SHADOW INTEREST RATES, MACROECONOMIC TRENDS, & TIME-VARYING UNCERTAINTY

Benjamin K. Johannsen Elmar Mertens

Federal Reserve Board

The results presented here do not necessarily represent the views of the Federal Reserve System or the Federal Open Market Committee

June 2015

NOMINAL INTEREST RATE Three-month T-Bill (APR)

U.S. DATA

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

RESEARCH AGENDA

Nominal short rate near zero since late 2008

- Typical time-series tools unusable (VARs, unobserved component models, time-varying parameter macro)
- How to measure variations in the stance of policy?

Shadow rate approach

• Hypothetical nominal rate, unconstrained by lower bound

• Our focus: Pure time series approach

SOME QUESTIONS

• What is the long-run level of the real rate, how does it relate to growth?

- **•** How did the recent recession affect trends in real and nominal variables?
- How does the term structure change with short rates near the lower bound?

Macro-Time Series at the ZLB

Iwata & Wu (2006), Nakajima (2011), Chan & Strachan (2014)

Dynamic Term-Structure Models

Kim & Wright (2005), Wright (2011), Kim & Singleton (2011), Krippner (2013), Wu & Xia (2014), Bauer & Rudebusch (2014)

Unobserved Component Models of the Macroeconomy

Gordon (1997), Gerlach & Smets (1997), Staiger, Stock & Watson (1997), Laubach & Williams (2003), Clark & Kozicki (2005), Stock & Watson (2007), Stella & Stock (2013), Watson (2014), Mertens (2014)

AGENDA

Shadow-Rate Concept

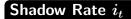
- 2 Shadow-Rate Sampling
- Estimates from an Empirical Macro Model

Term-Premium Estimates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shadow Rate i_t

Nominal interest rate that would prevail in the absence of lower bound constraint


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nominal interest rate that would prevail in the absence of lower bound constraint

Observed Rate

$$i_t^* = \max\left(0, i_t
ight)$$

Nominal interest rate that would prevail in the absence of lower bound constraint

Observed Rate

$$i_t^* = \max\left(0, i_t
ight)$$

Key idea

Model i_t with conventional tools and handle max operator

2 Shadow-Rate Sampling

- **3** Estimates from an Empirical Macro Model
- 4 Term-Premium Estimates

Observer

$$i_t^* = \max\left(0, i_t
ight)$$

Shadow Rate as Latent State

$$(i_t-ar{i})=
ho \;(i_{t-1}-ar{i}) \qquad \qquad +\sigma\; e_t$$

Observer

$$i_t^* = \max\left(0, i_t
ight)$$

Shadow Rate as Latent State

$$(i_t - ar{i}) =
ho^* (i_{t-1}^* - ar{i}^*) + \sigma \; e_t$$

Observer

$$i_t^* = \max\left(0, i_t
ight)$$

Shadow Rate as Latent State

$$(i_t - ar{i}) =
ho \; (i_{t-1} - ar{i}) +
ho^* (i_{t-1}^* - ar{i}^*) + \sigma \; e_t$$

Observer

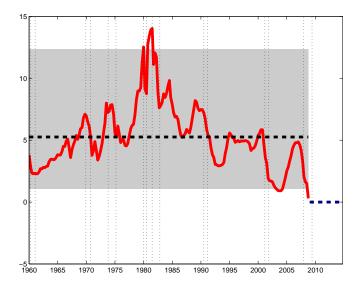
$$i_t^* = \max\left(0, i_t
ight)$$

Shadow Rate as Latent State

$$(i_t-ar{i})=
ho \;(i_{t-1}-ar{i}) \qquad \qquad +\sigma\; e_t$$

Observer

$$i_t^* = \max\left(0, i_t
ight)$$


Shadow Rate as Latent State

$$(i_t - \overline{i_t}) =
ho_t(i_{t-1} - \overline{i_{t-1}}) + \sigma_t e_t$$

• Let
$$Y^* = egin{bmatrix} i_1^* \\ i_2^* \\ \vdots \\ i_T^* \end{bmatrix} = \max\left(0,Y
ight)$$

- Denote non-zero values of Y^{st} by X
- Kalman smoother implies $Y|X \sim N(\mu,V)$
- Thus $Y^*|X \sim {
 m trunc} N(\mu,V)$
- Model only needs to be conditionally linear

NOMINAL INTEREST RATE Three-month T-Bill (APR), 90 percent quantile range

U.S. DATA

3 Estimates from an Empirical Macro Model

TREND AND CYCLE IN NOMINAL INTEREST RATE

Trend-cycle decomposition for the shadow rate

$$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$$

TREND AND CYCLE IN NOMINAL INTEREST RATE

Trend-cycle decomposition for the shadow rate

$$egin{aligned} \dot{i}_t = ar{i}_t + ar{i}_t & ar{i}_t = E_t i_{t+\infty} & ar{i}_t \sim I(0) \end{aligned}$$

Taylor-type reaction function for the gap

$$ilde{i}_t =
ho \; ilde{i}_{t-1} + d_\pi(\pi_t - ar{\pi}_t) + d_y(y_t - ar{y}_t) + arepsilon_t)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

TREND-CYCLE MODEL FOR MACRO VARIABLES

Observables

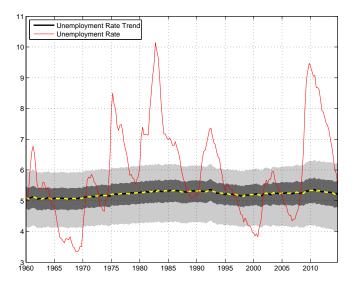
Real GDP:	$y_t = ar{y}_t + ar{y}_t$
Unemployment rate:	$u_t = ar{u}_t + ilde{u}_t$
Inflation:	$\pi_t = ar{\pi}_t + ilde{\pi}_t$
Nominal Rate:	$i_t^* = \max\left(0, i_t ight) i_t = ar{r}_t + ar{\pi}_t + ar{i}_t$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

TREND-CYCLE MODEL FOR MACRO VARIABLES

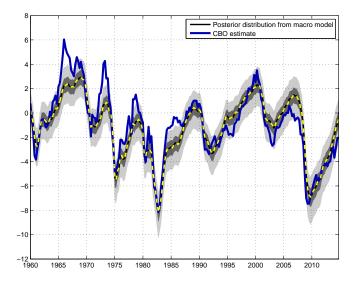
Observables

Real GDP:
$$y_t = \bar{y}_t + \tilde{y}_t$$
Unemployment rate: $u_t = \bar{u}_t + \tilde{u}_t$ Inflation: $\pi_t = \bar{\pi}_t + \tilde{\pi}_t$ Nominal Rate: $i_t^* = \max(0, i_t) \ i_t = \bar{r}_t + \bar{\pi}_t + \tilde{i}_t$


Trends

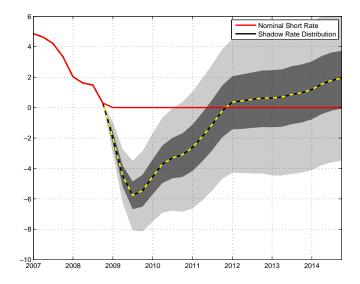
$$egin{aligned} ar{y}_t &= \mu_{t-1} + ar{y}_{t-1} + ar{arepsilon}_t^y & \mu_t &= \mu_{t-1} + \eta_t^\mu \ ar{u}_t &= ar{u}_{t-1} + ar{arepsilon}_t^u \ ar{\pi}_t &= ar{\pi}_{t-1} + ar{arepsilon}_t^\pi \end{aligned}$$

Dynamic factor model for the gaps

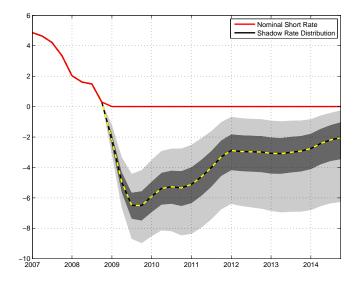

$$a(L) ilde{y}_t = ilde{arepsilon}_t \ \ \ ilde{u}_t = b_u(L) ilde{y}_t + arepsilon_t^u \ \ \ ilde{\pi}_t = b_\pi(L) ilde{y}_t + arepsilon_t^\pi$$

TREND UNEMPLOYMENT

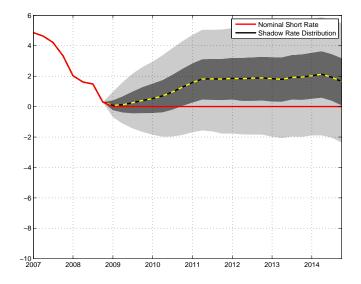
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの


OUTPUT GAP

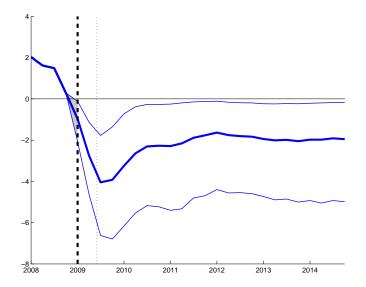
|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | のへ⊙


SHADOW RATE ESTIMATES

 $i_t^* = 0$ treated as missing data

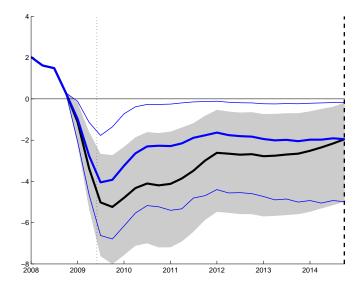

SHADOW RATE ESTIMATES

Censored sampling: $i_t < 0$ when $i_t^* = 0$



SHADOW RATE ESTIMATES

$i_t^* = 0$ treated as missing data



SHADOW RATE ESTIMATES IN PSEUDO-REAL TIME

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

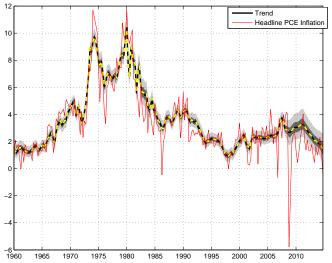
SHADOW RATE ESTIMATES IN PSEUDO-REAL TIME

◆□> ◆□> ◆三> ◆三> ・三 ・ のへの

REAL (SHADOW) RATE TREND

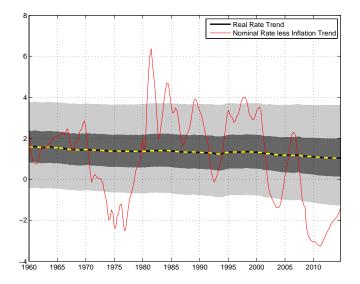
Real shadow-rate trend $ar{r}_t$

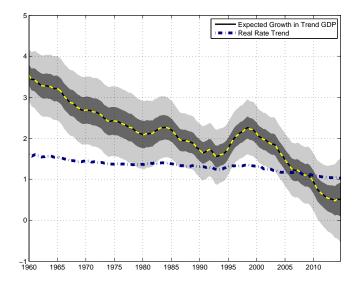
$$ar{i}_t = ar{r}_t + ar{\pi}_t \ ar{r}_t = ar{r}_{t-1} + e_t \ = eta \cdot \mu_t + r_t^ot$$


Trend growth μ_t

$$egin{aligned} y_t &= ar{y}_t + ar{y}_t \ ar{y}_t &= \mu_{t-1} + ar{y}_{t-1} + ar{arepsilon}_t^y \ \mu_t &= \mu_{t-1} + \eta_t^\mu \end{aligned}$$

Da C


TREND INFLATION



▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

REAL RATE TREND

TREND GROWTH AND REAL RATE TREND $ar{r}_t = eta \cdot \mu_t + r_t^{\perp}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

AGENDA

- 2 Shadow-Rate Sampling
- **3** Estimates from an Empirical Macro Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Term-Premium Estimates

TERM PREMIUM

A decomposition for h-period bond yield

$$i^*_{t,t+h} = rac{1}{h} \sum_{j=0}^{h-1} E_t i^*_{t+j} + p_{t,t+h}$$

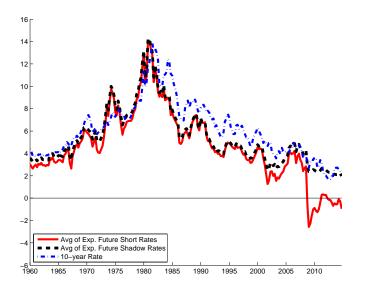
Expected future short rates

 $E_t i^*_{t+j}$: mean of truncated predictive density for i_{t+j} $rac{\partial E_t i^*_{t+j}}{\partial E_t i_{t+j}} < 1$ the more mass on $i_{t+j} < 0$

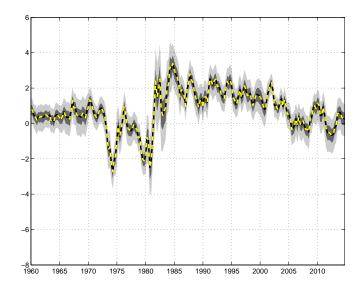
Expected future shadow rates (10-year avg)

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = 三 - のへで

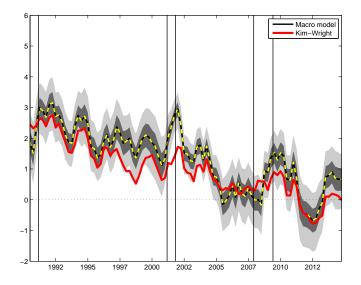
Expected future rates (actual vs. shadow, 10-year avg)


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Expected future rates (actual vs. shadow, 10-year avg)


◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

Expected future rates (actual vs. shadow, 10-year avg)


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

TERM PREMIUM ESTIMATES 10-year rate

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 - のなの

TERM PREMIUM ESTIMATES 10-year rate

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

SOME QUESTIONS and answers

• What is the long-run level of the real rate, how does it relate to growth?

Trend real rate depends only weakly on growth, stands currently at just about one percent

• How did the recent recession affect trends in real and nominal variables?

"Not much" as decline in trends started earlier

• How does the term structure change with short rates near the lower bound?

Expected future short rates get less sensitive to news