Leveraged Bubbles

Òscar Jordà* Moritz Schularick[†] Alan M. Taylor[§]

6th Joint Bank of Canada and ECB Conference: The Underwhelming Global Post-Crisis Growth Performance – Determinants, Effects and Policy Implications June 8–9, 2015

> * Federal Reserve Bank of San Francisco; University of California, Davis [†] University of Bonn; CEPR [§]University of California, Davis; NBER; CEPR

> > Disclaimer:

The views expressed herein are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal Reserve System. [O]ver-investment and over-speculation are often important; but they would have far less serious results were they not conducted with borrowed money.

– Irving Fisher, 1933

What we ask Should central banks care about bubbles?

What risks do bubbles pose to financial stability?

 Policymakers' views on bubbles have evolved: from benign neglect to activist predisposition

What are the economic costs of bursting bubbles?

Realization that credit boom + bubble can be dangerous

Are all bubbles alike?

So far, insufficient empirical evidence

What we do

Large empirical exercise in macro-financial history: new data and methods

Examine the consequences of asset price booms (in equity and house prices), credit booms, and their interaction

New datasets, 16/17 countries, 1870–2012:

- housing price data doubles available sample so far
- add equity price data
- aggregate credit (bank lending), earlier work revised/expanded to include commercial banks, savings banks, bldg. socs., credit unions, postal banks, etc.

What we find

Leverage and bubbles spell trouble...

Crisis risk

- Credit expansion + bubble \Rightarrow financial crises
- Much weaker link with credit alone
- Refines JST (2011) findings

Output costs

- Housing bubble + credit buildup ⇒ deeper recession + slower recovery
- Equity bubbles less damaging

SECULAR TRENDS IN LENDING

Bank lending accelerates post-WW2

Mortgage lending accelerates even more starting in the mid-1980s

Home ownership rates in the 20th century In percent

	CAN	GER	FRA	ITA	CHE	U.K.	U.S.	Avg.
1900							47	
1910							46	
1920						23	46	
1930							48	
1940	57					32	44	
1950	66	39	38	40	37	32	47	43
1960	66	34	41	45	34	42	62	46
1970	60	36	45	50	29	50	63	48
1980	63	39	47	59	30	58	64	51
1990	63	39	55	67	31	68	64	55
2000	66	45	56	80	35	69	67	60
2010	69	45	58	82	37	64	65	60

The Anglo-Saxon Housing Booms

UK/US rates in 2000/2002: 6%/1%, vs. 14%/9%!! \rightarrow asset price control with interest rates is *expensive*

ASSET PRICES AND BUBBLES: THE DATA

What is an asset price bubble?

Deviation from fundamentals? Many definitions available...

Lack of consensus + lack of data \Rightarrow a pragmatic solution Let z be a log asset price, z^{HP} denotes its HP cycle **Price Elevation Signal**_{it} =

 $I(z_{it} > 1 \text{ standard deviation above } z_i^{HP})$

Price Correction Signal_{it} =

 $I(z_{i,t+3} - z_{it} < -15\%$ for some year *t* within the episode)

Bubble Signal_{it} $\equiv d_{it} =$

(Price Elevation Signal_{*it*}× Price Correction Signal_{*it*})

Features of bubbles

Relative frequency by type of recession

	(1)	(2)	(3)
Financial Crisis Recessions	Pre-WW2	Post-WW2	Full Sample
No Bubble	10	1	11
Bubble in equity prices only	8	7	15
Bubble in house prices only	2	3	5
Bubbles in both	2	11	13
Total	22	22	44
Normal Recessions			
No Bubble	45	22	67
Bubble in equity prices only	3	29	32
Bubble in house prices only	2	5	7
Bubbles in both	2	6	8
Total	52	62	114

Notes: Recessions are the peaks of business cycles identified using Bry and Boschan (1971) algorithm. A recession is labeled *financial* if it is associated with a financial crisis within a 2 year window of the peak. Otherwise it is labeled *normal*. Bubble episodes are associated with recessions by considering the expansion over which the bubble takes place and using the subsequent peak.

AN ANSWER TO FISHER

Normal v. financial-crisis recessions Basic logit model specifications to predict recession type

Benchmark, country-fixed effects only

$$\Pr[F_{i,t(p)} = 1|\alpha_i] = \frac{exp(\alpha_i)}{1 + exp(\alpha_i)}$$

Credit-only model

$$Pr[F_{i,t(p)} = 1 | \alpha_i, (x_{i,t(p)} - \bar{x}_i)] = \frac{exp(\alpha_i + \beta(x_{i,t(p)} - \bar{x}_i))}{1 + exp(\alpha_i + \beta(x_{i,t(p)} - \bar{x}_i))}$$

where

p is an index of all business cycle peaks $F_{i,t(p)}$ is recession type (1=fin. crisis, 0=normal) $x_{i,t(p)}$ is credit buildup in the expansion

Normal v. financial-crisis recessions Full model to predict recession type

Full model: credit and bubbles interacted

$$Pr[F_{i,t(p)} = 1 | \alpha_i, (x_{i,t(p)} - \bar{x}_i), d^j_{i,t(p)}] \\ = \frac{exp(\alpha_i + \beta(x_{i,t(p)} - \bar{x}_i) + \sum_j \gamma_j d^j_{i,t(p)}(x_{i,t(p)} - \bar{x}_i)))}{1 + exp(\alpha_i + \beta(x_{i,t(p)} - \bar{x}_i) + \sum_j \gamma_j d^j_{i,t(p)}(x_{i,t(p)} - \bar{x}_i)))}$$

where

p is an index of all business cycle peaks $F_{i,t(p)}$ is recession type (1=fin. crisis, 0=normal) $x_{i,t(p)}$ is credit buildup in the expansion $d_{i,t(p)}^{j}$ is a bubble type indicator, j = no, eq., house, both

Asset price bubbles and financial crises

	Fu	ll sample		Post-WW2 sample			
	(1)	(2)	(3)	(4)	(5)	(6)	
	Benchmark	Credit	Full	Benchmark	Credit	Full	
		Only	model		only	model	
Credit		0.43*** (0.11)			0.52*** (0.17)		
Housing bubble × credit			0.58*** (0.20)			0.67** (0.29)	
Equity bubble × credit			0.41** (0.20)			0.24 (0.27)	
No bubble × credit			0.14 (0.16)			0.17 (0.29)	
Both bubbles × credit			0.76*** (0.28)			1.00** (0.40)	
Pseudo R ²	0.02	0.14	0.17	0.07	0.22	0.27	
AUC	0.60	0.71	0.72	0.67	0.77	0.80	
	(0.05)	(0.05)	(0.05)	(0.07)	(0.06)	(0.06)	
Observations	144	144	144	85	85	85	

Predictive ability testing using CCF tools

 $F = \text{outcome (binary)}, \widehat{\Phi} = \widehat{\beta}X \text{ signal (continuous)}, c = \text{threshold}$ CCF: Plot $TP(c) = P\left(\widehat{\Phi}_t > c | F_t = 1\right) \text{ v. } TN(c) = P\left(\widehat{\Phi}_t < c | F_t = -1\right)$

In reality, useful CCFs lie above simplex and inside the square

Bubbles and financial crises: CCFs

THE ECONOMIC COSTS OF BUBBLES

Benchmark model

Local projections for log GDP p.c. path relative to business cycle peak

$$\Delta_h y_{i,t(p)+h} = y_{i,t(p)+h} - y_{i,t(p)}$$
 for $h = 1, ..., 5$

 $d_{i,t(p)}^{j}$ for j = (E) quities, (H) ouses asset price bubble indicator

 $\delta_{i,t(p)} = I[(x_{i,t(p)} - \bar{x}_i) > \overline{(x_{i,t(p)} - \bar{x}_i)}]$ high-low credit buildup indicator

 $D_{i,t(\mathbf{p})}$ country indicators, demeaned

$$\Delta_{h} y_{i,t(p)} = \underbrace{\sum_{i=1}^{l} \alpha_{i,h} D_{i,t(p)}}_{i,t(p)} + \underbrace{\widehat{\mu_{h}}}_{j} + \sum_{j} \gamma_{h}^{j,Hi} d_{i,t(p)}^{j} \times \delta_{i,t(p)} + \sum_{j} \gamma_{h}^{j,Lo} d_{i,t(p)}^{j} \times (1 - \delta_{i,t(p)}) + \epsilon_{i,t(p)} \quad \text{for } h = 1, ..., 5$$

Benchmark model. Full sample: 1870-2012

	()	(-)	7->		(-)	(-)
	(1)	(2)	(3)	(4)	(5)	(6)
	Year 1	Year 2	Year 3	Year 4	Year 5	Sum
Recession	-1.93	0.46	3.21	5.41	6.59	14.19
	(0.21)	(0.48)	(0.69)	(0.94)	(1.02)	(3.43)
Equity bubble,	0.18	-2.09**	-2.63*	-2.89*	-1.27	-8.30
low credit	(0.46)	(0.87)	(1.38)	(1.40)	(1.79)	(5.47)
Housing bubble,	-0.27	-1.22	-2.69	-3.10	-2.04	-9.15
low credit	(0.71)	(0.92)	(1.64)	(2.35)	(2.17)	(7.33)
Equity bubble,	0.11	-1.57	-3.52**	-4.38***	-4.05**	-12.82**
high credit	(0.64)	(1.03)	(1.40)	(1.45)	(1.64)	(5.27)
Housing bubble,	-0.77	-5.03*	-6.79**	-7.95**	-8.20**	-29.80**
high credit	(1.64)	(2.73)	(2.35)	(3.69)	(3.15)	(13.22)
Macro controls	no	no	no	no	no	no
R ²	0.14	0.18	0.22	0.21	0.24	0.23
Observations	139	132	131	131	123	123
Notes: Standard e	rrors in pa	rentheses.	* p < 0.10	** p < 0.05	, *** p < 0.	.01.

Benchmark LP path

Full sample: 1870-2012

Model specification with controls

Add a control set X consisting of macro controls at time h = 0, -1:

$$\Delta_{h} y_{i,t(p)} = \sum_{i=1}^{l} \alpha_{i,h} D_{i,t(p)} + \mu_{h} + \beta_{h} \delta_{i,t(p)} + \sum_{j} \gamma_{h}^{j,Hi} d_{i,t(p)}^{j} \times \delta_{i,t(p)} + \sum_{j} \gamma_{h}^{j,Lo} d_{i,t(p)}^{j} \times (1 - \delta_{i,t(p)}) + X_{i,t(p)} \Psi + \epsilon_{i,t(p)} \quad \text{for } h = 1, ..., 5$$

Controls are:

- 1 real GDP per capita growth rate
- 2 real investment per capita growth rate
- 3 real private loans per capita growth rate
- 4 CPI inflation rate
- 5 short-term interest rate
- 6 long-term interest rate
- 7 current account to GDP ratio

Benchmark + controls: 1870–2012

	(1)	(2)	(3)	(4)	(5)	(6)			
	Year 1	Year 2	Year 3	Year 4	Year 5	Sum			
Recession	-2.00 (0.31)	-0.72 (0.77)	1.18 (0.66)	4.41 (1.58)	4.48 (1.49)	6.63 (4.68)			
Equity bubble, low credit	0.16 (0.54)	-1.40 (0.95)	-1.98 (1.22)	-2.78* (1.43)	-0.96 (1.40)	-6.26 (4.97)			
Housing bubble, low credit	-0.45 (0.69)	-1.79 (1.07)	-3.21* (1.73)	-4.06 (2.51)	-3.32 (2.33)	-12.55 (7.64)			
Equity bubble, high credit	-0.36 (0.50)	-1.52 (1.56)	-4.00*** (1.30)	-4.08** (1.67)	-4.22* (2.12)	-13.48** (5.71)			
Housing bubble, high credit	-0.66 (1.91)	-4.68 (2.80)	-5.89** (2.37)	-7.56* (3.80)	-7.56** (2.78)	-26.82** (12.53)			
Macro controls	yes	yes	yes	yes	yes	yes			
R^2	0.23	0.30	0.44	0.39	0.50	0.43			
Observations	139	132	131	131	123	123			
Material Characterial									

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Benchmark + controls LP path Full sample: 1870–2012

Benchmark + controls: Post-WW2 sample

	(1)	(2)	(3)	(4)	(5)	(6)
	Year 1	Year 2	Year 3	Year 4	Year 5	Sum
Recession	-1.50	-0.13	2.50	4.86	7.88	12.86
	(0.36)	(0.70)	(1.04)	(1.80)	(1.51)	(4.44)
Equity bubble,	0.40	-0.32	0.09	-0.05	-0.67	0.58
low credit	(0.63)	(0.85)	(1.34)	(1.97)	(1.62)	(4.87)
Housing bubble,	-0.47	-2.14*	-2.99	-3.62	-3.25	-11.74
low credit	(0.72)	(1.18)	(1.89)	(2.45)	(3.37)	(9.90)
Equity bubble,	-0.91*	-2.33**	-2.17	-2.62	-1.41	-8.92
high credit	(0.44)	(0.95)	(1.57)	(2.06)	(2.54)	(6.81)
Housing bubble,	0.62	-3.38**	-6.39***	-8.35***	-9.96**	-27.37**
high credit	(0.71)	(1.48)	(1.98)	(2.81)	(4.27)	(12.34)
Macro controls	yes	yes	yes	yes	yes	yes
R^2	0.40	0.61	0.64	0.67	0.70	0.67
Observations	84	77	76	76	68	68

Notes: Standard errors in parentheses. * *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01.

Benchmark + controls LP path

Post-WW2 sample: 1950-2012

ROBUSTNESS CHECKS

Check 1: financial crisis confounding

Add financial crisis dummy interacted with credit. Sample: 1870-2012

	(1)	(2)	(3)	(4)	(5)	(6)
	Year 1	Year 2	Year 3	Year 4	Year 5	Sum
Recession	-1.81	-0.03	1.83	5.01	4.93	9.10
	(0.38)	(0.97)	(0.86)	(1.62)	(1.48)	(5.11)
Equity bubble,	0.44	-0.76	-1.34	-2.21	-0.56	-4.39
low credit	(0.47)	(0.70)	(0.95)	(1.58)	(1.37)	(4.32)
Housing bubble,	-0.20	-1.44	-2.80	-3.72	-2.63	-9.46
low credit	(0.85)	(1.11)	(1.66)	(2.64)	(2.31)	(7.83)
Equity bubble,	-0.34	-1.03	-3.62***	-3.69**	-4.17*	-12.70**
high credit	(0.59)	(1.49)	(1.22)	(1.56)	(2.05)	(5.00)
Housing bubble,	-0.44	-2.21	-3.88*	-5.59	-6.65*	-20.02
high credit	(1.67)	(2.07)	(2.10)	(3.21)	(3.14)	(11.98)
Financial recession,	-1.44	-3.70**	-3.61*	-3.25	-3.52	-17.45*
low credit	(0.82)	(1.66)	(1.90)	(2.62)	(2.28)	(9.67)
Financial recession,	-0.53	-4.46**	-3.70***	-3.60**	-2.13	-14.21**
high credit	(1.03)	(1.67)	(1.20)	(1.56)	(2.33)	(5.90)
Macro controls	yes	yes	yes	yes	yes	yes
R ²	0.27	0.42	0.49	0.42	0.52	0.48
Observations	139	132	131	131	123	123

Check 2: excluding the interwar period Sample: 1870–1909, 1950–2012

(1)	(2)	(3)	(4)	(5)	(6)
Year 1	Year 2	Year 3	Year 4	Year 5	Sum
-1.46	0.47	1.75	6.25	6.79	12.66
(0.45)	(1.12)	(0.95)	(2.07)	(1.59)	(6.24)
0.25	-1.12	-0.29	-2.33	-0.99	-1.56
(0.65)	(1.30)	(1.59)	(2.63)	(1.62)	(7.00)
-0.94	-2.73*	-4.58*	-5.77*	-5.68*	-18.62*
(1.02)	(1.30)	(2.16)	(3.11)	(2.72)	(9.80)
-0.34	-0.46	-2.79**	-2.36	-3.05	-9.77*
(0.54)	(1.49)	(1.22)	(1.45)	(1.80)	(5.30)
-148	-5.00*	-6 09**	-705*	-703***	-25 64**
(1.85)	(2.67)	(2.21)	(3.45)	(2/2)	(9.88)
(1.03)	(2.07)	(2.21)	(3.43)	(2.72)	(9.00)
yes	yes	yes	yes	yes	yes
0.36	0.37	0.49	0.47	0.58	0.54
123	116	115	115	107	107
	(1) Year 1 -1.46 (0.45) 0.25 (0.65) -0.94 (1.02) -0.34 (0.54) -1.48 (1.85) yes 0.36 123	(1) (2) Year 1 Year 2 -1.46 0.47 (0.45) (1.12) 0.25 -1.12 (0.65) (1.30) -0.94 -2.73* (1.02) (1.30) -0.34 -0.46 (0.54) (1.49) -1.48 -5.00* (1.85) (2.67) yes yes 0.36 0.37 123 116	(1) (2) (3) Year 1 Year 2 Year 3 -1.46 0.47 1.75 (0.45) (1.12) (0.95) 0.25 -1.12 -0.29 (0.65) (1.30) (1.59) -0.94 -2.73* -4.58* (1.02) (1.30) (2.16) -0.34 -0.46 -2.79** (0.54) (1.49) (1.22) -1.48 -5.00* -6.09** (1.85) (2.67) (2.21) yes yes yes 0.36 0.37 0.49 123 116 115	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Check 3: excluding the global financial crisis Sample: 1870-2008

	(1)	(2)	(3)	(4)	(5)	(6)
	Year 1	Year 2	Year 3	Year 4	Year 5	Sum
Recession	-2.26	-0.27	1.65	5.17	5.55	9.85
	(0.37)	(0.84)	(0.77)	(1.59)	(1.32)	(4.36)
Equity bubble,	0.44	-1.64	-2.25	-3.13**	-1.47	-8.05
low credit	(0.53)	(1.11)	(1.42)	(1.42)	(1.39)	(4.93)
Housing bubble,	-0.35	-1.57	-3.02	-4.00	-3.18	-12.12
low credit	(0.63)	(1.14)	(1.77)	(2.54)	(2.38)	(7.83)
Equity bubble,	0.06	-1.01	-3.89**	-3.62*	-3.87	-12.34*
high credit	(0.47)	(1.48)	(1.55)	(1.77)	(2.28)	(6.01)
Housing bubble.	-0.73	-4.57	-5.80**	-7.40*	-7.25**	-25.74*
high credit	(1.77)	(2.83)	(2.25)	(3.64)	(2.85)	(12.64)
Macro controls	Ves	Ves	Ves	Ves	Ves	Ves
	0.20	0.20	0.44	0.40	0.40	0.42
Observations	122	122	122	122	122	122
Observations	123	123	123	123	123	123

Notes: Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Conclusion

Leveraged bubbles spell trouble: ignore at your peril

- The combination of asset price bubbles and credit booms substantially increases crisis risks: this refines earlier results on the role of credit alone
- House price bubbles are less frequent than equity bubbles and more often end up in financial crises
- Credit fueled housing bubbles are particular costly: they lead to deeper recessions and slower recoveries