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Abstract 

Under very general conditions, the total quadratic variation of a jump-diffusion process 

can be decomposed into diffusive volatility and squared jump variation. We use this 

result to develop a new option valuation model in which the underlying asset price 

exhibits volatility and jump intensity dynamics. The volatility and jump intensity 

dynamics in the model are directly driven by model-free empirical measures of diffusive 

volatility and jump variation. Because the empirical measures are observed in discrete 

intervals, our option valuation model is cast in discrete time, allowing for straightforward 

filtering and estimation of the model. Our model belongs to the affine class, enabling us 

to derive the conditional characteristic function so that option values can be computed 

rapidly without simulation. When estimated on S&P500 index options and returns, the 

new model performs well compared with standard benchmarks. 

JEL classification: G, G1, G12 

Bank classification: Asset pricing 

Résumé 

Dans des conditions très générales, la variation quadratique totale d’un processus de 

diffusion à sauts peut se diviser entre la volatilité de la diffusion et la variation des sauts. 

Ce résultat permet de construire un nouveau modèle d’évaluation des options où la 

volatilité et l’intensité des sauts du prix de l’actif sous-jacent varient. Dans ce modèle, les 

dynamiques de la volatilité et de l’intensité des sauts sont tributaires de mesures non 

paramétriques de la volatilité de la diffusion et de la variation des sauts. Ces mesures 

étant observées dans des intervalles discrets, le modèle d’évaluation est formulé en temps 

discret. Cette approche permet une filtration et une estimation simples du modèle. Le 

modèle appartient à la classe des modèles affines : cette propriété permet de déduire une 

fonction caractéristique conditionnelle et, par conséquent, de calculer rapidement les 

valeurs des options en évitant le recours à des méthodes de simulation. Estimé à partir de 

rendements et des prix d’options de l’indice S&P 500, le nouveau modèle offre de bons 

résultats par rapport aux modèles de référence habituels. 

Classification JEL : G, G1, G12 

Classification de la Banque : Évaluation des actifs 
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Non-Technical Summary 

One of the most important recent developments in the financial econometrics literature is the use 
of intraday observations to precisely evaluate the variability of the price of any financial asset on 
a given day. That estimate is commonly known as the “realized variance.” Using the realized 
variance, we can evaluate, for instance, the effect of a policy announcement or macroeconomic 
news on the uncertainty of a given asset’s price. 

Large movements in asset prices tend to be less frequent and short lived, while small movements 
are more frequent and cluster over time. Different types of news and announcements affect these 
two movements differently. Hence, it is of interest to academics and policy-makers to measure 
how much variability is attributable to normal or continuous movements in prices versus 
abnormal or discontinuous movements. Looking at intraday trading activities, researchers have 
provided us with a decomposition of realized variance as the sum of continuous and 
discontinuous variation. 

This paper evaluates the economic significance of that decomposition by evaluating the 
mispricing of S&P500 derivatives under two scenarios: ignoring or using the decomposition of 
the realized variance. We find that the split is very informative for options pricing. 



1 Introduction

State-of-the-art derivative valuation models assume that price changes in the underlying

asset are driven by a diffusive component as well as a jump component.1 The volatility

of the diffusive component is typically assumed to be stochastic and the jump intensity is

often assumed to be constant. The econometric literature has developed powerful model-free

methods for detecting statistically significant jumps and for separating the daily total diffu-

sive volatility from the total quadratic variation via the use of high-frequency observations.2

Our contribution is to combine these insights and develop a new derivative valuation model

that directly uses the observable realized diffusive volatility and realized jump variation to

model dynamics in the diffusive volatility and in the jump intensity.

We cast our model within the broad class of affi ne discrete-time models, which implies

that volatility and jump intensity filtering is straightforward and that derivative valuation

can be done without relying on simulation-based methods. We develop a stochastic dis-

count factor for the model that enables us to compute European option values using Fourier

inversion of the conditional characteristic function.

The development of rigorous statistical foundations for the use of intraday returns to

construct daily realized volatility measures is arguably one of the most successful branches

of financial econometrics. For early references, see Andersen and Bollerslev (1998), Barndorff-

Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold, and Labys (2003), and Zhang,

Mykland, and Aït-Sahalia (2005). For an early application of realized volatility in finance,

see for example Bakshi, Cao and Chen (1997).

The finance literature has recently developed models that use daily total quadratic vari-

ation from intraday data to specify and estimate daily models of option valuation which

outperform models estimated only on daily returns. See for example Stentoft (2008), Corsi,

Fusari and La Vecchia (2013), and Christoffersen, Feunou, Jacobs and Meddahi (2014).

However, we are the first to develop an option valuation model with separate dynamics for

observable realized diffusive volatility and realized jump variation.

The econometric literature has shown that decomposing total quadratic variation into

its diffusive and jump variation parts leads to improved forecasts of future volatility. See

for example Andersen, Bollerslev, and Diebold (2007), and Busch, Christensen, and Nielsen

(2011).3 Our goal is to assess whether the improvements found in the volatility forecasting

1See for example Bates (2000, 2012), Eraker (2004), Huang and Wu (2004), and Santa-Clara and Yan
(2010).

2See Barndorff-Nielsen and Shephard (2004, 2006), Huang and Tauchen (2005), and the recent survey in
Aït-Sahalia and Jacod (2012).

3Dynamic models for daily returns and volatility using high-frequency information have been developed
in Forsberg and Bollerslev (2002), Engle and Gallo (2006), Bollerslev, Kretschmer, Pigorsch, and Tauchen
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literature carry over to option valuation. We find that they do.

Our paper is part of a larger research agenda applying realized volatility measures in

financial decision making. The development of tools for computing highly informative daily

realized volatility from noisy intraday data is arguably one of the great success stories of

financial econometrics. The application of realized volatility in option valuation is particu-

larly intriguing. For many assets, including equities, the underlying contract is traded very

actively at a high frequency, whereas the option is typically traded much less often (see, for

example, Christoffersen, Goyenko, Jacobs, and Karoui, 2014). This setting is ideal for the

application of realized volatility, which presumes that the frequency of interest (say daily)

is lower than the frequency of observation (say each minute). Realized volatility and jumps,

which are generally unobserved at a 1-minute frequency, can be reliably estimated at a daily

frequency. This insight enables the implementation of a new class of option valuation models,

which we develop in this paper.

When estimating the new model on returns, realized diffusive volatility, and realized

jump variation, we find that it outperforms standard benchmark models in the literature,

including the Heston and Nandi (2000) affi ne GARCH model, which is a special case of

our model. The general model also outperforms a special case that models only the total

quadratic variation dynamic, as well as a special case that assumes the entire quadratic

variation is attributable to the jump component.

When estimating the new model on S&P500 index options as well as returns and realized

variation measures and evaluating the option fit, the model again performs well. The option

implied volatility root mean squared error of the new model is 17% below that of the affi ne

GARCHmodel. The improvement in option fit arises in virtually all the moneyness, maturity

and market volatility categories that we consider.

One key advantage of our approach is that we avoid the filtering issues that arise in

related discrete time jump models.4 More generally, we argue that using high-frequency

information to discern between daily jumps and diffusive volatility is likely to lead to a much

more accurate identification of the two components than relying only on daily returns, or

only on daily returns and options.

The remainder of the paper proceeds as follows: in Section 2 we briefly review the general

theory for separating diffusive volatility from jumps and we show the two time series for the

S&P500 index, which is the underlying asset in our empirical study. In Section 3 we develop

the physical return process. Section 4 estimates the physical process on returns, realized

(2009), Shephard and Sheppard (2010), and Hansen, Huang, and Shek (2012).
4See, for example, Maheu and McCurdy (2004), Christoffersen, Jacobs, and Ornthanalai (2012), and

Ornthanalai (2014).

3



bipower and jump variation measures. In Section 5, we derive an option valuation formula

for the model, estimate the model on options and analyze its fit. Finally, Section 6 concludes.

The proofs of our propositions are relegated to the appendix.

2 Daily Returns and Realized Variation Measures

In this section we first briefly review the key theoretical results that allow us to separate

daily diffusive volatility and jump variation using intraday data. We then construct empirical

measures of realized diffusive volatility and realized jumps, plot the daily realized variation

series along with daily returns, and investigate their dynamics.

2.1 Separating Volatility and Jumps: Theory

Barndorff-Nielsen and Shephard (2004) assume that the stock price follows a jump-diffusion

process of the form

d log(St) =
√
V tdWt + Jtdqt, (1)

where qt is a Poisson process with intensity λJ t, and Jt is the normally distributed log jump

size with mean µJ and standard deviation σJ . Under this very general assumption about

the instantaneous return process, Barndorff-Nielsen and Shephard (2004) show the following

limit result as the sampling frequency goes to infinity:

RVt →
∫ t

t−1
Vsds+

∫ t

t−1
J2s dqs (2)

RBVt →
∫ t

t−1
Vsds,

where RVt denotes realized variance measuring total quadratic variation, and RBVt denotes

bipower variation measuring diffusive volatility. These quantities will be defined in detail

below. We can define realized jump variation (RJVt) using

RJVt ≡ RVt −RBVt →
∫ t

t−1
J2s dqs,

which provides the decomposition of total quadratic variation that we need.

The next step in our analysis is to construct empirical measures of RVt, RBVt and RJVt.
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2.2 Separating Volatility and Jumps: Empirics

Our empirical investigation begins by obtaining intraday S&P500 cash index data from

TickData.com. Using the last observation each minute, we construct a grid of 1-minute

equity index values each day, from which we compute five series of overlapping 5-minute log-

returns. Each day we can compute five realized variance measures from the sum of squared

5-minute returns. The five overlapping realized variance series are then averaged to obtain

a single market microstructure robust measure of total quadratic variation, as follows:

RV
′

t+1 =
1

5

4∑
i=0

RV 5,i
t+1 =

1

5

4∑
i=0

m/5∑
j=1

R2t+(i+5j)/m,

where Rt+(i+5j)/m denotes the jth period 5-minute intraday return, andm denotes the number

of 1-minute returns available on day t + 1. Following Hansen and Lunde (2005) the RVt+1
computed above is finally rescaled so that the average value of RVt+1 is equal to the sample

variance of daily log returns:

RVt+1 =

∑T
t=1R

2
t∑T

t=1RV
′
t

RV
′

t+1,

where Rt = log (St)− log (St−1) is the daily log return computed from closing prices.

Diffusive volatility is computed using realized bipower variation defined from

RBV
′

t+1 =
1

5

4∑
i=0

RBV 5,i
t+1 =

1

5

4∑
i=0

π

2

m/5−1∑
j=1

|Rt+(i+5j)/m||Rt+(i+5(j+1))/m|.

Then, in order to ensure that the empirical version of the theoretical relationship in equation

(2) holds, namely,

RVt+1 = RBVt+1 +RJVt+1,

and also in order to ensure that RJVt+1 ≥ 0, we use the following definitions:

RBVt+1 = min(RVt+1, RBV
′

t+1)

RJVt+1 = RVt+1 −RBVt+1.

Figure 1 plots the Rt (top left), RVt (top right), RBVt (bottom left) and RJVt (bottom

right) series from 2 January 1990 through 31 December 2013. Note from Figure 1 that the

RVt, RBVt and RJVt series share broadly similar patterns, including the fact that their

largest values occur during the 2008 financial crisis. This commonality suggests that when
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RVt is high then both RBVt and RJVt are high, and vice versa. Note also that RBVt is an

order of magnitude larger than RJVt.

Figure 2 plots the sample autocorrelation functions for the four series. Note that, as ex-

pected, the autocorrelations of returns (top left) are close to zero across lag orders. Also as

expected, the autocorrelations of realized variance (top right) and bipower variation (bottom

left) are both very high and statistically significant throughout the 60 trading days consid-

ered. More interestingly, the realized jump variation measure in the bottom right panel

shows strong evidence of persistence as well. To be sure, the autocorelations for realized

jump variation are lower at short lags than for realized variance and bipower variation, but

they are very persistent. It is thus clear that the realized jump measure requires a dynamic

specification of its own and likely one that is different from the dynamic specification of

bipower variation. Building a dynamic return model with such features is our next task.

3 A New Dynamic Model for Asset Returns

The goal of this section is to build a model for end-of-day t option valuation that incorporates

the information in the Rt, RBVt and RJVt series computed at the end of the day. We want

to build a model in which state variables are explicitly filtered using our observables and in

which option valuation can be done without Monte Carlo simulation.

3.1 The Asset Return Process

Consider first the following generic specification of daily log returns:

Rt+1 = r +
(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1, (3)

where r denotes the risk-free rate, and the first innovation, zt+1, denotes a heteroskedastic

Gaussian innovation:

zt+1 =
√
hz,tε1,t+1, with ε1,t+1

iid∼ N (0, 1) . (4)

The second innovation, yt+1, denotes a compound jump process,

yt+1 =

nt+1∑
j=0

xjt+1, with x
j
t+1

iid∼ N(θ, δ2), (5)
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where the number of Gaussian jumps per day is Poisson distributed:

nt+1 ∼ Ps (hy,t) . (6)

Note that this general framework allows for dynamic volatility via hz,t and dynamic jump

intensity via hy,t. These dynamics still need to be specified and, crucially for us, they need

to be linked with the daily realized bipower and jump variation measures.

Finally, note that in our timing convention, hz,t denotes the expected “diffusive”variance

for day t+ 1 constructed at the end of day t. Similarly, hy,t denotes the expected number of

jumps on day t+ 1 constructed at the end of day t.

The parameters we estimate on daily data in our discrete time model are reported in

daily units below. When estimating continuous time models of the type in (1), the literature

often reports annualized parameters. In that case, we have the following mapping:

θ ≈ 1

252
µJ , δ ≈ 1√

252
σJ , hy,t ≈

1

252

∫ t

t−1
λJ,sds.

3.2 Incorporating Realized Bipower and Jump Variation

Each day the realized bipower variation provides new information about diffusive volatil-

ity, hz,t. However, RBVt+1 is measured with error and we therefore specify the following

measurement equation:

RBVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2
−
(
1 + γ2hz,t

)]
, (7)

where we have introduced a measurement error variable,

ε2,t+1
iid∼ N(0, 1),

which has a correlation ρ with the diffusive return shock, ε1,t+1, defined in equation (4).

The innovation term inside the brackets in equation (7) is constructed to have zero mean,

ensuring that

Et [RBVt+1] = hz,t.

Note also that equation (7) allows for a non-linear impact of ε2,t+1 on RBVt+1 via γ.

Our daily realized jump variation measure constructed from intraday data is naturally
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linked with the sum of squared daily jump variation in the model as follows:

RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2
.

This relationship implies that

Et [RJVt+1] =
(
θ2 + δ2

)
hy,t,

where we have used the second moment of the Poisson distribution. Notice that while we

do allow for measurement error in RBVt, we assume for simplicity that RJVt is free of error.

We plan to relax this assumption in future work.

3.3 Volatility and Jump Dynamics

We are ready to specify the dynamics of the expected volatility and jump intensity. In the

empirics below, we will focus on a special case of our modelling framework in which we

simply pose that

hz,t+1 = ωz + bzhz,t + azRBVt+1, and (8)

hy,t+1 = ωy + byhy,t + ayRJVt+1. (9)

Note that in this specification, hz,t+1 and hy,t+1 are both univariate AR(1) processes, which

we can write as

hz,t+1 = ωz − azσ +
(
bz + az − azσγ2

)
hz,t + azσ

(
ε2,t+1 − γ

√
hz,t

)2
hy,t+1 = ωy + byhy,t + ay

nt+1∑
j=0

(
xjt+1

)2
.

The dynamics in (8-9) imply that RBVt+1 and RJVt+1 are both univariate ARMA(1, 1)

processes. We will refer to this as the BiPower and Realized Jump Model (BPRJM).
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3.4 The General Case

Our dynamic modelling framework is of course more general than the particular BPRJM

model. To see this, define the bivariate processes:

ht ≡ (hz,t, hy,t)
′ , and

RVMt+1 ≡ (RBVt+1, RJVt+1)
′ .

The general dynamic vector process is then of the form

ht+1 = ω + bht + aRVMt+1,

where the parameter vector and matrices are

ω = (ωz, ωy)
′ , b =

(
bz bz,y

by,z by

)
, a =

(
az az,y

ay,z ay

)
.

Note that, by construction, ht+1 is a vector autoregressive process of order one, V AR (1),

and RVMt+1 is a vector autoregressive moving average model, V ARMA(1, 1). In particular,

note that the expected value of the vector ht+1 is

Et [ht+1] = ω + bht + a

(
hz,t(
θ2 + δ2

)
hy,t

)

≡ ω +

[
bz + az bz,y +

(
θ2 + δ2

)
az,y

by,z + ay,z by +
(
θ2 + δ2

)
ay

]
ht.

Below we will focus on the BPRJM version of the model in which az,y = ay,z = bz,y =

by,z = 0.

3.5 Expected Returns and Risk Premiums

It is clear from equation (3) that the one-day-ahead conditionally expected log returns in

the model are simply

Et [Rt+1] = r +
(
λz − 1

2

)
hz,t + (λy − ξ + θ)hy,t.

The jump compensator parameter, ξ, in our model is itself a particular function of other

parameters:

ξ = eθ+
1
2
δ2 − 1. (10)
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This functional form ensures that the conditionally expected total return is

Et [exp (Rt+1)] = exp (r + λzhz,t + λyhy,t) , (11)

which in turn ensures that λz and λy can be viewed as compensation for diffusive volatility

and jump exposure, respectively. Substituting equation (3) into (11), taking expectations,

and solving for ξ yields equation (10). The ξ parameter will therefore not be estimated

below, but will instead simply be set to its value implied by equation (10).

3.6 Conditional Second Moments

From the model above, it is relatively straightforward to derive the following one-day-ahead

conditional second moments:

V art [Rt+1] = hz,t +
(
θ2 + δ2

)
hy,t (12)

V art [RBVt+1] = 2σ2
(
1 + 2γ2hz,t

)
V art [RJVt+1] =

(
θ4 + 3δ4 + 6θ2δ2

)
hy,t

Covt (Rt+1, RBVt+1) = −2ργσhz,t

Covt (Rt+1, RJVt+1) = θ
(
θ2 + 3δ2

)
hy,t

Covt (RBVt+1, RJVt+1) = 0.

Note that the model allows for two types of “leverage”effects: one via the return covariance

with bipower variation, and another via the return covariance with jumps.

4 Physical Parameter Estimates

Above we have laid out the general framework for incorporating bipower variation and real-

ized jump variation when modelling return dynamics. In this section we develop a likelihood-

based estimation method that enables us to estimate the physical parameters using daily

observations on returns, as well as the realized variation measures from Figure 1. We also

develop two special cases of the general model and briefly describe the Heston and Nandi

(2000) benchmark GARCH model.

10



4.1 Deriving the Likelihood Function

When deriving the conditional quasi-likelihood function, note first that the contribution to

the total conditional likelihood by day t + 1 can be obtained by summing over the number

of jumps occurring on that day. We can write

ft (Rt+1, RBVt+1, RJVt+1) =
∞∑
j=0

ft (Rt+1, RBVt+1, RJVt+1, nt+1 = j)

=
∞∑
j=0

ft (Rt+1, RBVt+1, RJVt+1|nt+1 = j)Pt [nt+1 = j] ,

with the number of jumps drawn from the Poisson distribution,

Pt [nt+1 = j] =
e−hy,thjy,t

!j
.

Separating out the days with exactly zero jumps, we get

ft (Rt+1, RBVt+1, RJVt+1|nt+1 = j) =

{
ft (Rt+1, RBVt+1) , if j = 0

ft (j) , if j > 0
.

In order to save on notation, define the variable vectors

Xt+1 ≡ (Rt+1, RBVt+1, RJVt+1)
′ X

(1,2)
t+1 ≡ (Rt+1, RBVt+1)

′ ,

and the corresponding conditional first and second moments:

µt (nt+1) ≡ Et [Xt+1|nt+1] µ
(1,2)
t ≡ Et

[
X
(1,2)
t+1

∣∣∣nt+1]
Ωt (nt+1) ≡ V art [Xt+1|nt+1] Ω

(1,2)
t (nt+1) ≡ V art

[
X
(1,2)
t+1

∣∣∣nt+1] . (13)

Then we can write the marginal likelihood for returns and bipower variation when nt+1 =

0 as

ft (Rt+1, RBVt+1) = (2π)−1
∣∣∣Ω(1,2)

t (0)
∣∣∣−1/2

· exp

(
−1

2

(
X
(1,2)
t+1 − µ

(1,2)
t (0)

)′
Ω
(1,2)
t (0)−1

(
X
(1,2)
t+1 − µ

(1,2)
t (0)

))
,
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and when nt+1 > 0 we have

ft (j) = (2π)−3/2 |Ωt (j)|−1/2 exp

(
−1

2
(Xt+1 − µt (j))′Ωt (j)−1 (Xt+1 − µt (j))

)
.

The log-likelihood is then defined by

lnLP =
T−1∑
t=1

ln(ft(Rt+1, RBVt+1, RJVt+1)). (14)

We maximize the likelihood function in (14) using the fminunc routine in Matlab with

the following settings:

optimset(‘display’,‘iter’,‘MaxIter’,1500,‘TolFun’,1e−5,‘MaxFunEvals’,1e+06,‘TolX’,1e−20).

4.2 Conditional Moments

The likelihood function above requires that we derive the first two moments conditional on

time and on the number of jumps, nt+1. For the conditional first moments we have

Et [Rt+1|nt+1] = r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + θnt+1

Et [RBVt+1|nt+1] = hz,t

Et [RJVt+1|nt+1] =
(
θ2 + δ2

)
nt+1.

For the conditional second moments we have

V art [Rt+1|nt+1] = hz,t + δ2nt+1

V art [RBVt+1|nt+1] = 2σ2
(
1 + 2γ2hz,t

)
V art [RJVt+1|nt+1] = 2δ2

(
δ2 + 2θ2

)
nt+1

Covt [Rt+1, RBVt+1|nt+1] = −2ργσhz,t

Covt [Rt+1, RJVt+1|nt+1] = 2θδ2nt+1

Covt [RBVt+1, RJVt+1|nt+1] = 0.

From these moments we can easily construct the µt vectors and Ωt matrices in equation (13)

needed for the likelihood function in equation (14).

Before turning to estimation of the new model, we define three special cases of interest

which we also estimate below.
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4.3 The Heston-Nandi GARCH Model as a Special Case

First, by setting hy,t = 0, and ρ = 1, we obtain one of the standard GARCH(1,1) models

in the literature. Specifically, note that ρ = 1 implies that ε1,t+1 = ε2,t+1, and the realized

variance therefore becomes irrelevant. We then get

hz,t+1 = ωz − azσ +
(
bz + az − azσγ2

)
hz,t + azσ

(
ε2,t+1 − γ

√
hz,t

)2
≡ ω + βhz,t + α

(
ε1,t+1 − γ

√
hz,t

)2
,

which is exactly the Heston and Nandi (2000) affi ne GARCH(1,1) model.

4.4 The realized volatility model (RVM) as a Special Case

Second, we can shut down the separate jump variation by setting hy,t = 0 in the new model.

We then get

Rt+1 ≡ log

(
St+1
St

)
= r +

(
λz −

1

2

)
hz,t + zt+1, with zt+1 =

√
hz,tε1,t+1

RVt+1 = RBVt+1 +RJVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2
−
(
1 + γ2hz,t

)]
.

This is exactly the autoregressive RV model in Christoffersen, Feunou, Jacobs, and Med-

dahi (2014). We will refer to this as the RVM model below.

4.5 The realized jump model (RJM) as a Special Case

Third, we can shut down the bipower variation channel by setting hz,t = 0. We then get

Rt+1 = r − θ − δ2

2
+ (λy − ξ)hy,t + yt+1

yt+1 =

nt+1∑
j=1

xjt+1, where x
j
t+1

iid

˜N(θ, δ2)

P [nt+1 = j|It] =
e−hy,thj−1y,t

!(j − 1)
,

and furthermore we set

RVt+1 =

nt+1∑
j=1

(
xjt+1

)2 − θ2
hy,t+1 = ωy + byhy,t + ayRVt+1.

13



Note that in this case the entire quadratic variation is assumed to be driven by jumps, so

that each day has at least one jump. We will refer to this as the RJM model below.

4.6 Parameter Estimates and Model Properties

Table 1 contains the maximum likelihood estimation results for the physical return processes

developed above. One year prior to our estimation sample, we set the conditional variance

equal to the unconditional variance and then burn-in the model on the pre-sample year to

get an appropriate conditional variance on the first day of the sample. Note that the ω

parameters do not have standard errors, since they are computed by variance targeting, thus

exactly matching the observed sample variance of returns. The parameter estimates are

generally significant except for λs, which are always diffi cult to pin down in relatively short

return-based samples.

Note that volatility persistence is very high in the RVM and BPRJM models, and con-

siderably lower in the GARCH and RJM models. Unconditional volatility and volatility

persistence is defined in the GARCH model as

E[ht] =
ω + α

1− (β + αγ2)
≡ ω + α

1− Persist ,

in the RVM model as

E[hz,t] =
ωz

1− (bz + az)
≡ ωz

1− Persist ,

in the RJM model as

E[hy,t] =
ωy

1− (by + (θ2 + δ2)ay)
≡ ωy

1− Persist ,

and in the BPRJM model as

E[ht] =
ωz

1− (bz + az)
+

(θ2 + δ2)ωy

1− (by + (θ2 + δ2)ay)
.

Persistence for the two variance components in the BPRJM model is thus equal to the RVM

and RJM cases.

When comparing model fit, we are faced with the challenge that the GARCH model is

only fit to returns, the RVM and RJM models are fit to returns and RV, and the general

BPRJM model is fit to returns, RBV and RJV . Table 1 shows that the likelihood value for

the general model is 129,226, but this is not readily comparable to the other models which are

fit to different quantities. We therefore re-estimate the BPRJM model maximizing only the

14



joint likelihood of returns and RV.5 The second row of log-likelihoods contains the results.

From this perspective, the BPRJM model by far performs the best, with a likelihood of

69,656 compared with 68,783 for the RJM model and 68,212 for the RVM model.

When maximizing only the return likelihood, the BPRJM model again performs the

best, with a likelihood of 19,522. The improvement over the RVM and RJM models is not

dramatic here, but returns are unlikely to be informative about all the parameters of the

model, and so this set of results is provided only to enable comparison with the GARCH

model. Note that the RVM, RJM and BPRJM models all perform very well compared with

the benchmark affi ne GARCH model.

In Figure 3 we plot the daily conditional volatility, computed as the square root of ht+1
for each model. Note that the volatility spikes are much more dramatic in the RVM, RJM

and BPRJM models than in the GARCH model. It is interesting and perhaps surprising

that the RJM model is able to produce a spot volatility time path which is quite similar to

that from the RVM and BPRJM models. This is partly because the RJM model is fit to

returns and RV, and not to returns and RJV .

In Figure 4 we plot the daily conditional volatility of variance computed as the square

root of

V art(ht+1) = 2a2zσ
2(1 + 2γ2hz,t) + a2y(θ

2 + δ2)2((2δ2(θ2 + 2δ2) + (θ2 + δ2)2)hy,t (15)

for the BPRJM model. The variance of variance expressions for the other models is similar.

Note from Figure 4 that the conditional volatility of variance is relatively low and almost

constant in the GARCH model, whereas in the other models it tends to be large when

volatility is high, thus matching the empirical evidence. Note that the volatility of volatility

is slightly lower in the RJM than in the RVM and BPRJM models.

In Figure 5 we plot the conditional correlation of returns and variance, which are com-

puted for the BPRJM model using

Corrt(Rt+1, ht+1) =
−2ρσγazhz,t + ayθ(θ

2 + δ2)(θ2 + 3δ2)hy,t√
V art [Rt+1]V art(ht+1)

, (16)

where the terms in the denominator can be obtained from equations (12) and (15). The

conditional correlation expressions for the other models are similar. Figure 5 shows that the

differences across models are quite large from this perspective. The GARCH model implies a

correlation of almost negative one. The other models imply correlations of around −0.2. The

RJM and the BPRJM models imply some time-series variation in the correlation, whereas

5See Appendix A for the details.
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the RJM model does not.

The negative correlation between return and volatility is a strong empirical regularity.

It is often termed the “leverage”effect, but there is actually not much evidence that it is

driven by financial leverage (see, for example, Hasanhodzic and Lo, 2011), and its economic

source is as yet largely unknown. In our models, the negative daily correlation generates

negative skewness across horizons, which in turn creates higher prices for out-of-the-money

puts (and in-the-money calls), which the Black-Scholes model is well-known to underprice.

In the Heston-Nandi GARCH model, a large estimate of γ generates the very large negative

correlation evident in Figure 5, but it is also needed to generate variance of variance dynamics

in that model. We suspect that the large value of γ in the Heston-Nandi GARCH model is

partly driven by the need for a suffi ciently high variance of variance (and thus kurtosis) and

that it in turn causes the perhaps unrealistically large negative “leverage”correlation seen

in Figure 5.

Figure 6 presents evidence on the different models’ability to forecast one-day-ahead re-

alized variance. The ex-post realized variance is on the vertical axis and the model-predicted

variance is on the horizontal axis. The corresponding regression fit is 49% for the GARCH

model, 85% for the RJM model and 87% for the RVM and BPRJM models.6 The slope

coeffi cient on the volatility forecast, which ideally should be 1, is 2.5 in the GARCH model,

1.3 in the RJM model and 1.1 in the RVM and BPRJM models. The RVM and BPRJM

models are thus able to predict realized variance quite well.

The physical properties we have investigated above are likely to have important implica-

tions for the models’ability to fit large panels of options. This is the task to which we next

turn.

5 Option Valuation

In this section we show how the physical model developed above can be used for option

valuation. We first derive the moment-generating function of the physical process and show

that it is affi ne. We then define a pricing kernel which implies that the risk-neutral moment-

generating function is of the same form as its physical counterpart. This in turn implies

that we can compute option prices using Fourier inversion. The following subsections report

empirical results of estimating the model jointly on returns, realized measures and options.

6The detailed regression results are not reported in the tables, but are available from the authors upon
request.
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5.1 The Physical Moment-Generating Function

Using the vector notation ht ≡ (hz,t, hy,t)
′ defined above, and further defining the coeffi cients

v ≡ (vz, vy)
′, Appendix B shows that we can write the physical moment-generating function

(MGF) as

Et [exp (uRt+1 + v′ht+1)] = exp


u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

+v1 (hz,t − σ (1 + γ2hz,t))− 1
2

ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(1− ρ2)u2 + (uρ−2σv1γ)2
2(1−2σv1)

)
hz,t + (ev3 − 1)hy,t


≡ exp

(
A (u, v)′ ht +B (u, v)

)
, (17)

where we have further defined

v′a = (vz, vy)

(
az az,y

ay,z ay

)
= (vzaz + vyay,z, vzaz,y + vyay) ≡ (v1, v2) ,

and

v3 = −1

2
ln
(
1− 2v2δ

2
)

+ uθ + v2θ
2 +

(u+ 2θv2)
2 δ2

2
(
1− 2v2δ

2
) .

Note that the physical MGF is of an exponentially affi ne form, which will greatly facilitate

option valuation below.

5.2 Risk Neutralization

We follow Christoffersen, Elkamhi, Feunou, and Jacobs (2010) and assume an exponential

pricing kernel of the form

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp
(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

)
Et

[
exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

)] (18)

= exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

−1
2
ν21,t − 1

2
ν22,t − ρν1,tν2,t −

(
eθν3,t+

1
2
δ2ν23,t − 1

)
hy,t

)
.

In order to ensure that the model is affi ne under Q, it is necessary and suffi cient to impose

the following conditions:

ν2,t = (γ − γ∗)
√
hz,t − ρν1,t

ν3,t = ν3.
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Appendix C shows that the risk-neutral probability measure for the BPRJM model is

then

Rt+1 ≡ log

(
St+1
St

)
= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1
iid∼
Q

N(θ∗, δ2); nt+1|It ∼Q Poisson
(
h∗y,t
)

RBVt+1 = hz,t +
(
(γ∗)2 − γ2

)
hz,t + σ

[(
ε∗2,t+1 − γ∗

√
hz,t

)2
−
(
1 + (γ∗)2 hz,t

)]
RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2
,

where ε∗1,t+1 and ε
∗
2,t+1 are bivariate Gaussian under Q, and where

h∗y,t = eθν3+
1
2
δ2ν23hy,t

θ∗ = θ + δ2ν3, ξ∗ = eθ
∗+ 1

2
δ2 − 1.

Hence we have the risk premiums

EQ
t [RBVt+1]− Et [RBVt+1] =

(
(γ∗)2 − γ2

)
hz,t

EQ
t [RJVt+1]− Et [RJVt+1] =

(
(θ∗)2 + δ2

)
h∗y,t −

(
θ2 + δ2

)
hy,t,

where γ∗ and ν3 are additional parameters to be estimated. Below we will use the notation

χ = γ − γ∗ and report estimates of χ instead of γ∗.
By the nature of the model, risk neutralization of the RJM model is slightly different

from the other models. Appendix D provides the details.

5.3 Computing Option Values

Above we have shown that the risk-neutral distribution is of the same form as physical

distribution. The risk-neutral MGF will therefore be of the form shown in Appendix B, but

with risk-neutral parameters used instead of their physical counterparts. We can write the
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one-period risk-neutral conditional MGF as

ΨQ
t,t+1 ≡ EQ

t [exp (uRt+1 + v′ht+1)] (19)

= exp


u
(
r − 1

2
hz,t − ξ∗h∗y,t

)
+ v′ (ω + bht)

+v1
(
hz,t +

(
(γ∗)2 − γ2

)
hz,t − σ

(
1 + (γ∗)2 hz,t

))
− 1

2
ln (1− 2σv1)

+

(
v1σ (γ∗)2 + 1

2
(1− ρ2)u2 +

(uρ−2σv∗1γ∗)
2

2(1−2σv1)

)
hz,t + (ev3 − 1) eθν3+

1
2
δ2ν23hy,t


≡ exp

(
A∗ (u, v)′ ht +B∗ (u, v)

)
.

Next, call option values can be computed via standard Fourier inversion techniques,

Call = StP1(t,M)− exp(−rM)XP2(t,M), where (20)

P1(t,M) =
1

2
+

∫ +∞

0

Re

(
ΨQ
t,t+M(1 + iu) exp(−rM − iu ln(X

St
))

πiu

)
du

P2(t,M) =
1

2
+

∫ +∞

0

Re

(
ΨQ
t,t+M(iu) exp(−iu ln(X

St
))

πiu

)
du,

where ΨQ
t,t+M denotes the risk-neutral M -period MGF (see Appendix B) corresponding to

the one-day MGF in equation (19). Put option values can be computed from put-call parity.

Matlab code for computing option values is provided in Appendix E.

Armed with the quasi-closed form option-pricing formula in equation (20), we are ready

to embark on a large-scale empirical investigation of the four models.

5.4 Fitting Options and Returns

From OptionMetrics we obtain Wednesday closing mid-quotes on SPX options data starting

on 2 January 1996 and ending on 28 August 2013, which was the last date available at the

time of writing.

We apply some commonly-used option data filters to the raw data. We restrict attention

to out-of-the-money options with maturity between 15 and 180 calendar days. We omit

contracts that do not satisfy well-known no-arbitrage conditions. We use only the six strikes

with highest trading volume for each maturity quoted on Wednesdays. Finally, we convert

puts to calls using put-call parity, so as to ease the computation and interpretation below.

Table 2 provides descriptive statistics of the resulting data set consisting of 21,283 options.

The top panel shows the contracts sorted by moneyness defined using the Black-Scholes delta.

The persistent “smile”pattern in implied volatility is readily apparent from the top panel.

The middle panel sorts the contracts by maturity and shows that there is not a persistent
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maturity pattern in implied volatilities: the term structure of implied volatility is roughly

flat, on average. The bottom panel sorts by the VIX level. Table 2 shows that roughly half

the contracts have a delta above 0.6, a time-to-maturity between 30 and 90 days, and are

recorded on days when the VIX is between 15 and 25.

Joint estimation is performed by following Trolle and Schwartz (2009), who assume that

the vega-weighted option errors, ej, are i.i.d. Gaussian. We can then define the option

likelihood, lnLO, and the joint likelihood, lnL, as follows:

VWRMSE =

√√√√ 1

N

N∑
j=1

e2j =

√√√√ 1

N

N∑
j=1

((CMkt
j − CMod

j )/BSV Mkt
j )2 (21)

lnLO = −1

2

N∑
j=1

[ln(VWRMSE2) + e2j/VWRMSE2]

lnL = lnLP + lnLO,

where lnLP denotes the log-likelihood function of the physical process defined in equation

(14). We then estimate all physical parameters and risk premia by maximizing the joint

likelihood function, lnL.

Table 3 contains the parameter estimates and log-likelihoods for our four models. We

again calibrate the ω parameters by targeting the unconditional model variance to the sample

variance of returns. As in Table 1, the physical parameters tend to be estimated precisely,

whereas some of the risk premium parameters continue to be diffi cult to pin down. A

sequential estimation procedure in which only risk premia are estimated from options may

lead to more precise estimates. We leave this for future work.

The log-likelihoods reported in Table 3 are from joint estimation on returns and options

for the GARCH model; from returns, RV and options for the RVM and RJM models; and

from returns, RBV , RJV and options for the BPRJMmodel. They are therefore not directly

comparable.

The option errors at the bottom of the table, however, are comparable. They show that,

in terms of implied volatility root mean squared error (IV RMSE), the RVM and RJM

models offer a 12% improvement over the standard GARCH model. The BPRJM model

offers a 17% improvement, which is quite impressive. The VWRMSE metric is broadly

consistent with the IV RMSE metric, again showing a 17% improvement of BPRJM over

GARCH.
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5.5 Exploring the Results

In Table 4 we decompose the overall IV RMSE fit in Table 3 by moneyness, maturity and

VIX level, following the layout of Table 2. The top panel of Table 4 shows that the BPRJM

model performs the best in all but one moneyness category, namely deep out-of-the-money

calls, where RVM is best. The BPRJM model performs particularly well for deep in-the-

money calls (corresponding to deep out-of-the-money puts), which have proven notoriously

diffi cult to fit in the literature. The middle panel of Table 4 shows that the BPRJM model

performs the best in all maturity categories, including one virtual tie with the RJM model,

namely for maturities between 30 and 60 days. The bottom panel shows that the BPRJM

model is best in five of six VIX categories, and virtually tied in the sixth when VIX is

between 15 and 20%.

Altogether, Table 4 shows that the overall improvement in option fit by the BPRJM

model evident in Table 3 is not due to any particular subset of the data set. The superior

fit is obtained virtually everywhere.

Figure 7 reports the weekly time series of IV RMSE for at-the-money (ATM) options

only. The figure is thus designed to reveal the models’ability to match the pattern of market

volatility through time. Figure 7 shows that the RVM, RJM and BPRJMmodels are all much

better than the GARCH model at capturing the dramatic dynamics in volatility unfolding

during the 2008 financial crisis. It is indeed quite remarkable that the recent financial crisis

does not appear as an outlier for the RVM, RJM and BPRJM models in Figure 7.

Figure 8 plots the model-implied risk-neutral higher moments over time for the 6-month

horizon. Note that the BPRJM model is able to generate higher skewness (middle panel)

and excess kurtosis (lower panel) values than are the three other models. This feature of the

model is likely a key driver in its success in fitting observed option prices, as is evident from

Tables 3 and 4.

The top panel of Figure 8 shows that the RVM, RJM and BPRJM models generate much

higher 6-month risk-neutral volatility values than GARCH during the financial crisis in 2008.

This is likely driving the at-the-money IV RMSE performance of these models evident from

Figure 7.

5.6 Option Error Specification

The option-based objective function in (21) implicitly assumes that option errors are in-

dependent and identically distributed (iid) across contracts. In reality, option errors have

complicated dependence structures that are likely a function of time, moneyness, time-to-

maturity, and potentially also the level of the market and its volatility. Figure 7, which plots
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the weekly IV RMSE, indeed suggests that option errors are persistent across time. To

study this issue further we plot in Figure 9 the autocorrelations of the weekly VWRMSE

series, which is ultimately part of the input into equation (21). As in Figure 7, we consider

only ATM options in Figure 9.7 Figure 9 confirms that the option error magnitudes are

indeed persistent over time.

The persistence in option errors implies that our maximum likelihood estimation pro-

cedure is not fully effi cient. However, as long as the option errors are ergodic stationary

(Hayashi, 2000, p. 465), we will still obtain consistent parameter estimates. Our estimates

should thus be viewed as quasi maximum likelihood as opposed to fully maximum likelihood.

While we have not pursued them here, it is important to acknowledge that the literature

has offered various approaches to account for the non-iid property of option errors. For

example, Bates (2000) allows for heteroskedastic and autocorrelated errors in a Kalman filter

approach. More recently, Kaeck and Alexander (2012) assume a multiplicative autoregressive

error structure when estimating stochastic volatility models, and Kanniainen, Lin, and Yang

(2014) assume additive autoregressive errors when estimating GARCH models.

Our focus is primarily on comparing different models and we conjecture that our compar-

isons are little affected by the quasi maximum likelihood estimation strategy that we apply

uniformly across models. Nevertheless, specifying a more accurate error structure for the

model we have suggested will likely lead to more effi cient parameter estimates and therefore

remains an important topic for future research.

6 Summary and Conclusions

Under very general conditions, the total quadratic variation of a stochastic price process

can be decomposed into diffusive variation and squared jump variation. We have used this

result to develop a new class of option valuation models in which the underlying asset price

exhibits volatility and jump intensity dynamics. The first key feature of our model is that

the volatility and jump intensity dynamics in the model are directly driven by model-free

empirical measures of diffusive volatility and jump variation. Second, because the empirical

measures are observed in discrete intervals, our option valuation model is cast in discrete

time, allowing for straightforward estimation of the model. Third, our model belongs to

the affi ne class, enabling us to derive the conditional characteristic function so that option

values can be computed rapidly without relying on simulation methods. When estimated on

S&P500 index options, realized measures and returns, the new model performs well compared

7The autocorrelation plot using all options looks similar.
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with standard benchmarks.

Our analysis points to some interesting avenues for future research. First, a sequential

estimation of physical parameters and then risk premia would be interesting. Second, imple-

menting a more effi cient estimation methodology would be of value, as discussed in Section

5.6. Third, several alternatives exist to the non-parametric measures of jumps explored in

this paper. For example, Li (2013) employs hedging errors implied by delta-hedged positions

in European-style options to identify jumps. Applying these alternative jump measures in

our modelling framework could be useful. Fourth, we have allowed for measurement errors

on some but not all variables. Extending our model in this direction would likely lead to even

better empirical performance. Fifth, so far we have used only model-free physical measures

of jumps and diffusive volatility. However, Du and Kapadia (2012) have recently proposed

model-free risk-neutral counterparts to the realized bipower variation and realized jump vari-

ation measures we employ. Using the risk-neutral measures in our modelling framework may

well lead to an even better fit. We leave these avenues open for future exploration.
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Appendix A: A Special Case of the Likelihood Function

In this section, we compute a special case of the likelihood function used to fit the BPRJM

model to the observed returns and RV only. Denote

ft (Rt+1, RVt+1) = ft (Rt+1, RBVt+1 +RJVt+1) .

Using the methodology from the general case, we have

ft (Rt+1, RBVt+1 +RJVt+1) =

∞∑
j=0

ft (Rt+1, RBVt+1 +RJVt+1, nt+1 = j)

=
∞∑
j=0

ft (Rt+1, RBVt+1 +RJVt+1|nt+1 = j)Pt [nt+1 = j] ,

with

Pt [nt+1 = j] =
e−hy,thjy,t

!j

ft (Rt+1, RBVt+1 +RJVt+1|nt+1 = j) =

{
ft (Rt+1, RBVt+1) if j = 0

f̄t (j) if j > 0
,

where

f̄t (j) = (2π)−1
∣∣∣Ω(r,rv)

t (0)
∣∣∣−1/2 exp

(
−1

2

(
X
(r,rv)
t+1 − µ

(r,rv)
t (j)

)′
Ω
(r,rv)
t (j)−1

(
X
(r,rv)
t+1 − µ

(r,rv)
t (j)

))

µ
(r,rv)
t (j) =

(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + θj

hz,t +
(
θ2 + δ2

)
j

)

Ω
(r,rv)
t (j) =

[
hz,t + δ2j −2ργσhz,t + 2θδ2j

−2ργσhz,t + 2θδ2j 2σ2 (1 + 2γ2hz,t) + 2δ2
(
δ2 + 2θ2

)
j

]
.

Appendix B: Physical MGF for the BPRJM Model

In this section, we derive the closed-form MGF for the BPRJM model under the physical

measure. Using the vector notation ht ≡ (hz,t, hy,t)
′ and further defining the coeffi cients
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v ≡ (vz, vy)
′, we can write the physical moment-generating function as

Et [exp (uRt+1 + v′ht+1)] = Et

[
exp

(
u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

)
+v′ (ω + bht + aRVMt+1)

)]
=

exp

(
u

(
r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

)
Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)] .

We further define

v′a = (vz, vy)

(
az az,y

ay,z ay

)
= (vzaz + vyay,z, vzaz,y + vyay) ≡ (v1, v2) .

Then, we can write

Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)]

= Et [exp (u (zt+1 + yt+1) + v1RBVt+1 + v2RJVt+1)]

= exp
(
v1
(
hz,t − σ

(
1 + γ2hz,t

)))
Et

[
exp

(
u
√
hz,tε1,t+1 + v1σ

(
ε2,t+1 − γ

√
hz,t

)2)]
×

Et

[
exp

(
nt+1∑
j=0

uxjt+1 + v2
(
xjt+1

)2)]
,

where the expectations can be computed explicitly as

Et

[
exp

(
u
√
hz,tε1,t+1 + v1σ

(
ε2,t+1 − γ

√
hz,t

)2)]
= exp

(
−1

2
ln (1− 2σv1) +

(
v1σγ

2 +
1

2

(
1− ρ2

)
u2 +

(uρ− 2σv1γ)2

2 (1− 2σv1)

)
hz,t

)
,

and

Et

[
exp

(
nt+1∑
j=0

uxjt+1 + v2
(
xjt+1

)2)]
= Et

[
Et

[
exp

(
nt+1∑
j=0

uxjt+1 + v2
(
xjt+1

)2)∣∣∣∣∣nt+1
]]

Et

[
exp

(
nt+1∑
j=0

uxjt+1 + v2
(
xjt+1

)2)∣∣∣∣∣nt+1
]

= exp (v3nt+1) ,

where

v3 = −1

2
ln
(
1− 2v2δ

2
)

+ uθ + v2θ
2 +

(u+ 2θv2)
2 δ2

2
(
1− 2v2δ

2
) .
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Hence

Et

[
exp

(
nt+1∑
j=0

uxjt+1 + v2
(
xjt+1

)2)]
= Et [exp (v3nt+1)] = exp (hy,t (ev3 − 1)) .

Therefore, we have the following expression

Et [exp (u (zt+1 + yt+1) + v′aRVMt+1)] = exp


v1 (hz,t − σ (1 + γ2hz,t))− 1

2
ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(1− ρ2)u2 + (uρ−2σv1γ)2
2(1−2σv1)

)
hz,t

+ (ev3 − 1)hy,t

 .

Substituting the above back into the original MGF, we get

Et [exp (uRt+1 + v′ht+1)] = exp


u
(
r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

)
+ v′ (ω + bht)

+v1 (hz,t − σ (1 + γ2hz,t))− 1
2

ln (1− 2σv1)

+
(
v1σγ

2 + 1
2

(1− ρ2)u2 + (uρ−2σv1γ)2
2(1−2σv1)

)
hz,t + (ev3 − 1)hy,t


≡ exp

(
A (u, v)′ ht +B (u, v)

)
,

which shows that the physical one-step-ahead moment-generating function is exponentially

affi ne.

We conjecture that the multi-step moment-generating function is also of the affi ne form.

First, define

Ψt,t+M(u) = Et[exp(u
M∑
j=1

Rt+j)]

= exp(C(u,M)′ht +D(u,M)).

From this we can compute

Ψt,t+M+1(u) = Et[exp(u
M∑
j=1

Rt+j)] = Et[Et+1[exp(u
M∑
j=1

Rt+j)]]

= Et[exp(uRt+1)Et+1[exp(u
M∑
j=2

Rt+j)]]

= Et[exp(uRt+1 + C(u,M)′ht+1 +D(u,M))]

= exp(A(u,C(u,M))′ht +B(u,C(u,M)) +D(u,M)),
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which yields the following recursive relationship:

C(u,M + 1) = A(u,C(u,M))

D(u,M + 1) = B(u,C(u,M)) +D(u,M),

including the following initial conditions:

C(u, 1) = A(u,0)

D(u, 1) = B(u,0),

where A and C are 2-by-1 vector-valued functions.

Appendix C: Risk Neutralization of the BPRJM Model

In this appendix, we derive the risk neutralization of the BPRJM model. We assume an

exponential pricing kernel of the following form:

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp
(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

)
Et

[
exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

)]
= exp

(
ν1,tε1,t+1 + ν2,tε2,t+1 + ν3,t

∑nt+1
j=0 x

j
t+1

−1
2
ν21,t − 1

2
ν22,t − ρν1,tν2,t −

(
eθν3,t+

1
2
δ2ν23,t − 1

)
hy,t

)
.

We need to impose the no-arbitrage condition

EQ
t [exp (Rt+1)] ≡ Et

[
ζt+1 exp (Rt+1)

]
= exp (r) ,
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where

Et
[
ζt+1 exp (Rt+1)

]
= Et

[
ζt+1 exp

(
r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

)]

= exp


r +

(
λz − 1

2

)
hz,t + (λy − ξ)hy,t

−1
2
ν21,t − 1

2
ν22,t − ρν1,tν2,t −

(
eθν3,t+

1
2
δ2ν23,t − 1

)
hy,t

+1
2

(
ν1,t +

√
hz,t
)2

+ 1
2
ν22,t + ρ

(
ν1,t +

√
hz,t
)
ν2,t

+
(
eθ(ν3,t+1)+

1
2
δ2(ν3,t+1)

2 − 1
)
hy,t



= exp


r + λzhz,t + (λy − ξ)hy,t

eθν3,t+
1
2
δ2ν23,t

(
eθ+

1
2
δ2+δ2ν3,t − 1

)
hy,t

+ν1,t
√
hz,t + ρ

√
hz,tν2,t

 .

Setting this expression equal to the risk-free rate and taking logs yields the condition

λzhz,t + (λy − ξ)hy,t + ν1,t
√
hz,t + ρ

√
hz,tν2,t + eθν3,t+

1
2
δ2ν23,t

(
eθ+

1
2
δ2+δ2ν3,t − 1

)
hy,t = 0.

In order to determine the form of the risk-neutral distribution of the shocks, we consider the

moment-generating function

EQ
t [exp (u1ε1,t+1 + u2ε2,t+1 + u3yt+1)] = exp

(
u1 (ν1,t + ρν2,t) + u2 (ν2,t + ρν1,t) +

u21
2

+
u22
2

+ ρu1u2

+
(
e(θ+δ

2ν3,t)u3+ 1
2
δ2u23 − 1

)
eθν3,t+

1
2
δ2ν23,thy,t

)
.

In order to obtain an affi ne model under the Q measure, we set ν3,t to a constant, i.e.

ν3,t = ν3. Under the Q measure we have

ε∗1,t+1 = ε1,t+1 − (ν1,t + ρν2,t) ; ε∗1,t+1
iid∼
Q

N (0, 1)

ε∗2,t+1 = ε2,t+1 − (ν2,t + ρν1,t) ; ε∗2,t+1
iid∼
Q

N (0, 1)

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1
iid∼
Q

N(θ + δ2ν3, δ
2); nt+1|It ∼Q Poisson

(
eθν3+

1
2
δ2ν23hy,t

)
.

We thus see that, under the Q measure, ε∗1,t+1 and ε
∗
2,t+1 follow a bivariate standard normal

distribution with correlation ρ.
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The realized bipower variation equation can be written as follows:

RBVt+1 = hz,t + σ

[(
ε2,t+1 − γ

√
hz,t

)2
−
(
1 + γ2hz,t

)]
= hz,t + σ

[(
ε∗2,t+1 + ν2,t + ρν1,t − γ

√
hz,t

)2
−
(
1 + γ2hz,t

)]
.

In order to ensure that the model is affi ne under Q, it is necessary and suffi cient to fix

ν2,t + ρν1,t − γ
√
hz,t = −γ∗

√
hz,t,

which yields the condition

ν2,t = (γ − γ∗)
√
hz,t − ρν1,t.

Using the no-arbitrage condition above implies that

ν1,t
√
hz,t+ρ

√
hz,t

(
(γ − γ∗)

√
hz,t − ρν1,t

)
= −λzhz,t−(λy − ξ)hy,t−eθν3+

1
2
δ2ν23

(
eθ+

1
2
δ2+δ2ν3 − 1

)
hy,t.

Thus we have

ν1,t =
(ρ (γ∗ − γ)− λz)hz,t −

(
λy − ξ + eθν3+

1
2
δ2ν23

(
eθ+

1
2
δ2+δ2ν3 − 1

))
hy,t

(1− ρ2)
√
hz,t

(ν1,t + ρν2,t)
√
hz,t = −λzhz,t −

(
(λy − ξ) + eθν3+

1
2
δ2ν23

(
eθ+

1
2
δ2+δ2ν3 − 1

))
hy,t.

Next we can rewrite the returns equation under the risk-neutral measure as follows:

Rt+1 ≡ log

(
St+1
St

)
= r +

(
λz −

1

2

)
hz,t + (λy − ξ)hy,t + zt+1 + yt+1

= r − 1

2
hz,t − eθν3+

1
2
δ2ν23

(
eθ+

1
2
δ2+δ2ν3 − 1

)
hy,t +

√
hz,tε

∗
1,t+1

= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1.
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Hence under the risk-neutral measure, we have

Rt+1 ≡ log

(
St+1
St

)
= r − 1

2
hz,t − ξ∗h∗y,t +

√
hz,tε

∗
1,t+1 + yt+1

yt+1 =

nt+1∑
j=0

xjt+1; xjt+1 ∼Q iidN(θ∗, δ2); nt+1|It ∼Q Poisson
(
h∗y,t
)

RBVt+1 = hz,t +
(
(γ∗)2 − γ2

)
hz,t + σ

[(
ε∗2,t+1 − γ∗

√
hz,t

)2
−
(
1 + (γ∗)2 hz,t

)]
RJVt+1 =

nt+1∑
j=0

(
xjt+1

)2
,

with the following parameter mapping:

h∗y,t = eθν3+
1
2
δ2ν23hy,t

θ∗ = θ + δ2ν3, ξ∗ = eθ
∗+ 1

2
δ2 − 1.

Appendix D: Risk Neutralization of the RJM Model

In this appendix, we derive the risk neutralization of the RJM model. We use the following

exponential form of the pricing kernel to ensure that the affi ne structure is preserved under

the risk-neutral measure:

ζt+1 =
Mt+1

Et [Mt+1]
≡

exp

(
ν1
∑nt+1

j=1 x
j
t+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+ ν3nt+1

)

Et

[
exp

(
ν1
∑nt+1

j=1 x
j
t+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+ ν3nt+1

)] ,
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which can be written as

Et

[
exp

(
ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+ ν3nt+1

)]

= Et

[
Et

[
exp

(
ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+ ν3nt+1

)∣∣∣∣∣nt+1
]]

= Et

[
exp (ν3nt+1)Et

[
exp

(
nt+1∑
j=1

(
ν1x

j
t+1 + ν2

(
xjt+1

)2))∣∣∣∣∣nt+1
]]

= Et

[
exp (ν3nt+1)

nt+1∏
j=1

Et

[
exp

(
ν1x

j
t+1 + ν2

(
xjt+1

)2)∣∣∣nt+1]]
= Et

[
exp (ν3nt+1)

(
Et

[
exp

(
ν1x

j
t+1 + ν2

(
xjt+1

)2)])nt+1]
= Et [exp (ν4nt+1)] ,

using the definition

ν4 = −1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2 δ2

2
(
1− 2ν2δ

2
) + ν3.

Hence we have

ζt+1 = exp

(
ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2 − ν4 − (eν4 − 1)hy,t

)
.

We need to impose the no-arbitrage condition

EQ
t [exp (Rt+1)] ≡ Et

[
ζt+1 exp (Rt+1)

]
= exp (r) ,

which gives us the following parameter restriction:

Et
[
ζt+1 exp (Rt+1)

]
= Et

[
ζt+1 exp

(
r̄ + (λy − ξ)hy,t +

nt+1∑
j=1

xjt+1

)]

= Et

exp

 r̄ + (λy − ξ)hy,t + (1 + ν1)
∑nt+1

j=1 x
j
t+1+

ν2
nt+1∑
j=1

(
xjt+1

)2 − ν4 − (eν4 − 1)hy,t




= exp (r̄ + ν5 − ν4 + (λy − ξ + eν5 − eν4)hy,t) ,
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with

ν5 = −1

2
ln
(
1− 2ν2δ

2
)

+ (1 + ν1) θ + ν2θ
2 +

(1 + ν1 + 2θν2)
2 δ2

2
(
1− 2ν2δ

2
) + ν3.

Hence, the following relationships need to hold:

ν5 − ν4 = θ +
δ2

2
eν5 − eν4 = ξ − λy.

Thus

eν5 − eν4 = eν4 (eν5−ν4 − 1)

= eν4
(
eθ+

δ2

2 − 1
)

= eν4ξ,

eν4 =
ξ − λy
ξ

,

and

ν4 = ln

(
1− λy

ξ

)

ν5 − ν4 = θ +

[
(1 + ν1 + 2θν2)

2 − (ν1 + 2θν2)
2] δ2

2
(
1− 2ν2δ

2
)

= θ +
(1 + 2ν1 + 4θν2) δ

2

2
(
1− 2ν2δ

2
)

ν5 − ν4 = θ +
δ2

2
,

which implies that

θ +
δ2

2
= θ +

(1 + 2ν1 + 4θν2) δ
2

2
(
1− 2ν2δ

2
) .

Hence

1 + 2ν1 + 4θν2 = 1− 2ν2δ
2,

which can be written as

ν1 = −
(
δ2 + 2θ

)
ν2,
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and

ν3 = ν4 −
(
−1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2 δ2

2
(
1− 2ν2δ

2
) )

= ln

(
1− λy

ξ

)
+

1

2
ln
(
1− 2ν2δ

2
)

+ θ
(
δ2 + θ

)
ν2 −

δ6ν22
2
(
1− 2ν2δ

2
) .

To determine the risk-neutral distribution of the shocks, we consider

EQ
t [exp (unt+1)] = Et

[
exp

(
unt+1 + ν1

nt+1∑
j=1

xjt+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+ ν3nt+1 − ν4 − (eν4 − 1)hy,t

)]
= exp (−ν4 − (eν4 − 1)hy,t)Et [exp (vnt+1)]

= exp (−ν4 − (eν4 − 1)hy,t + v + (ev − 1)hy,t)

= exp (v − ν4 + (ev − eν4)hy,t) = exp
(
v − ν4 + eν4

(
ev−ν4 − 1

)
hy,t
)
,

with

v = −1

2
ln
(
1− 2ν2δ

2
)

+ ν1θ + ν2θ
2 +

(ν1 + 2θν2)
2 δ2

2
(
1− 2ν2δ

2
) + u+ ν3

v − ν4 = u.

Hence

EQ
t [exp (unt+1)] = exp

(
u+ (eu − 1)

(
1− λy

ξ

)
hy,t

)
nt+1 = n∗t+1 + 1,

where

n∗t+1|It˜QPoisson(h∗y,t)

h∗y,t =

(
1− λy

ξ

)
hy,t.

Next we compute the conditional moment-generating function of individual jumps under the

risk-neutral measure:

EQ
t

[
exp

(
uxj0t+1

)]
= Et

exp

 uxj0t+1 + ν1
∑nt+1

j=1 x
j
t+1 + ν2

nt+1∑
j=1

(
xjt+1

)2
+

ν3 (nt+1 − 1) + ν3 − ν4 − (eν4 − 1)hy,t




= exp (ν3 − ν4 − (eν4 − 1)hy,t)Et [exp (v4 (nt+1 − 1))]×

exp

(
−1

2
ln
(
1− 2ν2δ

2
)

+ (u+ ν1) θ + ν2θ
2 +

(u+ ν1 + 2θν2)
2 δ2

2
(
1− 2ν2δ

2
) )
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EQ
t

[
exp

(
uxj0t+1

)]
= exp

 −1
2

ln
(
1− 2ν2δ

2
)

+ (u+ ν1) θ + ν2θ
2 + (u+ν1+2θν2)

2δ2

2(1−2ν2δ2)

+1
2

ln
(
1− 2ν2δ

2
)
− ν1θ − ν2θ2 − (ν1+2θν2)

2δ2

2(1−2ν2δ2)


≡ exp

(
uθ∗ +

(δ∗)2

2
u2

)
,

with the following parameter mappings:

θ∗ = θ +
(ν1 + 2θν2) δ

2(
1− 2ν2δ

2
) = θ − ν2δ

4(
1− 2ν2δ

2
)

(δ∗)2 =
δ2

1− 2ν2δ
2 .

Thus we can rewrite the return equation under the risk-neutral measure as

Rt+1 = r̄ + (λy − ξ)hy,t + yt+1

r̄ = r − θ − δ2

2

ξ = eθ+
1
2
δ2 − 1

yt+1 =

nt+1∑
j=1

xjt+1, xjt+1˜
QiidN(θ∗, (δ∗)2)

Q[nt+1 = k|It] =
e−h

∗
y,t
(
h∗y,t
)k−1

!(k − 1)

h∗y,t =

(
1− λy

ξ

)
hy,t

RVt+1 =

nt+1∑
j=1

(
xjt+1

)2 − θ2

hy,t+1 = ωy + byhy,t + ayRVt+1

θ∗ = θ +
(ν1 + 2θν2) δ

2(
1− 2ν2δ

2
) , (δ∗)2 =

δ2

1− 2ν2δ
2 ,

where ν2 is a parameter to be estimated.

Appendix E: Matlab Code for Option Pricing

% Computes the call option price using quadl numerical integration

% Code for BPRJM Model
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% S_t = d vector of spot stock prices

% K = d vector of Strike Prices

% tau = d vector of time to maturity

% h_t = d by 2 matrix of variance processes

function [c] = cPrice_QL_BPRJM_PQ(S_t,K,h_t,rF,tau,param)

sigma = param(1); gamma = param(2); theta = param(3); delta = param(4);

rho = param(5);

b_z = param(6); b_y = param(7); a_z = param(8); a_y = param(9);

h_z0 = param(10); h_y0 = param(11); chi = param(12); nu_3 = param(13);

h_zt = h_t(:,1);

h_yt = h_t(:,2);

c = (0.5*(S_t’-K’.*exp(-rF’.*tau’))+(1/pi)*exp(-rF’.*tau’).*...

quadl_v(@integ,0.00001,250,1e-06,[],sigma,gamma,theta,delta,rho,b_z,b_y,a_z,a_y,...

h_z0,h_y0,chi,nu_3,h_zt,h_yt,tau,S_t,K))’;

function [f] = integ(u,sigma,gamma,theta,delta,rho,b_z,b_y,a_z,a_y,h_z0,h_y0,chi,nu_3,...

h_zt,h_yt,tau,S_t,K)

N = numel(u);

d = numel(K);

param = [sigma,gamma,theta,delta,rho,b_z,b_y,a_z,a_y,h_z0,h_y0,chi,nu_3];

x = log(K./S_t)’;

h_t = [h_zt h_yt];

[Psi1 Psi2] = Psi_GARJV(u,h_t,tau,param);

f1 = real((Psi1.*exp(-1i*u*x))./(1i*repmat(u,1,d)));

f2 = real((Psi2.*exp(-1i*u*x))./(1i*repmat(u,1,d)));

f = repmat(S_t’,N,1).*f1 - repmat(K’,N,1).*f2;

% u is a N-column vector

% tau is a d-column vector of maturities

% Output is N by d matrix

function [Psi1 Psi2] = Psi_GARJV(u,h_t,tau,param)

u1 = 1+1i*u;

u2 = 1i*u;

h_zt = h_t(:,1);

h_yt = h_t(:,2);

N = numel(u);

T = max(tau);

C1Mat1 = zeros(N,T);
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C2Mat1 = zeros(N,T);

DMat1 = zeros(N,T);

C1Mat2 = zeros(N,T);

C2Mat2 = zeros(N,T);

DMat2 = zeros(N,T);

% C and D for maturity 1

[C1Mat1(:,1) C2Mat1(:,1) DMat1(:,1)] = A12B(u1,zeros(N,1),zeros(N,1),param);

[C1Mat2(:,1) C2Mat2(:,1) DMat2(:,1)] = A12B(u2,zeros(N,1),zeros(N,1),param);

% Recursion up to M

for t = 2:T

[C1Mat1(:,t) C2Mat1(:,t) DMat1(:,t)] = A12B(u1,C1Mat1(:,t-1),C2Mat1(:,t-1),param);

[C1Mat2(:,t) C2Mat2(:,t) DMat2(:,t)] = A12B(u2,C1Mat2(:,t-1),C2Mat2(:,t-1),param);

DMat1(:,t) = DMat1(:,t) + DMat1(:,t-1);

DMat2(:,t) = DMat2(:,t) + DMat2(:,t-1);

end

Psi1 = exp(C1Mat1(:,tau).*repmat(h_zt’,N,1) + C2Mat1(:,tau).*repmat(h_yt’,N,1) +DMat1(:,tau));

Psi2 = exp(C1Mat2(:,tau).*repmat(h_zt’,N,1) + C2Mat2(:,tau).*repmat(h_yt’,N,1) +DMat2(:,tau));

% u,w_R,w_RV are N-column vectors

function [A1 A2 B] = A12B(u,v_z,v_y,param)

% Set rF = 0.05/365 for the ease of computation

rF = 0.05/365;

sigma = param(1); gamma = param(2); theta = param(3); delta = param(4);

rho = param(5);

b_z = param(6); b_y = param(7); a_z = param(8); a_y = param(9);

h_z0 = param(10); h_y0 = param(11); chi = param(12); nu_3 = param(13);

gamma_s = gamma - chi;

theta_s = theta + delta^2*nu_3;

xi_s = exp(theta_s+delta^2/2) - 1;

omega_z = h_z0*(1-(b_z+a_z));

omega_y = h_y0*(1-(b_y+a_y*(theta^2+delta^2)));

v1 = v_z*a_z;

v2 = v_y*a_y;

v3 = -0.5*log(1-2*v2*delta^2) + u*theta_s + v2*theta_s^2 +...

((u*delta+2*theta_s*v2*delta).^2)./(2*(1-2*v2*delta^2));

A1 = -0.5*u + v_z*b_z + v1 + (gamma_s^2-gamma^2)*v1 + 0.5*(1-rho^2)*u.^2 +

((u*rho-2*sigma*v1*gamma_s).^2)./(2*(1-2*sigma*v1));
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A2 = -xi_s*exp(theta*nu_3+0.5*delta^2*nu_3^2)*u + v_y*b_y +...

(exp(v3)-1)*exp(theta*nu_3+0.5*delta^2*nu_3^2);

B = u*rF + v_z*omega_z + v_y*omega_y - v1*sigma - 0.5*log(1-2*sigma*v1);
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Figure 1: Daily Returns and Realized Variation Measures.
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Notes: The top left panel shows the daily log returns on the S&P500 index. The top right

panel shows the daily realized variance computed from averages of the sum of squared over-

lapping 5-minute returns. The bottom left panel shows the realized bipower variation com-

puted using the method in Barndorff-Nielsen and Shephard (2004). The bottom right panel

shows the realized jump variation constructed as the difference between realized variance

and realized bipower variation. The sample starts 2 January 1990 and ends 31 December

2013.
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Figure 2: Autocorrelations of Daily Returns and Realized Variation Measures.
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Notes: We report the sample autocorrelation functions for lag 1 through 60 trading days

for returns (top left panel), realized volatility (top right panel), realized bipower variation

(bottom left panel), and realized jump variation (bottom right panel). The sample starts 2

January 1990 and ends 31 December 2013.
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Figure 3: Daily Conditional Volatility.
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Notes: We plot the daily model-based conditional volatility for the four models we consider:

the benchmark Heston-Nandi GARCH model (top left), the RVM model based on realized

volatility (top right), the RJM model based on realized jump variation only (bottom left),

and the full BPRJMmodel that separately uses bipower variation and realized jump variation

(bottom right). We use the parameter estimates in Table 1. The sample starts 2 January

1990 and ends 31 December 2013.

44



Figure 4: Conditional Volatility of Variance.
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Notes: We plot the daily model-based conditional volatility of variance for the four models

we consider: the benchmark Heston-Nandi GARCH model (top left), the RVM model based

on realized volatility (top right), the RJM model based on realized jump variation only

(bottom left), and the full BPRJM model that separately uses realized bipower variation

and realized jump variation (bottom right). We use the parameter estimates in Table 1.

The sample starts 2 January 1990 and ends 31 December 2013.
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Figure 5: Daily Correlation of Returns and Variance.
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Notes: We plot the daily model-based conditional correlation of returns and variance for

the four models we consider: the benchmark Heston-Nandi GARCH model (top left), the

RVM model based on realized volatility (top right), the RJM model based on realized jump

variation only (bottom left), and the full BPRJMmodel that separately uses realized bipower

variation and realized jump variation (bottom right). We use the parameter estimates in

Table 1. The sample starts 2 January 1990 and ends 31 December 2013.
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Figure 6: Realized Volatility and Predicted Volatility from Models.
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Notes: We scatter plot the ex-post realized variance (vertical axis) against the model-

predicted total variance (horizontal axis) for each of our models: the benchmark Heston-

Nandi GARCH model (top left), the RVM model based on realized volatility (top right),

the RJM model based on realized jump variation only (bottom left), and the full BPRJM

model that separately uses realized bipower variation and realized jump variation (bottom

right). We use the parameter estimates in Table 1. The sample starts 2 January 1990 and

ends 31 December 2013.
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Figure 7: Weekly Implied Root Mean Squared Error from At-the-Money Options.
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Notes: We plot the weekly implied volatility root mean squared error for at-the-money

options for each of our models: the benchmark Heston-Nandi GARCH model (top left), the

RVM model based on realized volatility (top right), the RJM model based on realized jump

variation only (bottom left), and the full BPRJMmodel that separately uses realized bipower

variation and realized jump variation (bottom right). We use the parameter estimates in

Table 3. The option sample starts 2 January 1996 and ends 28 August 2013.
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Figure 8: Model-Based, Risk-Neutral Higher Moments. 6-Month Horizon.
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Notes: We plot the 6-month risk-neutral volatility, skewness and kurtosis implied by each

of our models: the benchmark Heston-Nandi GARCH model (solid black), the RVM model

based on realized volatility (solid dark grey), the RJMmodel based on realized jump variation

only (dashed dark grey), and the full BPRJM model that separately uses realized bipower

variation and realized jump variation (solid light grey). We use the parameter estimates in

Table 3. The option sample starts 2 January 1996 and ends 28 August 2013.
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Figure 9: Autocorrelations of Weekly Vega-Weighted Root Mean Squared Errors from

ATM Options
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Notes: We plot autocorrelations of the weekly vega-weighted root mean squared error for

at-the-money options from each of our models: the benchmark Heston-Nandi GARCHmodel

(top left), the RVM model based on realized volatility (top right), the RJM model based on

realized jump variation only (bottom left), and the full BPRJM model that separately uses

realized bipower variation and realized jump variation (bottom right). We use the parameter

estimates in Table 3. The option sample starts 2 January 1996 and ends 28 August 2013.
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Table 1: Maximum Likelihood Estimation on Daily S&P500 Returns and Realized Measures. 1990-2013

GARCH RVM JVM BPJVM
Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 4.30E-01 (6.87E-01) 4.40E-01 (1.12E+00) 4.19E-01 (1.86E+00)

λy 2.06E-06 (2.31E-05) 9.13E-05 (4.67E-05)

α 4.87E-06 (1.57E-07)

β 8.50E-01 (1.13E-02)

γ 1.53E+02 (7.66E+00) 7.40E+03 (1.81E+01) 1.45E+04 (6.23E+01)

ωz 4.73E-14 2.35E-08 7.06E-08

ωy 3.38E-02 8.27E-02

σ 5.28E-07 (2.12E-07) 2.51E-07 (1.71E-08)

θ -7.98E-04 (3.08E-05) 1.42E-05 (1.98E-05)

δ 4.40E-03 (4.13E-06) 1.62E-03 (3.20E-06)

ρ 2.14E-01 (7.38E-02) 2.67E-01 (9.52E-02)

bz 5.05E-01 (3.64E-02) 4.87E-01 (4.21E-02)

by 5.46E-01 (3.60E-02) 9.16E-01 (2.14E-02)

az 4.95E-01 (3.54E-02) 5.12E-01 (4.36E-02)

ay 1.94E+04 (1.21E+02) 2.41E+04 (6.31E+02)

E[hz,t] 1.16E-04 1.35E-04 1.24E-04

E[hy,t] 5.70E+00 4.04E+00

Model Properties
Average Volatility 18.34 18.34 18.34 18.34
Volatility Persistence

From Returns 0.9635
From RV 0.9998 0.9340
From RBV 0.9998
From RJV 0.9795

Log-Likelihoods
Returns, RBV, and RJV 129,226
Maximized on Returns and RV 68,212 68,783 69,656
Maximized on Returns 19,312 19,515 19,515 19,522

Notes: Using daily returns and daily realized variation measures, we estimate our four models using maximum likelihood criteria. For
comparison, the last row reports likelihood values when all models are estimated on returns only. The second-to-last row reports likelihood
values when the RVM, JVM, and BPJVM models are estimated on returns and realized variance. The third-to-last row reports the likelihood
value when the BPJVM model is estimated on returns, bipower variation and jump variation. The parameter values reported correspond
to the second-last row for RVM and JVM and to the third-last row for the BPJVM model. The sample is from 2 January 1990 through 31
December 2013. Standard errors are reported in parentheses. Variance targeting is used to fix the ω parameters.
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Table 2: S&P500 Index Option Data by Moneyness, Maturity and VIX Level. 1996-2013

By Moneyness Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7 All
Number of Contracts 3,788 1,391 1,781 2,846 2,746 8,731 21,283
Average Price 7.85 20.94 32.28 45.30 65.93 132.41 74.35
Average Implied Volatility 16.72 18.40 19.31 20.40 21.71 25.09 21.62
Average Bid-Ask Spread 1.046 1.674 1.955 2.018 1.834 1.228 1.470

By Maturity DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150 All
Number of Contracts 2,725 6,480 5,053 2,869 1,974 2,182 21,283
Average Price 41.26 61.01 76.44 92.30 97.88 105.59 74.35
Average Implied Volatility 20.21 21.28 21.73 22.94 22.08 21.95 21.62
Average Bid-Ask Spread 0.820 1.231 1.579 1.872 1.800 1.910 1.470

By VIX Level VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35 All
Number of Contracts 3,962 6,133 5,996 2,456 1,240 1,496 21,283
Average Price 57.95 66.90 80.75 85.77 85.33 94.86 74.35
Average Implied Volatility 13.61 18.04 22.45 26.24 30.22 39.42 21.62
Average Bid-Ask Spread 1.055 1.301 1.446 1.704 1.811 2.683 1.470

Notes: We use 21,283 S&P500 index option contracts from OptionMetrics. The contracts have been subjected to standard filters as
described in the text. The top panel reports the contracts sorted by moneyness defined using the Black-Scholes delta. The second
panel reports the contracts sorted by days to maturity (DTM). The third panel reports the contract sorted by the VIX level on the
day corresponding to the option quote.
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Table 3: Maximum Likelihood Estimation on Daily S&P500 Returns, Realized Measures and Options. 1996-2013

GARCH RVM JVM BPJVM
Parameters Estimate Std Error Estimate Std Error Estimate Std Error Estimate Std Error

λz 1.40E+01 (1.03E+01) 9.17E-01 (7.91E-01) 1.36E+00 (9.69E-01)

λy 1.45E-10 (4.20E-05) 2.18E-05 (1.70E-05)

α 9.01E-07 (1.86E-08)

β 9.88E-01 (6.09E-04)

γ 6.22E+01 (5.51E+00) 3.04E+01 (2.03E-01) 3.72E+01 (2.68E-01)

ωz 1.64E-08 7.68E-07 6.12E-07

ωy 1.64E-06 7.49E-03

σ 1.41E-04 (2.69E-07) 1.34E-04 (2.56E-07)

θ -2.00E-03 (3.39E-05) -1.25E-03 (1.35E-05)

δ 5.61E-03 (7.49E-06) 1.38E-03 (5.63E-06)

ρ 9.14E-01 (2.41E-03) 8.79E-01 (2.48E-03)

bz 9.73E-01 (2.05E-04) 9.76E-01 (1.92E-04)

by 9.61E-01 (3.02E-04) 6.63E-01 (2.96E-03)

az 1.48E-02 (9.86E-05) 1.32E-02 (9.05E-05)

ay 7.07E+02 (8.59E+00) 9.55E+04 (8.87E+02)

E[hz,t] 1.03E-04 (1.21E-07) 6.28E-05 (8.07E-07) 5.58E-05 (2.00E-09)

E[hy,t] 1.63E+00 (4.91E-02) 1.80E+00 (1.06E+00)

χ -6.06E-03 (1.51E-04) -5.67E-03 (1.69E-04)

ν2 1.33E-05 (2.54E+02)

ν3 9.81E-05 (2.74E+00)

Model Properties
Average Physical Volatility 18.34 18.34 18.34 18.34
Average Model IV 20.77 20.79 21.09 21.00
Volatility Persistence

From Returns 0.9911
From RV 0.9878 0.9864
From RBV 0.9890
From RJV 0.9958

Log-Likelihoods
Returns, RBV, RJV, and Options 156,970
Returns 19,019 19,191 18,955 18,695
Returns and Options 52,770 56,214 55,550 56,529

Option Errors
IVRMSE 5.74 5.04 5.05 4.77

Ratio to GARCH 1.000 0.878 0.879 0.831
VWRMSE 4.96 4.25 4.37 4.09

Ratio to GARCH 1.000 0.858 0.881 0.825

Notes: Using daily returns, daily realized variation measures and options, we estimate our four models using a joint maximum likelihood
criterion. The table reports the joint likelihood value as well as its decomposition into the various components. Option errors are reported
using implied volatility root mean squared errors (IVRMSE) and vega-weighted root mean squared errors (VWRMSE) as defined in the text.
The sample is from 2 January 1996 through 28 August 2013. Standard errors are reported in parentheses. Physical variance targeting is used
to fix the ω parameters.
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Table 4: Implied Volatility Root Mean Squared Error (IVRMSE) by Moneyness, Maturity and
VIX Level. 1996-2013

Panel A: IVRMSE by Moneyness
Model Delta<0.3 0.3<Delta<0.4 0.4<Delta<0.5 0.5<Delta<0.6 0.6<Delta<0.7 Delta>0.7

GARCH 5.338 4.001 3.823 3.896 4.228 8.112
RVM 4.671 3.226 2.970 3.139 3.572 7.364
JVM 5.059 3.568 3.214 3.070 3.389 7.123

BPJVM 4.775 3.150 2.825 2.956 3.319 6.821

Panel B: IVRMSE by Maturity
Model DTM<30 30<DTM<60 60<DTM<90 90<DTM<120 120<DTM<150 DTM>150

GARCH 5.259 5.700 5.640 5.852 6.497 5.834
RVM 4.531 4.985 5.003 4.894 5.856 5.300
JVM 4.437 4.731 4.956 5.078 6.115 5.755

BPJVM 4.404 4.731 4.739 4.555 5.535 4.948

Panel C: IVRMSE by VIX Level
Model VIX<15 15<VIX<20 20<VIX<25 25<VIX<30 30<VIX<35 VIX>35

GARCH 4.310 3.419 5.499 6.785 6.961 11.639
RVM 3.565 3.201 5.455 6.434 6.443 7.497
JVM 3.956 3.220 5.466 6.356 6.357 7.463

BPJVM 3.335 3.202 5.358 5.868 5.888 7.231

Notes: We use the parameter values in Table 3 to fit our four models to the 21,283 S&P500 index option
contracts from OptionMetrics. The top panel reports IVRMSE for contracts sorted by moneyness defined
using the Black-Scholes delta. The second panel reports IVRMSE for contracts sorted by days to maturity
(DTM). The third panel reports the IVRMSE for contracts sorted by the VIX level on the day corresponding
to the option quote.
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