; θ) =
1− σ
n− 1

F ∗ (v; θ)

v − s∗n (v; θ)
=

1− σ
n− 1

F ∗ (v; θ)

´ v
1

[
F ∗(s;θ)
F ∗(v;θ)

]n−1
1−σ

ds

=
1− σ
n− 1

F ∗ (v; θ)
n−σ
1−σ´ v

1 F
∗ (s; θ)

n−1
1−σ ds

. (13)

By Lemma 5, for C1 = η2

1+B
and C2 =

(
1 + 3

√
B
)2

,

g∗n (s∗n (v; θ) ; θ) ≤ 1− σ
n− 1

C
n−σ
1−σ

2

C
n−σ
1−σ

1

H∗ (v)
n−σ
1−σ´ v

0 H
∗ (s)

n−1
1−σ ds

≤ C3
H∗ (v)

n−σ
1−σ´ v

1 H
∗ (s)

n−1
1−σ ds

≤ C3
H∗ (v)

1+n−1
η

´ v
1 H

∗ (s)
n−1
η ds

. (14)

Notice that

lim
v→1

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

=

(
n− 1

η
+ 1

)
h∗ (1) ,

and let v1 be H∗ (v1) = 1/2, for any v > v1

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

<
2
n−1
η

v1

.

Therefore,

g∗n (s∗n (v; θ) ; θ) ≤ C3 max

{(
n− 1

η
+ 1

)
h∗ (1) , max

v∈[1,v1]

H∗ (v)1+n−1
η´ v

1
H∗ (s)

n−1
η ds

}
= C.

maxv∈[1,v1]
H∗(v)

1+n−1
η

´ v
1 H

∗(s)
n−1
η ds

is bounded because it is continuous in v on (1, v1] and smaller than(
n−1
η

+ 1
)
h∗ (1) if v approaches 1.

Lemma 9. gn (log b/ exp (logXγ) ; θ) is continuous in θ on Θ (b, X)-a.e.
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Proof. ∀θ ∈ Θ and θk → θ under ‖·‖s,∣∣∣∣gn( b

exp (logXγk)
; θk

)
− gn

(
b

exp (logXγ)
; θ

)∣∣∣∣
=

∣∣∣∣∣
ˆ

1

un

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)
fun (u; θ) du

−
ˆ

1

un

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
fun (u; θk) du

∣∣∣∣∣
≤ C

ˆ n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
|fun (u; θk)− fun (u; θ)| du+

C

ˆ ∣∣∣∣∣
n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
−

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)∣∣∣∣∣ fun (u; θ) du

= A1 +A2.

The first inequality holds because µ has to be strictly greater than some positive number.

Hence, u ≥ µ is bounded from below. Consequently, there exists C > 1/un for all u. Next,

we show that A1 and A2 converge to 0.

A1 ≤ C ‖θk − θ‖s
ˆ n∏

i=1

g∗n (bi/ (u+ µk) exp (logXγk) ; θk) du ≤ C ‖θk − θ‖s → 0.

The first inequality holds by Lemma 5, and the second inequality holds by the fact that g∗n

is bounded and is a density function.

A2 ≤
ˆ ∣∣∣∣∣

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θk

)
−

n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θ

)∣∣∣∣∣ fun (u; θ) du

+

ˆ ∣∣∣∣∣
n∏
i=1

g∗n

(
bi

(u+ µk) exp (logXγk)
; θ

)
−

n∏
i=1

g∗n

(
bi

(u+ µ) exp (logXγ)
; θ

)∣∣∣∣∣ fun (u; θ) du

= B1 +B2.

First, use a change of variables to rewrite

B1 =

ˆ ∣∣∣∣∣
n∏
i=1

g∗n (bi/u; θk)−
n∏
i=1

g∗n (bi/u; θ)

∣∣∣∣∣ fun (u/ exp (logXγk)− µk; θ) du.

|
∏n

i=1 g
∗
n (bi/u; θk)−

∏n
i=1 g

∗
n (bi/u; θ)| → 0 u-a.e. by Lemma 7. In addition, by Lemma 8, for
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some C <∞,

∣∣∣∣∣
n∏
i=1

g∗n (bi/u; θk)−
n∏
i=1

g∗n (bi/u; θ)

∣∣∣∣∣ fun (u/ exp (logXγk)− µk; θ) ≤ Cfun (u/ exp (logXγk)− µk; θ) .

Notice that Cfun (u/ exp (logXγk)− µk; θ)→ Cfun (u/ exp (logXγ)− µ; θ) u-a.e., and

ˆ
Cfun (u/ exp (logXγk)− µk; θ) du = C exp (Xγk)→ C exp (Xγ) =

ˆ
Cfun (u/ exp (logXγ)− µ; θ) .

The generalized Dominated Convergence Theorem implies B1 → 0. Similarly, the Dom-

inated Convergence Theorem implies B2 → 0. Consequently, gn (log b/ exp (logXγ) , θ) is

continuous in θ (b, X)-a.e.

Lemma 10. l (Z, θ) is continuous in θ on Θ Z-a.e.

Proof. l (Z, θ) is the log of a continuous function gn by Lemma 9. Therefore, it is continuous

in θ, Z-a.e.

Lemma 11. Under Assumptions 4 and 5, there exists a sequence {θ0,kL}
∞
kL=1 such that θ0,kL ∈

ΘkL , limkL→∞ ‖θ0,kL − θ0‖s = 0 , and E0l (Z`, θ0,kL)− E0l (Z`, θ0)→ 0.

Proof. By Assumption 5, there exists α0,kL ∈ AkL such that ‖α0,kL − α0‖∞ → 0. Now we

find σ0,kL ↓ σ0 such that θ0,kL = (σ0,kL , γ0, µ0, α0,kL) , which satisfies s∗n (·; θ0) ≤ s∗n (·; θ0,kL) ≤

C (s∗n (·; θ0)− 1)+1 for some C > 1. Then we show that this sequence of θ0,kL is the desirable

sequence.

Recall the first-order condition

∂s∗n (v; θ)

∂v
=
n− 1

1− σ
f ∗ (v; θ)

F ∗ (v; θ)
(v − s∗n (v; θ)) .

Therefore, s∗n (·; θ0) ≤ s∗n (·; θ0,kL) if n−1
1−σ0

f∗(v;θ0)
F ∗(v;θ0)

≤ n−1
1−σ0,kL

f∗(v;θ0,kL)
F ∗(v;θ0,kL)

, or 1−σ0
n−1

F ∗(v;θ0)
f∗(v;θ0)

≥ 1−σ0,kL
n−1

F ∗(v;θ0,kL)
f∗(v;θ0,kL)

,

which in turn can be written as

1− σ0

n− 1

´ v
1 (Tψ∗0) ◦H∗ (s)h∗ (s) ds

(Tψ∗0) ◦H∗ (v)h∗ (v)
≥

1− σ0,kL

n− 1

´ v
1

(
Tψ∗0,kL

)
◦H∗ (s)h∗ (s) ds(

Tψ∗0,kL

)
◦H∗ (v)h∗ (v)

.
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Because
∥∥ψ∗0,kL − ψ∗0∥∥∞ → 0, by Lemma 5,

sup
v

∣∣(Tψ∗) ◦H∗ (v)−
(
Tψ∗kL

)
◦H∗ (v)

∣∣ = εkL → 0.

By (12), η2

1+B
≤ (Tψ∗) ◦H∗ (v) ≤

(
1 + 3

√
B
)2

. Therefore, for large enough kL

[
1− εkL (1 +B)

η2

]
(Tψ∗0)◦H∗ (v)h∗ (v) ≤

(
Tψ∗0,kL

)
◦H∗ (v)h∗ (v) ≤

[
1 +

εkL (1 +B)

η2

]
(Tψ∗0)◦H∗ (v)h∗ (v) ,

which suggests

[
1− εkL (1 +B)

η2

]
f∗ (v; θ0) ≤ f∗ (v; θ0,kL) ≤

[
1 +

εkL (1 +B)

η2

]
f∗ (v; θ0) (15)

[
1− εkL (1 +B)

η2

]
F ∗ (v; θ0) ≤ F ∗ (v; θ0,kL) ≤

[
1 +

εkL (1 +B)

η2

]
F ∗ (v; θ0) . (16)

(15) and (16) together imply

1− σ0

n− 1

F ∗ (v; θ0)

f∗ (v; θ0)
≥ 1− σ0

n− 1

[
1− εkL (1+B)

η2

]
F ∗ (v; θ0,kL)[

1 +
εkL (1+B)

η2

]
f∗ (v; θ0,kL)

≥ 1− σ0

n− 1

F ∗ (v; θ0)

f∗ (v; θ0)

[
1− εkL (1+B)

η2

]2

[
1 +

εkL (1+B)

η2

]2 .

Define σkL = 1 − (1− σ0)
[
1− εkL (1+B)

η2

]
/
[
1 +

εkL (1+B)

η2

]
↓ σ0 as εkL → 0. Then let C >[

1 +
εkL (1+B)

η2

]2

/
[
1− εkL (1+B)

η2

]2

for large enough kL, then because s∗n (v; θ0) ≤ s∗n (v; θ0,kL) ,

C
∂s∗n (v; θ)

∂v
= C

n− 1

1− σ0

f∗ (v; θ0)

F ∗ (v; θ0)
(v − s∗n (v; θ0)) ≥ n− 1

1− σ0,kL

f∗ (v; θ0,kL)

F ∗ (v; θ0,kL)
(v − s∗n (v; θ0,kL)) =

∂s∗n (v; θ0,kL)

∂v
.

Therefore, s∗n (·; θkL) ≤ C (s∗n (·; θ0)− 1)+1, where 1 comes from the initial condition s∗ (1; θ) =

1. Notice that θ0,kL converges to θ0 under ‖·‖s.

It is left to show that E0l (Z`; θ0,kL)−E0l (Z`; θ0)→ 0. First, notice l (Z; θ0,kL)→ l (Z; θ0)

Z-a.e. by Lemma 10. Then, if |l (Z; θ0,kL)| is bounded by an integrable function, the Domin-

ated Convergence Theorem implies that E0l (Z`; θ0,kL) − E0l (Z`; θ0) → 0. First, notice that

Lemma 8 implies that g∗n (·; θ) < C. Therefore, g∗n (b; θ) =
´

1
un

∏n
i=1 g

∗
n (bi; θ) f

u
n (u; θ) du < C

for some constant C . Because l (Z; θ0,kL) is the log of g∗n, it is bounded from above by a
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constant. Then it suffices to show that l (Z; θ0,kL) is bounded from below by an integrable

function. To this end, we show gn (b; θ0,kL) > C1gn (b; θ0) for some constant C1 > 0, which

implies l (Z; θ0,kL) ≥ l (Z; θ0) + C1.

We first show b ∈ [1, s∗n (1 + v∗; θ0)], g∗n (b; θ0,kL) ≥ C2g
∗
n (b; θ0) for some constant C2 > 0.

Use (13) to obtain

g∗n (b; θ0,kL)

g∗n (b; θ0)
=

1− σkL
1− σ0

F ∗
(
s∗−1
n (b; θ0,kL) ; θ0,kL

)n−σ0,kL
1−σ0,kL

F ∗
(
s∗−1
n (b; θ0) ; θ0

)n−σ0
1−σ0

´ s∗−1
n (b;θ0)

1 F ∗ (s; θ0)
n−1
1−σ0 ds

´ s∗−1
n (b;θ0,kL)

1 F ∗ (s; θ0,kL)
n−1

1−σ0,kL ds

.

By Lemma 5 and the fact σ0,kL ≥ σ0, there exists a constant C3 such that

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)
H∗
(
s∗−1
n (b; θ0)

)
´ s∗−1

n (b;θ0)
1

[
H∗(s)

H∗(s∗−1
n (b;θ0))

] n−1
1−σ0

ds

´ s∗−1
n (b;θkL)

1

[
H∗(s)

H∗(s∗−1
n (b;θkL))

] n−1
1−σ0,kL ds

≥ C3
H∗
(
s∗−1
n (b; θ0,kL)

)
H∗
(
s∗−1
n (b; θ0)

)
´ s∗−1

n (b;θ0)
1

[
H∗(s)

H∗(s∗−1
n (b;θ0))

] n−1
1−σ0

ds

´ s∗−1
n (b;θ0,kL)

1

[
H∗(s)

H∗(s∗−1
n (b;θ0,kL))

] n−1
1−σ0

ds

= C3
H∗
(
s∗−1
n (b; θ0,kL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

´ s∗−1
n (b;θ0)

1 H∗ (s)
n−1
1−σ0 ds

´ s∗−1
n (b;θ0,kL)

1 H∗ (s)
n−1
1−σ0 ds

.

First, because s∗−1
n (b; θ0) ≥ s∗−1

n (b; θ0,kL),

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θ0,kL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

.

If b = s∗n (v̄∗ + 1; θ0),

g∗n (b; θ0,kL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)n−σ0
1−σ0

H∗ (v̄∗ + 1)
n−σ0
1−σ0

≥ C3/2
1+n−1

η (17)

for large enough kL. This is because we can find an ε > 0 such that s∗−1
n (b− ε; θ0) > vH (1/2) ,

where H∗ (vH (1/2)) = 1/2. Because s∗−1
n (b− ε; θ0,kL) → s∗−1

n (b− ε; θ0) for any ε > 0 and

H∗ is continuous, H∗ (s∗−1
n (b; θ0,kL)) > 1/2. Because n−σ0

1−σ0 ≤ 1 + n−1
η

, the last inequality in
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(17) holds. In addition, because s∗n (·; θkL) ≤ C (s∗n (·; θ0)− 1) + 1,

g∗n (b; θkL)

g∗n (b; θ0)
≥ C3

H∗
(
s∗−1
n (b; θkL)

)n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

≥ C3
H∗
(
s∗−1
n

(
b−1
C + 1; θ0

))n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

.

By Assumption 4,

lim
b↓1

H∗
(
s∗−1
n

(
b−1
C + 1; θ0

))n−σ0
1−σ0

H∗
(
s∗−1
n (b; θ0)

)n−σ0
1−σ0

= lim
b↓1

(
s∗−1
n

(
b−1
C + 1; θ0

)
− 1
)n−σ0

1−σ0
(1+ε)(

s∗−1
n (b; θ0)− 1

)n−σ0
1−σ0

(1+ε)

= lim
b↓1

 b−1
C

1
s∗′n (1;θ0)

(b− 1) 1
s∗′n (1;θ0)


n−σ0
1−σ0

(1+ε)

= 1/C
n−σ0
1−σ0

(1+ε)
= C4.

Because
g∗n(b;θ0,kL)
g∗n(b;θ0)

> 0 for all b ∈ (1, s∗n (v̄∗ + 1; θ0)) and it is continuous, there exists

C2 > 0 such that
g∗n(b;θ0,kL)
g∗n(b;θ0)

≥ C2 on [1, s∗n (v̄∗ + 1; θ0)] . In addition, g∗n (b; θ) = 0 if b /∈

[1, s∗n (v̄∗ + 1; θ0)]. g∗n (b; θ0,kL) ≥ C2g
∗
n (b; θ0) for large enough kL. By Lemma 5, fun (u; θkL) >

C5f
u
n (u; θ0)

gn (b; θ0,kL) =

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ0,kL) fun (u; θ0,kL) du ≥ C5

ˆ
1

un

n∏
i=1

g∗n (bi/u; θk) f
u
n (u; θ0) du

≥ C5C2

ˆ
1

un

n∏
i=1

g∗n (bi/u; θ0) fun (u; θ0) du = C1gn (b; θ0) .

Therefore, l (Z`; θ0,kL) ≥ l (Z`; θ0) + logC1. Then, by the Dominated Convergence Theorem,

E0l (Z`; θ0,kL)→ E0l (Z`; θ0).
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D.2 Additional Monte Carlo Results
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Figure II: Value Distribution. No Selection (DGP 1). Red solid line: True distribution. Blue
dot-dash lines: 2.5%, 50%, 97.5% quantiles of the estimates.
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(c) σ0 = 0.2
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(d) σ0 = 0.3

Figure III: Distributions of Unobserved Auction Heteorgeneity. No Selection (DGP 1). Red
solid line: True distribution. Blue dot-dash lines: 2.5%, 50%, 97.5% quantiles of the estim-
ator. In each sub-figure, the first row is for 2 and 3-bidder auctions, and the second row is
for 4 and 5-bidder auctions.
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Figure IV: Value Distribution. Weak Selection (DGP 2). Red solid line: True distribution.
Blue dot-dash lines: 2.5%, 50%, 97.5% quantiles of the estimator
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(a) σ0 = 0
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(b) σ0 = 0.1
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(c) σ0 = 0.2
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(d) σ0 = 0.3

Figure V: Distributions of Unobserved Auction Heterogeneity: Weak Selection (DGP 2).
Red solid line: True distribution. Blue dot-dash lines: 2.5%, 50%, 97.5% quantiles of the
estimator. In each sub-figure, the first row is for 2 and 3-bidder auctions, and the second row
is for 4 and 5-bidder auctions.

65



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
σ0 = 0

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
σ0 = 0.1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
σ0 = 0.2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
σ0 = 0.3

Figure VI: Value Distribution: Strong Selection. Red solid line: True distribution. Blue
dot-dash lines: 2.5%, 50%, 97.5% quantiles of the estimator
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(b) σ0 = 0.1
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(c) σ0 = 0.2
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Figure VII: Distributions of Unobserved Auction Heterogeneity: Strong Selection. Red solid
line: True distribution. Blue dot-dash lines: 2.5%, 50%, 97.5% quantiles of the estimator. In
each sub-figure, the first row is for 2 and 3-bidder auctions, and the second row is for 4 and
5-bidder auctions.
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