Discussion of Demographic Structure and Macroeconomic Trends by Aksoy, Basso, Grasl, and Smith

Henry Siu

UBC & NBER

BoC-ECB Conference 2015

Summary

- Henrique's paper is an ambitious one, a pleasure to read:
 - documents the role of demographics age composition as determinant for a suite of macroeconomic variables
 - via a novel, panel VAR approach
 - studies a quantitative life-cycle model that aims to capture these relationships

 paper addresses interesting and important issues in macroeconomics

Why Consider Demographic Variation?

- **key feature**: relative to macroeconomic outcomes at time *t*, *y*_{*t*}, an economy's age composition, *w*_{*t*}, is largely **predetermined** by fertility choices from the past
- \Rightarrow plausible **identification** of causal relationships
 - *Feyrer (2007)*: how much of cross-country output/productivity differences due to demographics?
 - Jaimovich-Siu (2009): how much of time-series variation in business cycle volatility due to demographics (vs policy vs "good luck")?

Why Consider Demographic Variation?

- ⇒ relevance for **forecasting** ... e.g., implications of predictable population aging for
 - monetary policy: trends in real rates and policy rates over the next 10-15 years
 - fiscal policy: trends in national income and saving, and hence public pension financing and current account dynamics (Higgins, 1998)

- ⇒ useful as model diagnostic
 - testable implications of demographic change to help decipher between models

Typical Approach

• e.g., Higgins (1998), Feyrer (2007):

$$\mathbf{y}_{it} = \alpha_i + \beta \mathbf{X}_{it} + \mathbf{DW}_{it} + \mathbf{u}_{it}$$

- idea: y_{it} (savings rate, productivity) in levels determined by demographics
- identification of *D* comes from variation in age composition, *W_{it}* ...
 - or if X_{it} includes time dummies that which is not common across countries over time

Variation in Age Composition Dynamics

Live Births per 1000 Population

source: Jaimovich-Siu (2009)

Variation in Age Composition Dynamics

Share in the Labor Force of 15-29 year olds

source: Jaimovich-Siu (2009)

ABGS Approach

• in this paper, regression model:

$$Y_{it} = \alpha_i + A_1 Y_{it-1} + A_2 Y_{it-2} + \beta X_{it} + \frac{DW_{it}}{DW_{it}} + u_{it}$$

- key differences:
 - Y is now a *vector* of outcome variables (the "V" in VAR)
 - becomes a dynamic panel data model
- small technical issue: how to address "small T" bias

ABGS Approach

• in this paper, regression model:

$$Y_{it} = \alpha_i + A_1 Y_{it-1} + A_2 Y_{it-2} + \beta X_{it} + \frac{DW_{it}}{DW_{it}} + u_{it}$$

- Iarger issue: how to interpret results?
 - "effect of the demographic variables is then the marginal effect after having controlled for lagged *Y*_{it}..."

nature of results very different from previous literature

ABGS Approach: Simple Illustrative Example

• re-consider scalar case of y_{it}, with only 1 lag ...

$$\mathbf{y}_{it} = \alpha_i + \mathbf{A}_1 \mathbf{y}_{it-1} + \beta \mathbf{X}_{it} + \mathbf{D} \mathbf{W}_{it} + \mathbf{u}_{it}$$

• further suppose: $A_1 = 1$ (either by constraint or estimation):

$$\Delta y_{it} = \alpha_i + \beta X_{it} + DW_{it} + u_{it}$$

• now: how does the change in y_{it} (savings rate, productivity) depend on demographics, W_{it}?

ABGS Approach: Illustrative Example

• more generally, regression model takes the form:

$$(1 - A_1(L))y_{it} = \alpha_i + \beta X_{it} + DW_{it} + u_{it}$$

- why is it preferable to ask how "*partially time differenced*" outcomes y depends on W, as opposed to y in levels?
 - is this specification better supported by the data?
 - is there economic/theoretical rationale for focusing on such a relationship?

Empirical Results

	Estimate	Std. Error	Estimate	Std. Error	Estimate	Std. Error
g_{t-1}	0.25	0.05 *	0.13	0.03 *	-0.07	0.07
J_{t-1}	-0.27	0.12 *	0.13	0.06 *	0.06	0.09
S_{t-1}	0.09	0.06	0.02	0.03	0.99	0.05 *
H_{t-1}	0.03	0.00	-0.00	0.03	0.03	0.03
rr_{t-1}	-0.22	0.00 *	-0.00	0.03	-0.06	0.04
π_{t-1}	-0.22	0.07 *	-0.09	0.02 *	-0.05	0.04
	-0.28	0.04	-0.08	0.02	-0.05	0.03
g_{t-2}	-0.01	0.04	-0.16	0.02	-0.05	0.04
I_{t-2}				0.03		
S_{t-2}	-0.07	0.06	-0.05		-0.21	0.06 *
H_{t-2}	-0.08	0.07	0.02	0.03	-0.04	0.04
rr_{t-2}	-0.04	0.06	-0.01	0.02	-0.04	0.04
π_{t-2}	-0.00	0.04	-0.02	0.01	-0.03	0.03
$POIL_{t-1}$	-0.02	0.00 *	0.00	0.00	-0.01	0.00 *
$POIL_{t-2}$	0.02	0.00 *	0.00	0.00	0.00	0.00
popGrowth	2.74	1.06 *	0.51	0.50	1.58	0.74 *
$popGrouth_{t-1}$	-2.22	0.00 *	0.20	0.50	-1.17	0.70
δ_1	-0.06	0.08	-0.03	0.06	-0.10	0.06
δ_2	0.25	0.11 *	0.04	0.05	0.17	0.05 *
δ_3	0.18	0.06 *	0.08	0.03 *	0.02	0.06
δ_4	-0.03	0.07	-0.03	0.05	0.11	0.07
δ_5	-0.03	0.09	-0.06	0.05	0.08	0.07
δ_6	0.02	0.06	0.03	0.04	0.19	0.10
δ_7	-0.07	0.13	0.18	0.09 *	0.01	0.10
R^2	0.29		0.88		0.82	
$\Pr(\delta_i = 0)$	0.00		0.01		0.00	
obs	665		665		665	

Empirical Results

- lack of clear statistically significant evidence of demographics on vector of outcome variables ... why?
 - specification in auto-regressive form vs levels?
 - sample of countries studied (20 OECD vs \approx 90 in Higgins, Feyrer)?
 - large number of age groups considered?
 - would like to see more analysis with 3 or 4 (children, young, prime-aged, retirees) age groups

Empirical Results

• in VAR framework, derive long-run impact of demographics as:

$$Y_{it}^{D} = (I - A_1 - A_2)^{-1} DW_{it}$$

	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8
g_{t-1}	-0.14	0.16	0.11	0.10	0.11	-0.04	-0.32	0.01
I_{t-1}	-0.58	0.13	0.41	0.36	0.06	0.07	0.26	-0.70
S_{t-1}	-0.16	0.53	-0.26	0.36	0.39	0.72	-0.05	-1.53
H_{t-1}	-1.86	-0.13	0.66	2.44	0.47	0.59	-1.11	-1.05
rr_{t-1}	-0.43	-0.30	0.35	0.39	0.17	0.44	0.28	-0.91
π_{t-1}	0.96	0.65	-0.28	-1.01	-0.59	-0.26	0.22	0.32

Table 3: Long-Run Demographic Impact

really need to see standard errors to gauge importance!

Model Analysis

- would like more discussion on parameter specification of medium-scale model ...
 - elasticity of substitution between intermediate consumption goods
 - elasticity of this elasticity to the number of firms
 - elasticity of innovation productivity to demographic composition
- would prefer closer link between empirical specification and model . . .
 - VAR: includes both saving and investment; model: closed economy (*S* = *I*)
 - VAR: includes nominal inflation rate; **model**: real, no nominal variables