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Abstract 

This paper studies how the allocation of residual losses affects trading and welfare in a 
central counterparty. I compare loss sharing under two loss-allocation mechanisms – 
variation margin haircutting and cash calls – and study the privately and socially optimal 
degree of loss sharing. For losses allocated using variation margin haircuts, I find that 
trading volume is sensitive to the degree of loss sharing and to the risk sensitivity of skin-
in-the-game capital. By contrast, for cash calls, the degree of loss sharing does not affect 
trading volume but instead affects the chance that a cash call is honoured, which can 
constrain the recovery of funds. A welfare analysis characterizes the market outcome and 
compares it with the social optimum.  

JEL classification: G19, G21 
Bank classification: Economic models; Payment clearing and settlement systems  

Résumé 

L’étude analyse l’incidence qu’exerce la répartition des pertes résiduelles sur le volume 
de transactions et le bien-être des participants d’une contrepartie centrale. Deux 
mécanismes de répartition des pertes sont comparés, soit l’application de décotes aux 
plus-values sur marge de variation et les appels de fonds. Le degré optimal de répartition 
des pertes est étudié du point de vue privé et social. Dans le cas des pertes réparties au 
moyen du premier mécanisme, on constate que le volume des transactions est influencé 
par le degré de répartition des pertes et par la sensibilité aux risques des « intérêts en 
jeu ». En revanche, pour ce qui est du second mécanisme – les appels de fonds –, le degré 
de répartition des pertes n’a aucune incidence sur le volume des transactions; il influe par 
contre sur la probabilité qu’un appel de marge soit honoré, ce qui peut restreindre le 
recouvrement des fonds. Une analyse du bien-être est réalisée : elle définit les résultats du 
marché et les compare aux résultats obtenus en situation d’optimum social. 

Classification JEL : G19, G21 
Classification de la Banque : Modèles économiques; Systèmes de compensation et de 
règlement des paiements 

 

 



 

Non-Technical Summary 
 
This paper proposes a model for analyzing the effects of central counterparty loss-

allocation tools – cash calls and variation margin gain haircuts (VMGH) – on the trading and 
welfare of clearinghouse participants. It is motivated by the increasing importance of centrally 
cleared markets, arising from the G-20 commitment to centrally clear standardized over-the-
counter derivatives.  

The paper quantifies, and generally confirms, the intuitive argument put forward by Singh 
(2015) that losses should be shared to the fullest extent possible. The analysis demonstrates that, 
in many cases, maximum loss sharing is indeed both privately and socially optimal. However, 
this paper also identifies an important special case where private and social welfare diverge and 
banks do not have the right incentives to trade under maximal loss sharing, creating a tradeoff 
between loss sharing and trading volume. 

This special case is important for policy-makers concerned with the uninterrupted 
functioning of centrally cleared markets. It occurs when VMGH losses are shared fully across 
members and the CCP uses a risk-based, highly procylcial skin in the game. I show that overly 
procyclical skin in the game weakens incentives to trade when VMGH losses are shared fully 
because the CCP effectively subsidizes potential defaults by participants. This leads to a policy-
making tradeoff between market activity and fairness in the allocation of losses. As a practical 
solution to avoid this tradeoff, I propose not using overly risk-sensitive skin in the game when 
losses are allocated using VMGH. (This consideration does not apply to cash calls.) 

In contrast to VMGH, which affects trading volume ex ante, cash calls carry ex post 
performance risk that can undermine the CCP's ability to collect funds after a stress event, 
potentially threatening both its recovery and its post-recovery viability. The analysis shows that 
cash calls do not reduce trading before the onset of stress because clearing members retain the 
ability to not honor cash calls that they deem too intrusive. While this eliminates ex ante market 
reactions to the inclusion of cash calls in a recovery plan, it raises a different set of concerns. The 
model predicts that the banks' risk of non-performance to the cash call rises endogenously in 
response to higher cash call likelihoods, thereby placing a constraint on the total amount of funds 
that can be recovered. This can limit the success of the recovery effort, which suggests that CCP 
resolution authorities should be endowed with powers allowing them to resolve a CCP before 
recovery tools have become ineffective. 



1 Introduction

The G-20 reforms committing to the central clearing of standardized over-the-counter deriva-

tives have increased both the centrality and the importance of central counterparties (CCPs).

Aimed at fostering transparency and standardization in derivatives markets, these commit-

ments have also concentrated substantial new risks on CCPs by expanding the types of

instruments subject to central clearing and by stimulating an increase in centrally cleared

volumes (Duffie, 2014). This, in turn, has created concerns that clearinghouses may be

becoming the next entities that are “too big” or “too important” to fail (Financial Times,

2014; Coeuré, 2015; Singh, 2015; Duffie, 2014). In reaction to these concerns, international

regulatory bodies recently released recommendations for CCPs to develop recovery plans

– contingency procedures that allow them to allocate uncovered losses to their members

in the unlikely event that a default is so large that pre-funded clearinghouse resources are

depleted (CPMI-IOSCO 2012, 2014). This paper studies the economic impact of two loss-

allocation tools – variation margin gains haircutting (VMGH) and cash calls – that can be

used to recover a CCP. The paper compares how these two loss-allocation tools affect the

trading volume and welfare of clearinghouse participants and studies the privately optimal

and socially optimal degree of loss sharing between survivors.

Loss-allocation tools are intrusive to CCP members because they expose participants to

defaults by other members. Usually, loss allocation becomes relevant only after all pre-funded

member resources are depleted and some of the CCP’s own resources – often called “skin in

the game” – are used up. Typically, a clearinghouse holds collateral in the form of margin

deposits from participants in addition to a mutualized default fund with contributions from

every member. Before loss allocation becomes necessary, then, the defaulter’s margin deposit

and default fund deposit, the CCP’s skin in the game and the sum of all remaining members’

default fund deposits must be depleted and insufficient to cover the realized default. (In most

CCPs, skin in the game has to be exhausted before losses are mutualized.) Loss allocation

can therefore be thought of as a form of tail risk mutualization – a very low-probability, yet

potentially intrusive event. Since loss-allocation tools increase participants’ exposures to the

CCP, it is of interest to know how they affect member welfare and incentives to trade in
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centrally cleared instruments. Keeping in mind that activity in many core funding markets

froze at the onset of the Great Recession, it is important to use loss-allocation tools that do

not cause or exacerbate such disruptions. The uninterrupted functioning of OTC derivatives

markets is important for financial stability because they improve the pricing of risk, add to

liquidity, and help market participants better manage and diversify risks.

The paper focuses on losses distributed using variation margin gains haircuts (VMGH)

and cash calls. VMGH are a form of gains withholding, whereby the clearinghouse withholds

the mark-to-market gains originally due to members and uses them to address uncovered

losses instead. Cash calls, by contrast, are contingent assessment powers that a clearinghouse

may invoke when its resources become insufficient. I show that the exposures created by

these two loss-allocation tools result in qualitatively different welfare and behavior despite

looking similar on the surface. The difference stems mostly from the fact that exposure to

VMGH withholdings is ex post irreducible, while a cash call can be defaulted on even if the

default is costly to the participant. I am particularly interested in the optimal degree of loss

sharing in the context of private and social welfare.

The paper quantifies and broadly confirms the intuitive argument put forward by Singh

(2015) that losses should be shared to the broadest extent possible. The analysis demon-

strates that maximum loss sharing is indeed both privately and socially optimal in many

cases. However, it also identifies an important special case where private and social welfare

diverge and banks do not have the right incentives to trade under maximal loss sharing,

creating a tradeoff between loss sharing and trading volume.

This special case is important for policy-makers interested in the continuous functioning

of centrally cleared markets. It occurs when VMGH losses are equally shared with high

probability and the CCP uses a risk-based, highly procylcial skin in the game that correlates

positively with the amount of default risk. I show that, in such circumstances, procyclical

skin in the game weakens incentives to trade because the CCP effectively subsidizes potential

participant defaults in times of high risk. Without the right incentives to both trade in high

volumes and share losses in full, participants find it optimal to reduce their trading positions.

This outlines an important tradeoff between market stability and fairness in the allocation

of losses. If VMGH losses are equally shared with high probability, there is the potential
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that market activity may decline even before the onset of stress, thereby reducing market

liquidity. If, on the other hand, the social planner places more weight on avoiding a market

freeze, he or she may have to tolerate some inequality in the ex post distribution of losses.

To avoid this tradeoff altogether, one solution is to simply not use overly risk-sensitive skin

in the game. This does not preclude a CCP from using some measure of member default

risk to size its own default fund contribution, as long as skin in the game does not increase

too rapidly with default risk.

In contrast to VMGH, which affects trading volume ex ante, cash calls carry ex post

performance risk that can undermine a CCP’s ability to collect funds after a stress event,

potentially threatening both its recovery and its post-recovery viability. The analysis shows

that cash calls do not reduce trading before the onset of stress because clearing members

retain the ability to default on cash calls that they deem too intrusive. While this eliminates

ex ante market reactions to including cash calls in a recovery plan, it raises a different set

of concerns. The model predicts that the banks’ risk of non-performance to cash calls rises

endogenously when cash calls become more likely, thereby constraining the total amount of

funds that can be recovered. This can limit the success of the recovery effort, which suggests

that CCP resolution authorities should be endowed with powers allowing them to resolve a

CCP before recovery tools become ineffective.

2 Related Literature

The notion of stabilizing a clearinghouse through loss allocation is not new, but was it

not embedded in regulation until the G-20 countries adopted the Principles for Financial

Market Infrastructures – a set of comprehensive risk-management standards requiring CCPs

to, among other things, develop dedicated recovery plans, including plans for loss allocation

(CPMI-IOSCO 2012, 2014). The efforts of regulators and central banks to provide guidance

with respect to recovery planning are ongoing, which explains the relative dearth of academic

literature from which to draw upon. One contribution of this paper is that it provides a

tractable analysis of recovery tools and draws several policy recommendations from it.

Conceptual considerations for CCP recovery and resolution have been outlined by Duffie
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(2014a; 2014b) and Singh (2015), while Gibson (2013) provides a good non-technical overview

of recovery tools. One of the few rigorous studies to focus on loss allocation is that of

Heath, Kelly, and Manning (2015), who are interested in how CCPs could transmit financial

stress through loss allocation and examine liquidity and solvency risk under different clearing

configurations. By contrast, this paper focuses on the effects of loss allocation on CCP

participants exposed to different loss-allocation tools. Does loss allocation affect trading

patterns when losses are distributed using variation margin haircuts, compared to cash calls?

Is there a natural limit beyond which cash calls become ineffective while stabilizing a CCP?

What are the implications of cash calls and variation margin haircuts for the welfare of CCP

participants and for social welfare? The main contribution of the paper is that it sheds light

on these previously unanswered questions. The paper also helps define a natural boundary

between CCP recovery and CCP resolution by studying the effectiveness of cash calls.

The analysis draws partly on the generic CCP model developed by Santos and Scheinkman

(2001), which I modify to allow for loss allocation. Unlike the Santos and Scheinkman model,

however, this is not a model of adverse selection or moral hazard because the results I ob-

tain do not depend on hidden action or self-selection. For example, unobserved risk-taking

by banks is not necessary in order to obtain the result that high-probability VMGH losses

dampen trading in the presence of too much skin in the game (Proposition 1). Similarly,

the banks’ observable exposures to loss-allocation tools are entirely sufficient to generate the

finding that banks become less likely to respond to high-probability cash calls (this result is,

in fact, only strengthened by moral hazard). Thus, asymmetric information is not necessary

to obtain the main results in the paper; risk mutualization is sufficient.1 This increases

the model’s robustness and shows that mutualized risk exposures within a CCP can have

significant effects on participant trading and welfare even in the absence of adverse selection

and moral hazard.

The rest of the paper is structured as follows. Section 3 sets up the model. Section 4

presents the results on variation margin haircutting, and Section 5 the results on cash calls;

both result sections compare the effects of loss sharing on participant and social welfare.

1For a more advanced treatment of moral hazard in CCPs, see, for example, Koeppl (2013) and Koeppl
and Monnet (2012).
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Section 6 summarizes the findings and the policy recommendations.

3 Model

I build a partial equilibrium model consisting of two groups of risk-averse banks, trading

a stylized derivative contract through a competitive central counterparty, as in Santos and

Scheinkman (2001). The CCP becomes the buyer for every seller and the seller for every

buyer, thus replacing the original contractual obligations between the two banks with obli-

gations involving only the CCP in a process called novation. After novation, each bank

contractually faces only the CCP, which takes on the responsibility to make good on the

trade regardless of the original counterparty’s performance; in that respect, the CCP is

similar to an insurance provider. The risk of having to replace a trade not honored by a

bank is commonly known as replacement cost risk and is funded by pre-pledged resources

(margin deposit and default fund) held by the CCP, supplemented by a layer of CCP’s own

equity (skin in the game). Losses in excess of pre-funded resources are redistributed among

survivors so that the CCP breaks even in the long run.

3.1 Economic Environment

The model features two groups of risk-averse banks, represented by Bank 1 and Bank 2,

with identical concave utility functions2 u(·). Each group consists of a continuum of banks

with total measure 1. Banks in each group experience idiosyncratic random shocks to their

consumption good endowments, which motivates them to try to smooth out consumption

by trading in a stylized derivative contract. The contract is handled by a competitive CCP,

which interposes itself between buyers and sellers, collects collateral (margin) and allocates

uncovered losses to survivors after a default exceeding its pre-funded resources, including

skin in the game. The clearinghouse breaks even over the long run, consistent with free

market entry.3

2Most results do not depend of the choice of utility function; where they do, this is clearly indicated.
3Free entry is not an unrealistic assumption for the central clearing market. Several authors (Murphy,

2012; Zhu, 2011) point to the introduction of several new CCPs over the past decade as evidence of increasing
competition between clearinghouses. Santos and Scheinkman (2001) also study CCP competition.
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Figure 1: Stochastic endowments for Bank 1 and Bank 2

A derivative trade typically features uncertainty about two kinds of events: (1) Who

will gain from the trade upon maturity? and (2) Will the payor will honor its obligations?

The model reflects both uncertainties in a stylized way by assuming that the banks face an

endowment process similar to that in Allen and Gale (2000) or Santos and Scheinkman (2001)

(see Figure 1). Under this process, Bank 1 and Bank 2 face equal chance of ending up as the

payee or as the payor once the true state of nature is known. This is reflected by the leftmost

node in Figure 1. The payee, once determined, also faces additional uncertainty whether

the payor will default to the CCP, which happens with probability 1− π, as reflected by the

remaining two nodes; the default probability is common knowledge. In the event of default,

the residual loss not covered by margin is distributed among survivors using loss-allocation

tools. The outcomes y > x > z at the right of the figure represent the randomly realized

endowments of a consumption good that emulate asset returns. If the payor receives the good

endowment y, which occurs with probability π close to 1, the contract is honored and the

payor has to transfer to the payee the contracted amount θ (θ ≤ y) using the CCP. However,

if the payor receives a bad realization z, which occurs with a small probability (1 − π),

it is unable to honor the contract, and the CCP keeps only the collateralized fraction of

the position Φθ, where Φ is the margin requirement expressed in percent (Φ ∈ [0, 1]). For

the CCP to pay out its obligation on the remaining leg of the transaction, it allocates the

uncovered loss to surviving members.

Thus, the trade normalizes to a generic derivative contract in which the bank holding

a long position is entitled to receive one unit of the consumption good in state s1 and
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must deliver one unit of the consumption good in state s2. By convention, position size θi is

positive for long positions and negative for short positions. Banks can default on the contract

if the disutility of default is smaller than the disutility from getting the idiosyncratic shock

z. Similar to Diamond (1984) and Dubey, Genakoplos and Shubik (2005), I assume that

default is costly and is associated with a disutility proportional to the defaulted amount.

Specifically, if a bank must deliver ` dollars on a position but delivers a smaller amount, D,

it sustains a utility penalty equal to

λmax{`−D, 0} (1)

subtracted directly from the utility obtained in the state triggering the default. The literature

interprets the exogenous parameter λ > 0 as the economy-wide bankruptcy code, or the

marginal disutility from a dollar defaulted. In the context of a central counterparty, λ can

be broadly interpreted as the disutility from losing CCP membership status, including the

inability to have transactions cleared and settled, reputation loss, and fees or other penalties

imposed by the CCP on a non-conforming member.

To maintain viability in the long run, the CCP faces a break-even condition requiring

expected pay-ins to equal expected payouts. This requires the CCP to redistribute the

expected uncovered loss across its surviving clearing members after it has exhausted both

the defaulter’s margin deposit and the CCP’s own skin in the game. To obtain cleaner

results for loss allocation with recovery tools (as opposed to risk mutualization using the

default fund), I normalize the default fund size to zero so all residual losses are allocated

using recovery tools; a number of other papers explore default fund sizing and loss allocation

(for example, see Elliott, 2013, Nahai-Williamson et al., 2013, and Haene and Sturm, 2009).

Since the contracted amount is θ, and the probability of default on the contract is 1− π,

the expected uncovered loss is L = (1 − π)(1 − Φ)θ, where (1 − Φ) is the uncollateralized

fraction of the position θ. I will refer to the expression κ ≡ (1− π)(1− Φ) as the uncovered

default risk from the trade. After a default loss has been realized, the CCP first uses its skin

in the game, s, to absorb part of the loss before mutualizing losses between its members.

Therefore, for loss allocation to be applicable, κθ > s, where s is an exogenous skin-in-the-
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Figure 2: Generation and redistribution of uncovered losses using VMGH.

game capital.4 Figure 2 illustrates the flow of the uncovered loss from defaulters to the CCP

and following loss redistribution across members. The situation illustrated corresponds to

state s1, where Group 2 banks owe a payment θ to Group 1, and the CCP imposes a loss

T on the surviving bank (or group of banks).5 The flowchart for state s2 is symmetric (the

flow of obligations operates in the opposite direction).

For the CCP to break even, the losses allocated to members must equal the aggregate

expected loss from default minus any loss absorbed by the CCP’s skin in the game, s. Let

p denote the probability that a survivor bank is allocated a loss of T . Then the break-even

condition requires that

E[Loss allocated to members] = E [Uncovered default loss] − [Skin in the game], or

pT = κθ − s. (2)

Since the banks in each group form a continuum, the probability p that any individual bank

is assigned a loss can also be interpreted as the exact fraction of banks assigned a loss.

This, in turn, allows one to interpret p as the degree of loss sharing, which can exogenously

4The capital structure of the CCP, including skin-in-the-game capital, is taken as exogenous since the
positive past profits required to generate capital require a short-run model to emulate. By contrast, in this
long-run model, the CCP realizes zero economic profit.

5To preserve the isomorphism between the individual bank and the continuum of banks in each group,
the model does not allocate losses to more than one group of banks at a time.
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be varied by the CCP. I will switch between the two interpretations where this facilitates

exposition. I do not impose any particular assumptions on skin in the game. For example,

s can be a flat amount, as is common in some CCPs, or it can be risk-based (procyclical)

so that the CCP has more skin in the game in riskier periods. In the latter case, s could be

a function of risk – broadly defined – such as the default probability on a trade, or of the

degree of loss sharing. For the purpose of this study, whenever I analyze risk-based skin in

the game, I define it as a function of loss sharing (s = s(p)) since, all else equal, a higher

default probability increases the chance p of an allocated loss. In any case, adding more

skin in the game reduces the expected loss pT to be shared by survivors, and so changes the

tradeoff between loss size and loss probability p.

The break-even condition implies that broader loss sharing helps reduce allocated losses

per member, but at the expense of more banks participating in the loss-sharing process,

implying a higher probability that any individual survivor bank is allocated a loss. This

tradeoff between loss size T and loss probability p is illustrated in Figure 3 (holding skin in

the game and trading position constant).

1 p

Size of 
loss (T)

0

Figure 3: The tradeoff between loss size and loss probability.

This tradeoff is at the core of the analysis that follows, and many of the results can be

more easily explained by referring to Figure 3. When selecting an optimal trading position

θ, banks realize that they are subject to this (p, T ) constraint, and their choices of trading

position size θ will vary as the quantitative terms of the (p, T ) tradeoff are changed by other

parameters, such as skin in the game. The next section describes the banks’ optimal choice
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of trading volume θ.

3.2 The Banks’ Optimization Problem

Before entering the trade, banks need to determine the size of their position θ (number of

contracts traded) by weighing the marginal utility benefit of trading against its marginal

utility cost. Since the two representative banks are symmetric, it suffices to consider Bank

1’s optimization problem. Bank 1 maximizes its expected utility from trading by choosing

an optimal trading position θ, subject to the CCP’s margin requirement Φ and the bank’s

risk exposure to losses T from recovery tools, occurring with probability p. The loss size T is

determined by the zero-profit condition, T = κθ−s
p

, given a loss-sharing probability p, which

is determined exogenously by the CCP. Because of the symmetry of the endowment process,

Bank 1 will go long (θ1 > 0) and Bank 2 will go short (θ2 < 0), so that, by symmetry of

their utility functions, θ1 = −θ2, and the market clears. Equilibrium is attained when each

bank chooses its position θi optimally and all applicable resource constraints (break-even

condition and collateral constraint) are satisfied.

Bank 1’s utility is determined by the realized endowment (x, y or z) and by the CCP-

imposed loss T , if any. Thus a representative Group 1 bank maximizes its expected utility

U =
1

2

[
(1− p)

No loss︷ ︸︸ ︷
u(x+ θ) + p

Honor loss of T︷ ︸︸ ︷
u(x+ θ − T )

]
+

+
π

2

Deliver fully︷ ︸︸ ︷
u(y − θ) +

1− π
2

[ Default on trade︷ ︸︸ ︷
u(z − θΦ)− λ(1− Φ)θ

]
, (3)

subject to the zero-profit condition T = κθ−s
p

and the collateral constraint z ≥ θΦ. The first

two terms of U refer to the state where Bank 1 is due to receive θ from Bank 2 but faces a

chance p of having a loss T allocated and receiving θ − T , instead of θ. The remaining two

terms refer to the opposite state, where Bank 1 owes θ to Bank 2, and stochastically defaults

or delivers on the trade with probabilities (1− π) or π, respectively.

The Lagrangian L for the optimal choice of θ depends on the size of the allocated loss
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T , which is a function T (θ, p) of both trading volume θ and the loss probability p:

2L = (1− p)u(x+ θ) + pu
(
(x+ θ − T (θ, p)

)
+ πu(y − θ)+

+ (1− π)
[
u(z − θΦ)− λθ(1− Φ)

]
− 2γ(θΦ− z) (4)

The Lagrangian is strictly concave in θ, with first-order condition of the form G(θ, p) = 0

given by

(1− p)u′(x+ θ) + pu′
(
x+ θ − T (θ, p)

) [
1− ∂T

∂θ

]
+

− πu′(y − θ)− (1− π)
[
Φu′(z − θΦ) + λ(1− Φ)

]
− 2γΦ = 0. (5)

The first-order condition means that utility is maximized when the marginal utility benefit

from trading, captured by the first two (positive) terms, equals the marginal utility cost,

captured by the remaining (negative) terms. The first term is simply the marginal utility

benefit u′(x+ θ) from receiving the gain θ, weighted by the probability (1−p); it reflects the

“speculative” benefit of scoring a gain. By contrast, the second term reflects the marginal

benefit of a larger position θ in helping offset a potential loss T , thus providing a benefit

similar to self-insurance. On the cost side, utility costs of trading come from two sources:

the two states where Bank 1 has to pay the CCP (with or without default) and the shadow

cost of collateral, γΦ. The balance between marginal utility costs and benefits determines

the optimal trading position θ and links it to the remaining model parameters. It is used to

derive the VMGH results in the next section.

4 Results on Variation Margin Gains Haircutting

As shown in Figure 3, sharing losses with low probability among just a few participants

results in very large losses per member. On the other hand, sharing smaller losses among

more banks (with p near 1) implies that any individual bank has a higher chance of being

allocated a loss, which, all else equal, is also undesirable for a risk-averter. When determining

their optimal trading positions, banks therefore need to take this tradeoff into account. The

terms of the tradeoff, however, can be altered by the variables that the banks have under their

control – for example, the trading position θ, which acts as a vertical shifter of the T curve in
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Figure 3. This suggests that banks could endogenously reduce their exposures to loss sharing

by adjusting their trading positions. This section shows that when one of the two elements

of the exposure – either the size or the probability of the loss – becomes excessive, banks can

react by flattening out their positions. The model shows that excessively large losses, even

when allocated with a very small probability, lead to reduced trading. For smaller, higher-

probability losses, the outcome depends on the behavior of other loss-absorbent resources,

such as the skin in the game, and particularly, on whether skin in the game is risk-based

(procyclical) or not. This happens because risk-based skin in the game changes the terms of

the tradeoff between the loss size and loss probability, and hence, alters the optimum trading

position size. Analyzing the extent to which VMGH discourages trading provides a better

understanding of how banks can react to recovery tool exposures and is formalized by the

following proposition.

Proposition 1. (Effect of variation margin gain haircutting on trading)

(a) If skin in the game is sufficiently procyclical, as measured by the size of s′(p), then

trading volume θ peaks at a strictly interior loss-sharing value pM < 1.

(b) If skin in the game is a flat amount (s′(p) = 0) or zero, trading volume θ peaks at the

maximal loss-sharing (p = 1).6

(c) Therefore the degree of procyclicality of skin in the game s′(p) acts as a horizontal

shifter of the trade volume peak.

Proof. See the appendix.

The intuition behind Proposition 1 is that overly procyclical skin in the game weakens

incentives to fully share VMGH losses and thus creates a tradeoff between trading and loss

sharing in which higher loss probabilities only come at the cost of reduced trading.

To understand this result better, recall that to maximize utility, the marginal utility

benefit of trading must equal the marginal utility cost. In this model, there are two benefits

to trading: a speculative benefit and an insurance benefit. The speculative benefit from

6This result is proven for log and constant absolute risk aversion utility; with constant relative risk
aversion utility, the analysis is intractable.

13



trade is that it provides a good chance to score gains and improve final wealth, i.e., this is

the normal motive why market participants trade. In the context of loss allocation, however,

trading also has an added insurance benefit: potential gains make it easier to handle an

allocated loss. As p approaches unity, this self-insurance motive becomes dominant because

losses become virtually certain. In this context, higher skin in the game actually discourages

members from self-insuring by trading because skin in the game absorbs some of the default

loss before it is passed on to participants; with less incentive to self-insure, members also

have less incentive to trade because, in addition to benefits, trading also involves costs –

the shadow cost of pledged collateral plus the marginal utility costs of those states where

the bank has to pay. Thus, at high loss probabilities p near 1, procyclical skin in the game

actually has a disincentivizing effect on trade.7

The result in Proposition 1 outlines an important tradeoff between fairness in the allo-

cation of losses and the market stability. Losses that are fairly allocated ex post here result

in lower transaction volumes that could, in times of stress, challenge market liquidity and

financial stability (Brunnermeier and Pedersen, 2009). To maximize market activity in this

state, the policy-maker has to inevitably sacrifice ex post fairness and be satisfied with the

weaker, ex ante, fairness notion. This naturally leads to the question how private and social

welfare compare when losses are allocated using VMGH.

A natural measure of the banks’ private utility are their equilibrium utility levels, which

are a function of the degree of loss sharing. How the utility depends on loss sharing is shown

in Proposition 2 below.

Proposition 2. (Individual welfare effects of variation margin gain haircutting)

Given position size θ, bank welfare is maximized at the point of full loss sharing (p = 1).

Proof. See the appendix.

Proposition 2 shows that private welfare from sharing a given loss is maximized when the

7To see this on a technical level, consider the first-order condition (5). In it, the (expected) marginal
speculative benefit of trading is (1 − p) u′(x + θ), and the marginal insurance benefit is p u′(x + θ − T ).
Clearly, when p→ 1, the insurance benefit term dominates. Now suppose u′(x+ θ − T ) is balanced against
the utility costs of trading, given by the remaining terms in equation (5) (the costs of having to pay plus the
costs of collateral γΦ) and consider an exogenous increase in skin in the game s. Skin in the game reduces
the loss T , thereby increasing wealth and lowering the marginal utility. To restore the equilibrium, trading
volume θ must go down in order to bring marginal utility back up. This explains the drop in θ near p = 1.

14



loss is shared fully since broadest loss sharing maximally reduces the individual loss per

member.8 It is important to note, however, that Proposition 2 does not imply that trading

volume θ remains fixed. Indeed, Proposition 1(a) already reveals that it does not: while it

may be optimal, full loss sharing can also create disincentives to trade. Thus, a policy-maker

who wants to both maintain market volume and share VMGH losses fully will need to decide

which of these two aspects is more important. This decision can be informed by formalizing

the policy-maker’s tradeoff by a social welfare function.

If one uses trading volume as a rough proxy for the welfare of the rest of the economy

that derives utility from the existence of banking services, one can define a social welfare

function as the sum of the banks’ private utilities and the reduced-form utility of non-banks.

I assume the latter to be roughly proportional to the activity of the banking sector, resulting

in the social welfare function

SWF (p) =

∫
[0,1]

Ui(p)di+ θ(p) = U(p) + θ(p). (6)

Since we have graphs for each of the two components of the social welfare function, it is easy

to visualize the SWF (see Figures 4 and 5). The results from this maximization are shown

in the corollary below.

Corollary. (VMGH Welfare Analysis – Private vs Social Optimum).

(a) If skin in the game is highly procyclical (a sufficient condition for this, with log utility,

is s′(1) > κy−s(1)), then the socially optimal level of loss sharing pS lies in the interval

(pM , 1].

(b) If skin in the game is flat or zero, resulting in a trading volume peak at p = 1, then

the socially optimal and privately optimal levels of loss sharing coincide at unity, so

pS = p∗ = 1.

Figures 4 and 5 imply that, consistent with intuition, in many cases it is both privately

and socially optimal to share uncovered losses as fully as possible. This conforms to the

8This intuitive result is listed as a separate theorem mostly because of the contrast it provides to the
welfare analysis of cash calls in Section 5, which shows that individual welfare is invariant to the degree of
loss sharing under cash calls.
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Figure 5: Social and private welfare for flat or zero skin in the game.

heuristic argument put forward by Singh (2015) that reducing loss sizes should generally

pay off, even if it implies a higher loss probability. The more interesting case is where the

private and social optimum diverge – that is, the case with highly procyclical skin in the

game. Even though, from a private standpoint, each bank would prefer to have losses shared

fully, full loss sharing does not maximize trading and is therefore socially suboptimal.

As discussed, partial loss sharing has implications for ex post fairness. Although ex ante,

all members are equal, ex post, if p < 1, some members will have suffered losses while others

will not have. Such allocations raise some practical concerns about fairness since many CCPs

have rules “hard-coding” the symmetric and proportionate treatment of members in their

rulebooks. Rather than trying to achieve a social optimum with partial loss sharing, avoiding

overly procyclical skin in the game appears as a more attractive practical solution because

the tradeoff cannot be optimized so that both private and social incentives are fully aligned.

As an added benefit, this solution is is fair both ex ante and ex post.
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5 Results on Cash Calls

A fundamental difference between VMGH and cash calls is the risk that a cash call may not

be honored. When using VMGH, a CCP retains variation margin payments originally due

to be transferred to members with position gains; gaining members are therefore unable to

avoid the withholding. By contrast, cash calls introduce the performance risk that they may

not be paid out to the CCP as due (or within the required time frame for replenishment). A

2014 incident at the KRX CCP (affiliated with Korea Exchange) provides a recent example.9

After a series of incorrect trades submitted by HanMag Securities resulted in default fund

assessments, KRX was forced to extend its time frame for replenishment for months after

the stress event had occurred due to the slow rate at which members were making payments.

Non-performance on a cash call is not costless for a bank in terms of market reputation

and compliance with CCP rules and can lead to a loss of access to centrally cleared markets.

To reflect this cost, each bank in the model compares the marginal utility of avoiding the

loss against the marginal disutility λ1 caused by reputation and non-compliance costs. The

net effect of these actions on member utility is u(x+ θ)−λ1: if a member defaults, it avoids

the financial loss T but suffers a utility loss λ1, similar to the reputation loss associated with

defaulting on a trade. To reflect the ability of banks to endogenously adjust performance

risk in response to losses, I assume that member banks also optimize over their performance

probability q to a cash call, as illustrated in Figure 6.

In this optimization, the bank maximizes with respect to q the Largangian

L =
1

2

[
(1− p)

No loss︷ ︸︸ ︷
u(x+ θ) + pq

Honor loss of T︷ ︸︸ ︷
u(x+ θ − T ) + p(1− q)

Not honor loss︷ ︸︸ ︷
[u(x+ θ)− λ1]

]
+

+
π

2
u(y − θ)︸ ︷︷ ︸

Deliver

+
1− π

2

[
u(z − θΦ)− λ(1− Φ)θ︸ ︷︷ ︸

Default on trade

]
− γ(θΦ− z), (7)

resulting in the first-order condition for q

J ≡ p
[
u
(
x+ θ− T (p, q, θ)

)
− u(x+ θ) + λ1 + qu′

(
x+ θ− T (p, q, θ)

)−∂T (p, q, θ)

∂q

]
= 0 (8)

9See Vaghela (2014). I am indebted to Darrell Duffie for pointing out this example.
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Figure 6: Generation and redistribution of uncovered losses using cash calls.

Now there are two endogenously determined variables that can interact: the level of trading

θ and the performance probability q. For the outcome to be an equilibrium, the first-order

condition for q must hold jointly with the first-order condition for θ,

(1− pq)u′(x+ θ) + pqu′
(
x+ θ − T (θ, p, q)

) [
1− ∂T

∂θ

]
+

− πu′(y − θ)− (1− π)
[
Φu′(z − θΦ) + λ(1− Φ)

]
− 2γΦ = 0. (9)

This system of equations fully describes the equilibrium outcome.

When trading volume and the performance probability to cash calls are determined

jointly, a bank has two channels for optimizing its behavior in response to the risk ex-

posures caused by CCP-imposed losses. All else held equal, the bank can either decrease its

trading volume down to reduce its future exposure or it can increase its probability of not

honoring the cash call. Proposition 3 shows that, in equilibrium, banks find it optimal to

take the latter route: managing the exposure by increasing performance risk. The benefit of

doing so is that banks retain the flexibility to react to a future loss only if it occurs, without

affecting trading in normal periods in response to a future event that may not materialize.

Proposition 3. (Effect of cash calls on performance and trading)
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(a) When losses are allocated using cash calls, any increase in loss sharing is fully offset

by the lower chance that the cash call will be honored. The point elasticity of the

performance probability q∗ with respect to loss sharing p is εq∗,p = −1 so that the

overall probability that a cash call is assigned to an individual bank and honored remains

pq∗ = const.

(b) Trading volume is irresponsive to the degree of loss sharing when losses are allocated

using cash calls. Specifically, the point elasticity of trading volume θ∗ with respect to

loss sharing p is εθ∗,p = 0.

Proof: See the appendix.

Proposition 3 means that ex ante trading volume θ is perfectly inelastic with respect

to loss sharing because any increase in the loss probability is offset by an equally large,

endogenous increase in performance risk. Concretely, Proposition 3(a) implies that the joint

probability pq∗ that a cash call is assigned and honored remains constant in equilibrium

and therefore so does the expected loss pq∗T . This implies that a bank’s exposure to losses

imposed using cash calls no longer varies with the degree of loss sharing and, hence, there is

no need to adjust trading activity to reduce exposure.

The response of trading activity to cash calls, therefore, is qualitatively different compared

with VMGH. Ex ante market activity does not respond to the possibility of future cash calls

because of the clearing members’ ability to default to cash calls ex post, after they know

that a stress event has materialized. Even when the CCP increases the individual loss size to

account for potential defaults, as reflected by the model, that comes at the cost of reduced

post-recovery viability.

A corollary of this finding extends to the analysis of bank welfare. Since equilibrium

utility U∗ is a function of pq∗, which remains constant, equilibrium expected utility remains

unaffected by exogenous changes to the loss-sharing probability, as illustrated below and in

Figure 7.

Corollary. The fact that, in equilibrium, pq∗ = const., also implies that the bank’s equi-

librium utility, U∗(pq∗), is independent of loss sharing p. The same is true of the social

welfare SWF (pq∗).

19



1 p 1

Private 
utility

1

Social
welfare

+ =

1 p 1

Private 
utility

1

Social
welfare

+ =

Trading 
volume

Trading 
volume

Figure 7: Social and private welfare for cash calls.

The probability of an honored cash call, pq∗, which is constant in equilibrium, indicates

an important constraint faced by the CCP when allocating losses. The constraint comes

from the fact that the expected amount collected from cash calls in equilibrium, pq∗ ·T (pq∗),

remains constant, no matter how broadly CCP members share uncovered losses, because

increasing the loss probability also boosts non-performance risk percent-for-percent. As

illustrated by the 2014 incident with the KRX CCP, a slow response or a non-response to a

cash call is entirely realistic, even when clearing members are not exposed to systemic risk.

This could be labeled as the CCP’s recovery constraint because it outlines the endoge-

nous limits of the recovery process. It reflects the expectation that members are likely to

become unresponsive to additional cash calls after a certain sum has been collected. This

consideration helps better define the boundary between CCP recovery and resolution. It

seems reasonable to argue that resolution should be the preferred course of action when the

recovery constraint is about to be reached since additional cash calls do not help stabilize

the CCP any further. From a practical standpoint, this also suggests that CCP resolution

regimes would benefit from sufficient powers allowing a resolution authority to initiate res-

olution before the CCP exhausts all recovery tools, especially when further loss allocation

threatens to be ineffective. The lessons from VMGH loss allocation also indicate that a good

resolution regime should be able to pre-empt situations where the recovery plan threatens

the viability and normal trade patterns of participants; CCP-induced participant defaults

could be just as detrimental to financial stability as the failure of a systemically important

clearinghouse.
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6 Conclusion

This paper proposes a model for analyzing the effects of cash calls and variation margin

haircuts on the trading and welfare of clearinghouse participants. It is motivated by the

increasing importance of centrally cleared trading, arising from the G-20 commitment to

centrally clear standardized OTC derivatives. The paper studies how exposures to two main

CCP loss-allocation tools – cash calls and variation margin haircuts – affect participant

welfare and incentives to trade in centrally cleared instruments. It also explores the optimal

amount of loss sharing and compares the privately and socially optimal outcomes.

The paper quantifies, and generally confirms, the intuitive argument put forward by Singh

(2015) that losses should be shared to the fullest extent possible. The analysis demonstrates

that, in many cases, maximum loss sharing is indeed both privately and socially optimal.

However, the paper also identifies an important special case where private and social welfare

diverge, and banks do not have the right incentives to share losses fully, creating a tradeoff

between loss sharing and trading.

This special case is important for policy-makers who are concerned with the continuous

functioning of centrally cleared markets. It occurs when VMGH losses are shared with

high probability and the CCP uses a risk-based, highly procylcial skin-in-the-game capital

that correlates positively with the amount of default risk. I show that, in this case, overly

procyclical skin in the game weakens incentives to fully share VMGH losses and creates a

tradeoff between trading and loss sharing. This, in turn, leads to tradeoff between market

stability and fairness in the allocation of losses. If VMGH losses are shared in full, there

is the potential that market activity may decline even before the onset of stress. If, on the

other hand, the social planner places higher weight on market stability than on fairness, he

or she may need to tolerate some inequality in the ex post distribution of losses. To avoid

this tradeoff altogether, one solution is to simply not use overly risk-sensitive skin in the

game. This does not preclude a CCP from using some measure of member default risk to

size its own default fund contribution, as long as skin in the game does not increase too

rapidly with default risk.

In contrast to VMGH, which affects trading volume ex ante, cash calls carry ex post
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performance risk that can undermine the CCP’s ability to collect funds after a stress event,

potentially threatening both its recovery and its post-recovery viability. The analysis shows

that cash calls do not reduce trading before the onset of stress because clearing members

retain the ability to default on cash calls that they deem too intrusive. While this eliminates

ex ante market reactions to the inclusion of cash calls in a recovery plan, it raises a different

set of concerns. The model predicts that the banks’ risk of non-performance to cash calls rises

endogenously when cash calls become more likely, thereby constraining the total amount of

funds that can be recovered. This can limit the success of the recovery effort, which suggests

that CCP resolution authorities should be endowed with powers allowing them to resolve a

CCP before recovery tools become ineffective.
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7 Appendix: Proofs

Proposition 1. (Effect of variation margin gain haircutting on trading)

(a) If skin in the game is sufficiently procyclical, as measured by the size of s′(p), then

trading volume θ peaks at a strictly interior loss-sharing value pM < 1.

(b) If skin in the game is a flat amount (s′(p) = 0) or zero, trading volume θ peaks at the

maximal loss sharing (p = 1) for log and CARA utility.

(c) Therefore the degree of procyclicality of skin in the game s′(p) acts as a horizontal

shifter of the trade volume peak.

Proof. (a) The proof is based on the idea that the slope of the continuous function θ(p)

is positive at the left corner of p and can be either positive or negative at the right corner

p = 1, depending on the procyclical properties of the skin-in-the-game amount s. When θ’s

slope is positive at the right corner p = 1, the trading volume maximum occurs there; when

negative, the maximum occurs at a strictly interior point pM .

The slope of θ with respect to p, in turn, can be inferred by use of the implicit function

theorem, applied to the first-order condition for θ. Recall that Bank 1’s Lagrangian is

2L = (1− p)u(x+ θ) + pu
(
(x+ θ − T (θ, p)

)
+ πu(y − θ)+

+ (1− π)
[
u(z − θΦ)− λθ(1− Φ)

]
− 2γ(θΦ− z). (10)

The first-order condition for θ, denoted as G(θ, p) = 0, is

(1− p)u′(x+ θ) + pu′
(
x+ θ − T (θ, p)

) [
1− ∂T

∂θ

]
+

− πu′(y − θ)− (1− π)
[
Φu′(z − θΦ) + λ(1− Φ)

]
− 2γΦ = 0. (11)

According to the implicit function theorem, the sign of the slope of θ with respect to p is

given by

sgn

{
dθ

dp

}
= sgn

{
−∂G/∂p
∂G/∂θ

}
= sgn {∂G/∂p} (12)
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since, by concavity of the Lagrangian in θ, it already follows that ∂G/∂θ < 0. The expression

of interest is therefore

2
∂G

∂p
= −u′(x+ θ) + u′

(
x+ θ − T (θ, p)

) [
1− ∂T

∂θ

]
+

+ p

[
u′′
(
x+ θ − T (θ, p)

)−∂T
∂p

(
1− ∂T

∂θ

)
+ u′

(
x+ θ − T (θ, p)

)−∂2T
∂θ∂p

]
, (13)

where the amount of allocated loss T is determined by the CCP break-even condition pT =

κθ − s(p) so that T = [κθ − s(p)]/p, where s(p) is skin in the game. Skin in the game is

allowed to be potentially procyclical; that is, to increase with the loss probability p if desired.

This case corresponds to s′(p) > 0; otherwise, for flat-amount skin in the game, s′(p) = 0.

Next, I show that ∂G/∂p > 0 near p = 0 and that the sign of dG/dp near p = 1 depends

on the extent of procyclicality of skin in the game s(p) – in other words, on the size of the

derivative s′(1).

First, observe that the model has no economic content if the probability of a loss p

allocated to an individual bank is smaller than the uncovered default risk κ = (1−π)(1−Φ)

on the other side of the same trade (otherwise, the expected default losses accruing to the

CCP would exceed total redistributed losses allocated to survivors, violating the break-even

condition). Therefore, it must be the case that p ≥ κ.10 Using the derivatives of T

∂T

∂θ
=
κ

p
,

∂T

∂p
=
−κθ + s(p)− ps′(p)

p2
,

∂2T

dθ∂p
= − κ

p2
,

I first evaluate the sign of ∂G/∂p at the left corner p = κ and, after cancellation of terms,

obtain

2
∂G

∂p

∣∣∣∣
p=κ

= u′(x+ θ − T )− u′(x+ θ) > 0. (14)

Thus ∂G/∂p, and hence the slope of θ(p), is positive at the left corner p = κ.

Next I evaluate ∂G/∂p at the right corner, p = 1, and obtain

2
∂G

∂p

∣∣∣∣
p=1

= u′(x+ θ − T )− u′(x+ θ)︸ ︷︷ ︸
>0

−u′′(x+ θ − T )[1− κ]
(
− κθ + s(1)− s′(1)

)︸ ︷︷ ︸
<0

(15)

The sign of this expression depends on the balance between the two braced terms. Hence,

when s′(1) is sufficiently large – that is, when skin in the game is sufficiently procyclical

10Observe that the requirement p ≥ κ also implies that the haircut T cannot exceed the realized gain θ,
which is a realistic feature of VMGH.
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– the negative term dominates and ∂G
∂p

∣∣∣
p=1

< 0, implying that the slope dθ/dp < 0 at

p = 1. Further, one can obtain the critical value of s′(1) above which this happens by setting

equation (15) to zero and solving for s′(1). (The concrete critical value of s′(1) depends

on the particular utility function chosen.) Doing so for the log utility function using the

shorthand notation for the residual loss uncovered by skin in the game, R ≡ κθ − s(1),

implies the critical value

s′(1) =
[kθ − s(1)]

(
x+ (1− κ)θ + s(1)

)
(1− κ)(x+ θ)

=
R(x+ θ −R)

(x+ θ)(1− κ)
= R− R2

x+ θ
+ ε <

< R = κθ − s(1) < κy − s(1), (16)

where I used the fact that θ ≤ y and κ ≡ (1 − π)(1 − Φ) is near zero.11 This provides a

sufficient condition, s′(1) > κy − s(1), that guarantees the result in part (a).

Collecting the results that θ′(κ) > 0 and θ′(1) < 0, and recalling that the function θ(p) is

differentiable and hence continuous, it follows that there exists (at least one) interior point

pM ∈ (0, 1) where θ′(p) = 0. Since θ(p) is continuous over the compact set [κ, 1], at least one

pM corresponds to a maximum. Hence trading volume θ peaks at an interior value of p, as

claimed. This proves part (a). �

(b) It is not so when there is a flat-amount skin in the game (including zero). First

consider the case of a flat amount s, implying that s′(p) = 0. Then

2
∂G

∂p

∣∣∣∣
p=1

= u′(x+ θ − T )− u′(x+ θ)− [1− κ]u′′
(
x+ θ − T

)
[s− κθ]. (17)

This result is demonstrated separately for the log and the CARA utility functions.

For the log utility u(w) = ln(w), this expression translates to

2
∂G

∂p

∣∣∣∣
p=1

=
1

x+ θ − T
− 1

x+ θ
+

(1− κ)(s− κθ)
(x+ θ − T )2

, (18)

whose sign is determined by the numerator

(x+ θ)(x+ θ − T )− (x+ θ − T )2 − (1− κ)(x+ θ)(κθ − s) = T [κx+ s] > 0. (19)

Hence, with a flat or zero skin in the game s ≥ 0, the expression ∂G/∂p and the slope of

θ(p) at the right corner p = 1 are both strictly positive, implying that trading volume is

maximized at full loss sharing p = 1, as claimed.

11This follows from the near-zero default probability π and from Φ < 1.
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For CARA utility, the expression 2∂G/∂p takes the form

2
∂G

∂p

∣∣∣∣
p=1

= re−r(x+θ−T ) − re−r(x+θ) − (1− κ)Tr2e−r(x+θ−T ) (20)

Dividing by re−r(x+θ), and rearranging terms, one only needs to verify that

erT > [1− rT (1− κ)]−1. (21)

To do this, take the log of both sides and obtain rT > − ln[1− rT (1− κ)]. Putting ξ ≡ rT

and taking logs, it remains only to show that ξ > − ln[1− ξ(1− κ)]. Since empirically, r is

near-zero (see Cohen and Einav, 2007), so is ξ, which allows one to use the log approximation

near unity ln(ω) = −1 + ω resulting in

ξ > (1− κ)ξ, (22)

which always holds because κ > 0. This establishes that for CARA utility, ∂G
∂p

∣∣∣
p=1

> 0.

(c) The result follows directly from (a) and (b). �

Proposition 2. (Individual welfare effects of variation margin gain haircutting)

Given position size θ, bank welfare is maximized at the point of full loss sharing (p = 1).

Proof. (a) To demonstrate this, it is sufficient to show that the bank’s Largangian, which

is concave in p, has a positive slope at p = 1. Concretely, I will prove that the slope

2
dL

dp
= −u(x+ θ) + u

(
x+ θ − T (p, θ)

)
+ pu′

(
x+ θ − T (p, θ)

)−∂T
∂p

> 0. (23)

Evaluating this expression at p = 1, results in

−u(x+ θ) + u
(
x+ θ − T (1, θ)

)︸ ︷︷ ︸
>−Tu′(x+θ−T )

+u′
(
x+ θ − T (1, θ)

)
[κθ − s(1) + s′(1)], (24)

so it is sufficient to prove that

−Tu′(x+ θ − T ) + u′(x+ θ − T )[κθ − s(1) + s′(1)] ≥ 0. (25)

Substituting in this equation T (1, θ) = κθ− s(1), after cancellation of terms, it remains only

to prove that

u′(x+ θ − T )s′(1) ≥ 0, (26)
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which is always true since skin in the game is either flat or procyclical (s′(p) ≥ 0). There-

fore, dL
dp

∣∣∣
p=1

> 0, which implies that the bank’s Lagrangian, which is a concave function of

p, peaks strictly at the welfare maximizer p = 1. �

Proposition 3. (Effect of cash calls on performance and trading)

(a) When losses are allocated using cash calls, any increase in loss sharing is fully offset

by the lower chance that the cash call will be honored. The point elasticity of the

performance probability q∗ with respect to loss sharing p is εq∗,p = −1 so that the

overall probability that a cash call is assigned to an individual bank and honored remains

pq∗ = const.

(b) Trading volume is irresponsive to the degree of loss sharing when losses are allocated

using cash calls. Specifically, the point elasticity of trading volume θ∗ with respect to

loss sharing p is εθ∗,p = 0.

Proof. (a) In the presence of performance risk, define the effective loss-sharing probability

as pq (the probability that a cash call is not only assigned but also honored). Likewise define

skin in the game as procyclical if and only if s′(pq) > 0.12

To prove the assertion, I will first demonstrate that an exogenous increase in loss sharing

p reduces the optimal performance probability q∗ for any level of trading θ. Let the first-order

condition for q∗ be denoted as

J ≡ p
[
u(x+ θ − T )− u(x+ θ) + λ1 + qu′

(
x+ θ − T

)−∂T
∂q

]
= 0 (27)

The equation J(q∗, p) = 0 provides an implicit link between the optimal choice of q∗ and the

parameter p through the implicit function theorem, according to which

dq∗

dp
= −∂J/∂p

∂J/∂q
. (28)

The components of this expression, written out individually, are

∂J

∂p
= −∂T

∂p
Tu′′(x+ θ − T ) < 0 (29)

12Results are qualitatively similar if skin in the game is defined as a function of p only. The elasticity in
this case is still negative but not exactly equal to 1.
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and
∂J

∂q
= −∂T

∂q
Tu′′(x+ θ − T ) < 0, (30)

where
∂T

∂p
=
−pqs′(pq)− κθ + s(pq)

p2q
and

∂T

∂q
=
−pqs′(pq)− κθ + s(pq)

pq2
(31)

resulting in
dq∗

dp
= −∂T/∂p

∂T/∂q
< 0, (32)

which implies that a higher probability of allocating a loss endogenously reduces the bank’s

likelihood of delivering a cash call. It is of interest to find out the size of this effect, which

depends on the relative sizes of the derivatives ∂T/∂p and ∂T/∂q. The break-even condition

pqT = κθ − s(pq) implies that the ratio of the two derivatives of T is

dq∗

dp
= −

(
− pqs′(pq)− κθ + s(pq)

)
/p2q(

− pqs′(pq)− κθ + s(pq)
)
/pq2

= −pq
2

p2q
= −q

p
. (33)

This helps compute the point elasticity of q∗ with respect to p as

εq∗,p =
dq∗

dp

p

q∗
= −q

∗p

pq∗
= −1, (34)

therefore proving part (a). (This result continues to hold if in the above calculations one

sets skin in the game s to zero or to a constant amount, which would imply s′ = 0).

(b) The negative unit elasticity of q∗ with respect to p implies that %∆q∗ = −%∆p, and

therefore, near q∗,

%∆(pq∗) = %∆p+ %∆q∗ = 0 (35)

so that percentage changes in p and q offset each other exactly. Hence, the quantity pq∗

remains constant regardless of exogenous changes in p. Next, I consider how the optimally

chosen trading volume θ∗ responds to changes in p when q∗ is endogenous. In the first-order

condition for optimal volume, θ∗ is now defined as an implicit function of pq in the same

way as it was a function of p before I introduced the possibility of default on a cash call.

The implicit function theorem likewise guarantees that θ∗(pq) is differentiable and hence

continuous in its argument pq. However, it was just proved that when q is chosen optimally

(that is, q = q∗), changes in p and q offset each other so that pq∗ = const. This immediately

implies that θ∗(const.) = const., so the trading volume is irresponsive to p. By definition,

28



then, the elasticity εθ∗,p = 0, thereby proving part (b). �
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