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Abstract 

The author proposes a test for the parametric specification of each component in the 
diffusion matrix of a d-dimensional diffusion process. Overall, d (d-1)/2 test statistics are 
constructed for the off-diagonal components, while d test statistics are constructed for the 
main diagonal components. Using theories of degenerate U-statistics, each of these test 
statistics is shown to follow an asymptotic standard normal distribution under null 
hypothesis, while diverging to infinity if the component is misspecified over a significant 
range. Our tests strongly reject the specification of diffusion functions in a variety of 
popular univariate interest rate models for daily 7-day eurodollar spot rates, and the 
specification of the diffusion matrix in some popular multivariate affine term-structure 
models for monthly U.S. Treasury yields. 

JEL classification: C12, C14, E17, E43, G12, G20 
Bank classification: Asset pricing; Interest rates; Econometric and statistical methods 

Résumé 

L’auteur propose un test permettant de vérifier la validité de la spécification paramétrique 
des différentes composantes de la matrice de distribution d’un processus de distribution à 
d dimensions. À cette fin, il construit d(d-1)/2 statistiques de test pour les composantes 
hors-diagonale, et d statistiques pour les composantes de la diagonale principale. En se 
fondant sur les théories des U-statistiques dégénérées, l’auteur montre que chacune de ces 
statistiques de test suit asymptotiquement une loi de distribution normale sous 
l’hypothèse nulle, mais diverge à l’infini si la spécification de la composante est erronée 
sur une large fourchette. Ses tests invalident clairement la spécification des fonctions de 
distribution de divers modèles univariés de taux d’intérêt, très utilisés, lorsque ces 
modèles sont appliqués aux taux au comptant pour les dépôts à sept jours en eurodollars, 
ainsi que la spécification de la matrice de distribution utilisée dans certains modèles 
affines multivariés de la structure par terme, également très utilisés pour les rendements 
mensuels des titres du Trésor américain. 

Classification JEL : C12, C14, E17, E43, G12, G20 
Classification de la Banque : Évaluation des actifs; Taux d’intérêt; Méthodes 
économétriques et statistiques 
 

 

 



Non-technical Summary

Continuous-time Markov process models are powerful analytic tools in economics and finance for

studying issues such as asset pricing, the decision to optimally consume, portfolio choice under a

variety of constraints, game theory and contract theory, etc. As with many model specifications in

economics and finance, since economic theory does not suggest a particular functional form for a

continuous-time model, the specification of a continuous-time model is usually based on analysis,

convenience and the empirical experience of the practitioner. As a consequence, a possibly seri-

ous problem with the specification of a continuous-time model is model misspecification, which

could lead to misleading results flowing from its implications for financial analysis and statistical

inference. A test is thus required to determine whether a continuous-time model can appropriately

capture the dynamics implied by the data.

At the same time, continuous-time models in economics and finance, which until recently have

been largely univariate, now predominantly include multiple state variables. Typical examples in-

clude asset-pricing models with multiple explanatory factors, term-structure models with multiple

yields or factors, and stochastic volatility or stochastic mean reversion models. Motivated by this

trend and the fact that the diffusion matrix in such a model is a crucial factor in modeling the

movements of individual state variables, such as interest rates, asset prices or exchange rates, and

the comovements among state variables, we propose a test for the parametric specification of each

component in the diffusion matrix. Monte Carlo simulations show that our tests have satisfactory

size and power performance.

To highlight our tests, we apply our tests to popular multivariate affine term-structure models,

obtaining many interesting new empirical findings.
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1 Introduction

Continuous-time Markov process models (diffusion process models) are powerful analytic tools in

economics and finance to study issues such as asset pricing, the decision to optimally consume,

portfolio choice under a variety of constraints, such as game theory, contract theory, etc. As with

many model specifications in economics and finance, since economic theory does not suggest

a particular functional form for a diffusion process, the specification of a diffusion process is

usually based on analysis, convenience and the empirical experience of the practitioner. As a

consequence, a possibly serious problem with the specification of a diffusion process is model

misspecification, which could lead to misleading results from its implications for financial analysis

and statistical inference. A test is thus required to determine whether a diffusion process can

appropriately capture the dynamics implied by the data.

Much progress has been made in testing a parametric specification of a diffusion process in

recent years. For instance, Chen and Hong (2010); Aı̈t-Sahalia, Fan, and Peng (2009); Thomp-

son (2008); Chen, Gao, and Tang (2008); Corradi and Swanson (2005); Hong and Li (2005); and

Diebold, Gunther, and Tay (1998) proposed tests based on a comparison of a nonparametric esti-

mation of the conditional characteristic function, the density function, the transition density or the

conditional distribution function with their corresponding parametric counterparts assumed by the

null hypothesis. A significant limitation of these tests is that when a misspecified diffusion process

is rejected, they cannot identify whether the model misspecification comes from the drift vector or

the diffusion matrix.1 However, in order to check possible sources of model misspecification, such

information is of crucial importance in reconstructing a diffusion model.

1The properties of a diffusion process are determined entirely by the drift vector and the diffusion matrix. Thus, the
problem of selecting among competing diffusion process models or specifying an alternative diffusion process model
comes down to choosing the drift vector and diffusion matrix.

2



Li (2007) proposed a test for the parametric specification of the diffusion function in a univari-

ate diffusion process.2 The most important feature of this test is that it can directly detect whether

the diffusion function is correctly specified even if there is no information about the functional

form of the drift function. The limitation of this test is that it applies only to a univariate diffusion

process. In many cases, a multivariate diffusion process is needed to study the dynamic behav-

ior of multiple state variables. For instance, multivariate continuous-time models for the dynamic

term structures of interest rates (Dai and Singleton, 2000; Piazzesi, 2010) and equity returns (An-

dersen, Benzoni and Lund, 2002) have been developed and widely used in pricing and hedging

fixed-income or equity derivatives, managing financial risk, and evaluating monetary policy and

debt policy. Specifically, the diffusion matrix in such a model, as the second moment and the

measurement of the instantaneous volatility of the state variables, is a crucial factor in modeling

the movements of individual state variables, such as interest rates, asset prices or exchange rates,

and the comovements among state variables. 3 An extension of the test in Li (2007) to multivari-

ate diffusion processes is thus needed to detect the specification of the diffusion matrix because

each component in the diffusion matrix differs fundamentally in its implications for capturing the

stochastic behavior of the state variables.

The objective of this paper is to test the validity of the parametric specification of the dif-

fusion matrix in a multivariate diffusion process without any restrictions on the functional form

of the drift vector. For this reason, we confirm whether a diffusion matrix is correctly specified

by testing whether each component in this diffusion matrix is correctly specified. 4 For each

2In an univariate diffusion process, the drift vector and diffusion matrix are called the drift function and the diffu-
sion function, respectively.

3A number of theoretical studies and empirical evidence (Aı̈t-Sahalia, 1996; Durham, 2003) have concluded that
the diffusion matrix plays a very important role in predicting the movements of derivative security prices, determining
optimal portfolio hedging strategies for risk-averse investors, or creating some leverage within a portfolio. A more
intuitive example is that, in the famous Black-Scholes option-pricing formula, the prices of derivative securities are
affected by the price of underlying assets only through its diffusion function.

4Another potential approach to testing the parametric specification of the diffusion matrix would be to follow the
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component in the diffusion matrix of a d-dimensional diffusion process, we propose a test of the

parametric specification of this component based on the comparison between the model-implied

parametric specification of the component and a nonparametric estimator of the component. Since

the diffusion matrix has d(d + 1)/2 different components, d(d + 1)/2 different test statistics are

constructed. Consequently, not only can these tests detect whether the diffusion matrix is specified

correctly, but they can also provide a clear indication of the direction of the misspecification in the

diffusion matrix; that is, which components in this matrix are possibly misspecified and which are

not. It turns out that when the component is on the main diagonal, the test statistic is a natural

extension of the test statistic in Li (2007) even if there exist correlation effects between state vari-

ables; when the component is off the main diagonal, the test statistic is characterized in a different

way.

Using the seven-day eurodollar interest rate data, as in Aı̈t-Sahalia (1996), we apply the test in

Li (2007) to evaluate the specification of the diffusion functions of five popular univariate interest

rate models.5 Aı̈t-Sahalia’s test (1996) rejects all linear drift models, but it would not reject Aı̈t-

Sahalia’s nonlinear drift model (1996). In contrast, our test firmly rejects the specification of the

diffusion function in each of these univariate diffusion models. The diffusion function in the Chan

et al. (1992) model has the best performance. Using monthly U.S. Treasury yields, as in Duffee

(2002) and Hong and Li (2005), our tests reject the affine specification of the diffusion matrix in the

three-factor diffusion process of yields, which implies the joint misspecification of the drift vector

and diffusion matrix in the affine term-structure model. Meanwhile, the affine model characterized

methodology that White (1980) and Eklund and Teräsvirta (2007) used to test the constancy of the error covariance
matrix in a regression model by comparing the estimator of a model-implied diffusion matrix with a nonparametric
estimator of the diffusion matrix.

5The Aı̈t-Sahalia (1996) test is based on the comparison between the marginal density implied by a parametric
diffusion process and the density estimated nonparametrically. Although the seven-day eurodollar interest rate data
are used for extensive analysis in many papers (Durham, 2003), empirically testing for the specification of the diffusion
functions in the models for the term structure of interest rates remains an unanswered question.
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by the assumption that the volatilities of state variables are determined by two of the three state

variables performs the best.

This paper is organized as follows. Section 2 states the model, hypotheses of interest, and our

test statistic for each component in the diffusion matrix. In Section 3, we derive the asymptotic null

distribution of each of these test statistics, and discuss its asymptotic power property. In Section

4, we assess the finite sample performance of our test statistics using Monte Carlo studies. In

Section 5, we evaluate the performance of the diffusion functions in five popular univariate interest

rate models for seven-day eurodollar interest rates, and the performance of the diffusion matrix in

some popular multivariate affine term-structure models for monthly U.S. Treasury yields. Section

6 concludes. All proofs are provided in the Appendix.

2 Model, Hypotheses and Test Statistics

Suppose that a state vector xt follows the dynamics,

xt = xt0 +
∫ t

t0
µ(xs)ds+

∫ t

t0
σ(xs)dBs, t0 ≤ t < ∞, (1)

where xt0 is a given initial condition, xt ≡ (x1
t , ...,x

d
t )
′ and µ(xt) ≡ (µ1(xt), ...,µd(xt))

′ are d× 1

vectors, σ(xt)≡ {σi j(xt)}1≤i, j≤d is a d×d matrix, and Bt ≡ (B1
t , ...,B

d
t )
′ is a d-dimensional vector

of independent standard Brownian motions.6 Assume that xt0 is independent of Bt .

For 1≤ i≤ d, the coordinate xi
t of the stochastic differential equation (1) can be written as,

xi
t = xi

t0 +
∫ t

t0
µi(xs)ds+

d

∑
j=1

∫ t

t0
σi j(xs)dB j

s , t0 ≤ t < ∞. (2)

Let x ≡ (x1, ...,xd) ∈ Rd, then we define the d× d symmetric and non-negative diffusion matrix

a(x)≡ σ(x)σ(x)′ with the general element ai j(x) = ∑
d
l=1 σil(x)σ jl(x),1≤ i, j ≤ d.

6Independence is just without loss of generality because any correlation structures between the shocks to the
different equations can be modeled through the inclusion of off-diagonal terms in the σ(·) matrix.
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The dynamic properties of process xt are characterized by its transition density function, which

depends on µ(·) and a(x).7 In fact, it can be shown that, if there exists a continuum of solutions in

σ(·) to equation a(x) ≡ σ(x)σ(x)′, then the transition probability function is identical for each of

these σ(x) (Aı̈t-Sahalia, 2008; and Remark 5.1.7 and Section 5.3 in Stroock and Varadhan, 1979).

We use {a0(x,θ) : θ ∈ Θ}, where Θ is a subset of Rp, to denote the model-implied para-

metric family of diffusion matrix a0(x,θ) = σ0(x,θ)σ0(x,θ)′ with general element a0
i, j(x,θ) =

∑
d
l=1 σ0

il(x,θ)σ
0
jl(x,θ),1 ≤ i, j ≤ d. Supposing that we do not have any information on the func-

tional form of the drift vector, we want to test whether the true diffusion matrix a(x) belongs to the

given parametric family {a0(x,θ) : θ ∈Θ}.

It is obvious that a(x) = a0(x,θ0) almost everywhere for some θ0 ∈ Θ if and only if there

exists a parameter θ0 ∈ Θ such that ai j(x) = a0
i j(x,θ0) almost everywhere for any 1 ≤ i ≤ j ≤ d.

Hence, our approach is to test the parametric specification of the diffusion matrix by testing the null

hypothesis that for any 1≤ i≤ j ≤ d, there exists a parameter θ0 ∈ Θ such that ai j(x) = a0
i j(x,θ0)

almost everywhere, versus the alternative, that ai j(x) 6= a0
i j(x,θ) with a positive measure for any

θ ∈Θ, that is,

H i j
0 : ai j(x) = a0

i j(x,θ0),almost everywhere for some θ0 ∈Θ, (3)

versus the alternative hypothesis,

H i j
A : ai j(x) 6= a0

i j(x,θ),on a subset with a positive measure for any θ ∈Θ. (4)

Corresponding to a0
i j(x,θ0), the parametric specification of the component ai j(x), our test is based

on the integrated squared difference between ai j(x) and a0
i j(x,θ0),

Ii j ≡ E{[(ai j(xt)−a0
i j(xt ,θ0)) f (xt)]

2w(xt)}, (5)

7The Kolmogorov forward and backward equations characterize the transition density of a diffusion process, and
are determined by the drift vector and diffusion matrix.
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where f (x) is the unknown marginal density of xt , and is used to trim the small values of the ran-

dom denominator in the nonparametric estimation of ai j(x), and w(x) is the weighting function. In

the literature on constructing a test for model specification in economics and finance, the distance

measures similar to (5) are used to test for a parametric characteristic function, a parametric transi-

tion density function, a parametric regression function, and a parametric diffusion function by, for

instance, Chen and Hong (2010), Aı̈t-Sahalia, Fan and Peng (2009), Aı̈t-Sahalia, Bickel and Stoker

(2001), and Li (2007). The weighting function in (5) can be used to remove extreme observations

or outliers to obtain asymptotic results, and can allow us to focus on a particular empirical question

of interest and reduce the influences of unreliable estimates.

Note that Ii j ≥ 0 and the equality holds if and only if H i j
0 is true. Hence, Ii j can serve as a proper

candidate for consistently testing H i j
0 . Although we use the same measure for different components

in the diffusion matrix, it will turn out that the test statistic for a different component in the diffusion

matrix is characterized differently. To get a feasible test statistic, we need to estimate ai j(x),θ0,

and f (x) in (5). Suppose that the process xt is observed at equi-spaced times {t = t1, t2, ..., tn} in the

time interval [t0,T ], where T is a strict positive number. These observations can be expressed as

{xt = xt0+4n,xt0+24n, ...,xt0+n4n} at {t1 = t0 +4n, t2 = t0 +24n, ..., tn = t0 +n4n}, where4n =

(T − t0)/n is the sampling interval. We use the notation xn,t to express the observation on the

process xt at t0 + t4n, i.e., xn,t ≡ xt0+t4n. Therefore, the data are given by a triangular array of

random variables {xn,t ,1≤ t ≤ n}, where xn,t ≡ (x1
n,t , ...,x

d
n,t).

8

Under both H i j
0 and H i j

A , the true and unknown ai j(x) can be estimated by the kernel method,

8Since the data are given by a triangular array of random variables, after establishing the test statistics, we will
need to use a central limit theorem for degenerate U-statistics of the triangular array of random variables to show the
asymptotic distributions of these test statistics.
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which is proposed by Bandi and Moloche (2008),

âi j(x)≡
∑

n−1
t=1 K(

xn,t−x
hn

)[xi
n,t+1− xi

n,t ][x
j
n,t+1− x j

n,t ]

4n ∑
n−1
t=1 K(

xn,t−x
hn

)
, (6)

where K(·) = Πd
i=1k(·) is a product kernel function and hn is a smoothing parameter whose proper-

ties will be presented in the next section. θ0 can be estimated by the minimum contrast estimator,

θ̂n = argminθ∈Θ

1
n

n−1

∑
t=1

[log det (a0(xn,t ,θ))+
1
4n

(xn,t+1− xn,t)(a0(xn,t ,θ))
−1(xn,t+1− xn,t)

′], (7)

which is proposed by Genon-Catalot and Jacod (1993), or the minimizing distance estimator,

θ̂n = argminθ∈Θ

n

∑
t=1
|âi j(xn,t)−a0(xn,t ,θ)|, (8)

which is proposed by Bandi and Phillips (2007). Note that both estimation methods can be used

for the estimation of the parameter θ0 in the diffusion matrix without any information about the

functional form of the drift vector. The density function f (x) can be estimated by the kernel

method,

f̂ (x) =
1

nhn

n−1

∑
t=1

K(
xn,t− x

hn
). (9)

Inserting (6), either (7) or (8), and (9) into the definition of Ii j given by (5), yields the following

estimator of Ii j,

Ini j =
1
n

n

∑
t=1

[(âi j(xn,t)−a0
i j(xn,t , θ̂n)) f̂ (xn,t)]

2w(xn,t). (10)

The test statistic for H i j
0 versus H i j

A is an appropriately centered and scaled version of Ii j,

namely,

Jni j ≡ nhd/2[Ini j− rni j(d)]/vni j, (11)

where

v2
ni j =

2
n

n

∑
t=1

[âii(xn,t)â j j(xn,t)+ â2
i j(xn,t)]

2 f̂ 3(xn,t)w2(xn,t)
∫
[
∫

K(u)K(v+u)du]2dv, (12)
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and rni j(d) is the estimator of the asymptotic bias term, and can be expressed as,

if d ≤ 3,

rni j(d) =
1

n2hd
n

n

∑
t=1

[âii(xn,t)â j j(xn,t)+ â2
i j(xn,t)]w(xn,t) f̂ (xn,t)

∫
K2(u)du, (13)

if d ≥ 4,

rni j(d) =
1

n2hd
n

n

∑
t=1

[âii(xn,t)â j j(xn,t)+ â2
i j(xn,t)]w(xn,t) f̂ (xn,t)

∫
K2(u)du

+
1

n2hd
n

m−1

∑
l=2

hl
n

l!

n

∑
t=1

∫
[(u′∇)l(âii(xn,t)â j j(xn,t) f̂ (xn,t))]w(xn,t)K2(u)du

+ 2
1

n2hd
n

m−1

∑
l=2

hl
n

l!

n

∑
t=1

∫
[(u′∇)l(â2

i j(xn,t) f̂ (xn,t))]w(xn,t)K2(u)du

− 2
1

n2hd
n

m−1

∑
l=2

hl
n

l!

n

∑
t=1

∫
[(u′∇)l(âi j(xn,t) f̂ (xn,t))]âi j(xn,t)w(xn,t)K2(u)du

+
1

n2hd
n

m−1

∑
l=2

hl
n

l!

n

∑
t=1

∫
[(u′∇)l f̂ (xn,t)]â2

i j(xn,t)w(xn,t)K2(u)du, (14)

where m = [d/2]+1, [x] is the greatest integer function of a real number x,∇ = ( ∂

∂x1 , ...,
∂

∂xd ), and

(u′∇)lg(x)≡ (u1
∂

∂x1 + ...+ud
∂

∂xd )
lg(x) for l = 1,2, ...,m−1 and any l times differentiable function

g(x). When d ≥ 4, we need to estimate the derivatives of âi j(x). From (6), we have,

∂âi j(x)
∂xl =

âi j(x) 1
nhd+1

n
∑

n−1
t=1 Kxl(

xn,t−x
hn

)

1
nhd

n
∑

n−1
t=1 K(

xn,t−x
hn

)

−
1

nhd+1
n 4n

∑
n−1
t=1 Kxl(

xn,t−x
hn

)[xi
n,t+1− xi

n,t ][x
j
n,t+1− x j

n,t ]

1
nhd

n
∑

n−1
t=1 K(

xn,t−x
hn

)
, (15)

where 1≤ l ≤ d, and Kxl(
xn,t−x

hn
) =

∂K(
xn,t−x

hn )

∂xl .

In general, for any positive integer L≤ m−1, we have,

∂Lâi j(x)
∂xd1...∂xdL

=
∑

L
l=1

∂L−l

∂xdl+1 ...∂xdL
[ 1

nhd+1
n

∑
n−1
t=1 Kxdl (

xn,t−x
hn

)
∂l−1âi j(x)

∂xd1 ...xdl−1
]

1
nhd

n
∑

n−1
t=1 K(xt−x

hn
)

+

(−1)L

nhd+L
n 4n

∑
n−1
t=1

∂LK( xt−x
hn )

∂xd1 ...∂xdL
(xi

n,t+1− xi
n,t)(x

j
n,t+1− x j

n,t)

1
nhd

n
∑

n−1
t=1 K(xt−x

hn
)

, (16)
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where 1≤ di ≤ d, for i = 1,2, ...,L.

Note that rni j(d) in (14) is an estimator of the asymptotic bias term Ī12
ni j in (A.22) in the Ap-

pendix, and it is reduced to (13) when d ≤ 3 by ignoring higher-order terms than n−2hd
n in (14).

This is because when d ≤ 3, ignoring these higher-order terms does not impact the asymptotic

distribution of our test statistic, Jni j, under the assumptions in Section 3. Since the diffusion matrix

has d(d+1)/2 different components, d(d+1)/2 different test statistics are constructed. Any com-

ponent in the drift vector enters these test statistics; therefore, these test statistics can be used to test

the parametric specification of the diffusion matrix even if there is no information on the function

form of the drift vector. Since the test statistic Jni j does not contain another component, with the

exception of a0
i j(x, θ̂0) in the diffusion matrix a0(x,θ), Jni j can be used to test the null hypothesis

H i j
0 even if there exist misspecifications for any other components in the diffusion matrix a0(x,θ).

Moreover, when the component, for instance, aii(x), is on the main diagonal, the test statistic Jnii

only depends on the nonparametric estimator of aii(x) and the parametric estimator of a0
ii(x,θ).

Thus, it is a natural extension of the test statistic in Li (2007) even if correlation effects exist in the

true diffusion matrix. When the component a0
i j(x,θ) is off the main diagonal (i 6= j), the test statis-

tic Jni j depends not only on the nonparametric estimator of ai j(x) and the parametric estimator of

a0
i j(x,θ), but also on the nonparametric estimators of aii(x) and a j j(x). As a consequence, the test

statistic Jni j is characterized in a different way than Jnii.

3 Asymptotic Distributions

For the purpose of asymptotic analysis, we make the following assumptions.

Assumption 1. Let D = ∏
d
i=1(li,ri) be a product of d intervals, (li,ri), for i = 1, ...,d, where

−∞≤ li < ri ≤ ∞. On D, the functions µ(x) and σ(x) are continuously differentiable.

10



Assumption 2. µ(x) and σ(x) satisfy the following conditions.

(i) There exists a positive constant CD such that for every x ∈ D,

|µ(x)|2 + |σ(x)|2 ≤CD(1+ |x|2), (17)

where | · | denotes the Max norm for the matrix.

(ii) There exists a nonnegative function ρ(·, ·) such that E[ρ4(xt1,xt2)] ≤ C for any t1, t2 ∈ [t0,T ],

where C is a positive constant, and

|µ(x)−µ(y)| ≤ ρ(x,y)|x− y|. (18)

(iii) a(x) is positively definite for all x in the interior of D, and the partial derivatives of ai j(x) up

to the order of r have the first absolute moment, where r is the order for the kernel function that

will be defined in Assumption 5. There exists an r̄th-degree homogeneous polynomial Qi j(y,x) in

(y−x), such that supy∈Ab
x
|ai j(y)−ai j(x)−Qi j(y,x)|/|y−x|α ≤ g(x) for all x ∈D, where r̄ ≤ r and

r̄ ≤ α≤ r̄+1,Ab
x = {y : |y− x|< b},b > 0. The coefficients of Qi j(y,x) are the partial derivatives

of ai j(x) at x up to the order of r̄, and g(xt) has the first absolute moment.

Assumption 3. Let E|xt0|8 < ∞. The discrete sample {xt0+t4n}n
t=1 is observed at equal sampling

intervals 4n = (T − t0)/n and {xt0+t4n}n
t=1 is strictly stationary and absolutely regular with the

geometric decay rate.

Assumption 4. The parameter space, Θ, is compact. For any given θ ∈ Θ, a0
i j(x,θ) satisfies

Assumptions 1–2. θ̂n is a parameter estimator such that
√

n(θ̂n−θ∗) = Op(1), where θ∗ ≡ plimθ̂n

is an interior element in Θ and θ∗ = θ0 under H0.

Assumption 5. The kernel function K(·) is a product kernel of some univariate kernel k(·), i.e.,

K(u) =Πd
j=1k(u j), where k(·) : R→R+, which satisfies the Lipschitz condition and is a symmetric,

bounded function with
∫

k(s)ds = 1. |s|dk(s)→ 0 as |s| → ∞, and K(·) is of the order r for the

positive integer r.
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Assumption 6. w(x) is a given Borel measurable function and bounded with compact support,

S⊆ D. f (x) is r times continuously differentiable. f (x) and its derivatives are bounded on D, and

f (x) is bounded from zero on S. There exists α > 0, such that
∫

exp(α∑
d
i=1(x

i)2) f (x)dx < ∞.

Assumption 1 ensures that the coefficients of the stochastic differential equation (1) are lo-

cally Lipschitz, under which a solution to (1) will be unique if it exists (strong uniqueness, The-

orem 5.2.5 in Karatzas and Shreve, 1991). The global growth condition (17) in Assumption 2

ensures the existence of a solution to (1) by preventing the explosion of the process in finite time

(Aı̈t-Sahalia, 2008). Assumption 1, the global growth condition (17), and condition (18) in As-

sumption 2 will be used to provide useful upper bound inequality ((A.1) in the Appendix) on the

higher even-order conditional moments of the solution. The upper-bound inequality will be used

to prove the main asymptotic results in this paper. Assumption 3 requires that the underlying pro-

cess {xn,t ,1≤ t ≤ n} be strictly stationary and absolutely regular with a geometric decay rate. The

absolute regularity is required in order to use the central limit theorem for second-order degen-

erate U-statistics. {xn,t ,1 ≤ t ≤ n} is a strictly stationary process if positive integers s1,s2, and

k, {xn,s1,xn,s1+1, ...,xn,s1+k} and {xn,s2,xn,s2+1, ...,xn,s2+k} have the same joint distribution, where

s1 + k ≤ n,s2 + k ≤ n. The process {xn,t ,1 ≤ t ≤ n} is absolutely regular with the geometric de-

cay rate if the mixing coefficient βn,τ ≡ Sups+τ≤nE[SupA∈Mn
s+τ,n
{P(A|Mn

1,s(n))−P(A)}] = O(λτ),

where Mn
s,t denotes the sigma algebra generated by (xn,s, ...,xn,t) for s ≤ t and λ is a positive con-

stant, 0 < λ < 1. Given that xt is a stationary process, to prove absolute regularity with the geo-

metric decay rate of the discrete observations from (1), it suffices to prove that the observed data

sequence is geometrically ergodic (p.312, Mokkadem, 1988), which can be shown by the existence

of a test function satisfying a Tweedie-type inequality (CD3, p. 536, Meyn and Tweedie, 1993).

Following the approach provided by Meyn and Tweedie (pp.537–539, 1993), it can be shown that
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the observed data sequence from the well-known class of multivariate affine diffusion processes

satisfies the property of absolute regularity with the geometric decay rate.

In Assumption 4, we do not require any specific estimator for θ0. Any n1/2-consistent estimator

can be used; for example, the minimum contract estimator in (7) proposed by Genon-Catalot and

Jacod (1993), and the minimizing distance estimator in (8) proposed by Bandi and Phillips (2007).

Assumption 5 imposes regularity conditions on the kernel function used in the nonparametric ker-

nel estimations of the diffusion matrix and marginal density function of xt . Under Assumption 5,

Assumption 2 in Bandi and Moloche (2008), which is used to show the strong consistency and

asymptotic normality of the nonparametric estimator of the diffusion matrix, is satisfied. Assump-

tion 6 requires w(x) to be bounded by compact support. This assumption will help us to avoid

technical problems in proving the uniform convergence of the nonparametric estimations of the

marginal density function, diffusion matrix, and their derivatives on S. In practice, S can typically

be taken as the indicator function of a compact set related to the empirical question of interest.

With the above assumptions, the following theorem states the asymptotic distribution of the

proposed test statistic Jni j under H i j
0 , and the asymptotic power of Jni j under the alternative H i j

a .

Theorem 1. Suppose hn = O(n−1/γ), where 3d
2 < γ < d

2 +2r for d ≤ 3, and 2d+1 < γ < d
2 +2r

for d ≥ 4. If T is either fixed or T → ∞ but T hd/2
n → 0 and 4n → 0 as n,T → ∞, then under

Assumptions 1–6, for 1≤ i≤ j ≤ d, we have,

(i) under H0,Jni j→ N(0,1) in distribution as n→ ∞, and with v2
ni j as a consistent estimator of

v2, where v2 = 2
∫
(aii(x)a j j(x)+a2

i j(x))
2 f 4(x)w2(x)dx

∫
[
∫

K(u)K(v+u)du]2dv;

(ii) under H1,Pr(Jni j ≥ Bn)→ 1, for any nonstochastic sequence Bn = o(nhd/2
n ).

Remark 1. Note that from 3d
2 < γ < d

2 +2r in Theorem 1 there is no need to use a high-order

kernel (r > 2) unless the dimensionality of the diffusion process is greater than or equal to 3.
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Under the assumptions on the smoothing parameter, we particularly have nhd
n → ∞,nhd/2+2r

n → 0,

as n→ ∞, and r ≥ m = [d
2 ]+1.

Remark 2. Compared with the test statistics suggested by Chen and Hong (2010), Thomp-

son (2008), Hong and Li (2005) and Aı̈t-Sahalia (1996), in which each of their test statistics is

shown to follow an asymptotic distribution under a null hypothesis, since the time span of the data

tends to infinity, the asymptotic distributions of our test statistics under null hypotheses are derived

by requiring the sampling frequency to increase; that is, our tests require the sampling interval

∆n −→ 0. The reason for the different requirements is that the marginal density function, the tran-

sition density, and the conditional characteristic function of a diffusion process can be identified

by enlarging the sample size, even if the sample size increases, by letting the sampling frequency

increase or prolonging the time period of the data. In our case, the identification of the diffusion

matrix has to depend on the local dynamics of the diffusion process; that is, the evolution of the

diffusion process for a small change in time.9

To test the null hypothesis H i j
0 versus H i j

A at the level α, we need to compare Jni j to the critical

value zα from the N(0,1) distribution, i.e., z0.01 = 2.33, z0.05 = 1.64, and z0.10 = 1.28 because the

test Jni j is one-sided. We reject the null hypothesis when Jni j > zα.

The standard normal density function will be chosen as the kernel function in our simulation

study and empirical applications. In practice, the choice of hn is more important than the choice

of k(·). Similar to Aı̈t-Sahalia (2006), we choose hn = cn−1/γ, where γ = 3.5 for d = 1 and γ = 5

for d = 3, which satisfy the condition in Theorem 1. As with the choice of hn in the estimation

of the conditional moment in a nonparametric regression model, we choose c for the test statistic

9The diffusion function in the semiparametric diffusion process model of Aı̈t-Sahalia (1996) can be identified
by enlarging the observation period. This is because, given the parametric specification of the drift function in Aı̈t-
Sahalia’s model, the perturbation caused by the diffusion function is actually implicitly identified. As a consequence,
the diffusion function can be identified by enlarging the observation period.

14



Jni j by minimizing the estimated prediction error (EPE): EPE = n−1
∑

n−1
t=1 {[xi

n,t+1− xi
n,t ][x

j
n,t+1−

x j
n,t ]/4n− âi j(xn,t)}2.

4 Finite Sample Performance

We now examine the finite sample performance of our tests using Monte Carlo simulations. For

univariate diffusion processes, Monte Carlo simulations are reported in Li (2007), and the Monte

Carlo simulation results suggest that the overall performance of the test is satisfactory. For multi-

variate diffusion processes, we focus on three-dimensional diffusion processes. Since the diffusion

matrix is a symmetric matrix, we need only to evaluate the finite sample performance for our tests,

Jn11,Jn12,Jn13,Jn22,Jn23 and Jn33. To examine the size performance, we simulate the data from a

three-factor Vasicek model. Throughout this Monte Carlo simulation, the weighting function w(x)

is set as the indicator function of the set S = [−2,2]× [−2,2]× [−2,2] in R3.

DGP1. Three-factor Vasicek model:

d

 x1t
x2t
x3t

=

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 α1− x1t
α2− x2t
α3− x3t

dt +

 σ11 0 0
0 σ22 0
0 0 σ33

d

 w1t
w2t
w3t

 . (19)

The diffusion matrix of the three-factor Vasicek model is:

a(xt)≡ {ai j(xt)}1≤i, j≤3 ≡

 σ2
11 0 0
0 σ2

22 0
0 0 σ2

33

 . (20)

Given the diffusion matrix (20), the null hypotheses are: aii(xt) = constant, for i= 1,2,3, a1 j(xt) =

0 for j = 2,3, and a23(xt) = 0.

α=

 α1
α2
α3

 in (20) is the long-run mean, and the eigenvalues of the matrix

 b11 b12 b13
b21 b22 b23
b31 b32 b33


determine the speed of the mean reversion of this diffusion process. The smaller the eigenvalues,

the stronger the serial dependence in {xt} and, consequently, the slower the convergence to the

long-run mean. As in the univariate diffusion case (Hong and Li, 2005), we are interested in the
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impact of persistent dependence in {xt} on the size of the test statistics Jni j,1≤ i≤ j≤ 3. Following

Aı̈t-Sahalia and Kimmel (2010) and Hong and Li (2005), we set (b11,b21,b22,b31,b32,b33,σ11,σ22,σ33)=

(0.50,−0.20,1.00,0.10,0.20,2.00,1.00,1.00,1.00) and (b12,b13,b23,α1,α2,α3) = (0,0,0,0,0,0)

for the low-persistence dependence case, while we set (b11,b21,b22,b31,b32,b33,σ11,σ22,σ33) =

(0.20,−0.20,0.5,0.10,0.20,0.5,1.00,1.00,1.00) and (b12,b13,b23,α1,α2,α3)= (0,0,0,0,0,0) for

the case of high-persistence dependence.

The transition density of the vector of state variables is three-dimensional Gaussian. We

simulate 1,000 data sets of the random sample {x1
n,t ,x

2
n,t ,x

3
n,t}n

t=1 at a monthly frequency for

n = 240,480,600, and 840, respectively.10 These sample sizes correspond to 20, 40, 50 and 70

years of monthly data. Given the null model DGP1, the minimum contrast estimators of pa-

rameters, σ2
11,σ

2
22, and σ2

33, are σ̂2
11 = ∑

n−1
t=1 (x

1
n,t+1− x1

n,t)
2/T , σ̂2

22 = ∑
n−1
t=1 (x

2
n,t+1− x2

n,t)
2/T, and

σ̂2
22 = ∑

n−1
t=1 (x

3
n,t+1− x3

n,t)
2/T, respectively. In this simulation study, we set T = 1.11

Panel (a) and panel (b) in Table1 report the rejection rates of Jn11,Jn12,Jn13,Jn22,Jn23, and Jn33

under DGP1 with low and high-persistence dependence, respectively, using the asymptotic critical

values at the 1%,5%, and 10% levels. Note that Jn11,Jn22 and Jn33 test for model misspecification

in conditional variances (diagonal components) in the diffusion process, while Jn12,Jn13, and Jn23

test for model misspecification in conditional covariances (off-diagonal components). Table 1

shows that the null hypothesis is either for a conditional variance or for a conditional covariance

in the diffusion matrix, and that the corresponding test statistic Jni j (1≤ i≤ j ≤ 3) has reasonable

sizes at all three significance levels for sample sizes as small as n = 240. Note that the impact

of persistent dependence on the size of Jni j is minimal, suggesting that Jni j (1 ≤ i ≤ j ≤ 3) can

10The initial values are drawn from the normal marginal density of the random sample. We discard the first 500
observations to eliminate any startup effects.

11To consider the impact of the time span on the test performance, we use different values of T to generate data; for
instance, T = 1,5, and T = 10. We only present the simulation results for T = 10. The simulation results for T = 1
and T = 5 are not presented because they are qualitatively similar to those for T = 10, but are available upon request.
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achieve robustness to the persistent dependence. This result can be explained by the fact that the

test statistics are independent of the specification of the drift matrix, which determines the level of

the persistent dependence in the diffusion process.

To examine the power of Jni j, we stipulate that DGP1 is the null model, but the data are gen-

erated from the following four different affine diffusion processes (DGP2-DGP5), each of which

captures the different direction of misspecification in the diffusion matrix.

DGP2. The three-factor affine diffusion process with time-varying conditional variances is: x1t
x2t
x3t

=

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 α1− x1t
α2− x2t
α3− x3t

dt +

 x1/2
1t 0 0
0 x1/2

2t 0
0 0 x1/2

3t

d

 w1t
w2t
w3t

 , (21)

and its diffusion matrix is a(xt)≡ {ai j(xt)}1≤i, j≤3 =

 x1t 0 0
0 x2t 0
0 0 x3t

 . The parameter values are

taken from Aı̈t-Sahalia and Kimmel (2010) and are set as (b11,b22,b33,α1,α2,α3)= (0.5,2,1,2,1,1)

and (b12,b13,b21,b23,b31,b32) = (0,0,0,0,0,0).

Given that DGP1 is the null model, DGP2 is used to examine the power performance of Jnii

(i= 1,2,3). Since the conditional covariances in DGP2 are correctly specified according to the null

model DGP1, DGP2 is also used to examine the size performance of Jni j (i 6= j) for conditional

covariances when the conditional variances are misspecified.12

DGP3. The three-factor diffusion process with time-varying conditional variances and a

conditional covariance(a12(xt) 6= 0) is: x1t
x2t
x3t

=

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 α1− x1t
α2− x2t
α3− x3t

dt +

 x1/2
1t x1/2

1t 0
0 x1/2

2t 0
0 0 x1/2

3t

d

 w1t
w2t
w3t

 , (22)

and its diffusion matrix is a(xt)≡ {ai j(xt)}1≤i, j≤3 =

 2x1t
√

x1tx2t 0√
x1tx2t x2t 0
0 0 x3t

 . The same val-

12Under DGP1, the on-diagonal components of DGP2 are misspecified, but the off-diagonal components are speci-
fied correctly. As a consequence, DGP2 is not only used to examine the power performance of Jnii, but also to examine
the size performance of Jni j for i 6= j.
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ues for the parameters are taken as in DGP2.

Although DGP3 has the same specification of the conditional variance aii(xt) as DGP 2, the

conditional covariance a12(xt) in DGP3 is misspecified. Consequently, DGP3 is used to exam-

ine the power performance of Jn12 to detect the misspecification from the conditional covariance

a12(xt), while it is also used to examine the power performance of Jnii, for i = 1,2,3, when there

is a misspecification in the conditional covariance a12(xt).

In addition, given the null model DGP1, since DGP3 has the correctly specified conditional

covariances a13(xt) (= 0) and a23(xt) (= 0), DGP3 is also used to investigate the size performance of

Jn13 and Jn23 when there is a misspecification in both the conditional variances and the conditional

covariance.

DGP4. The three-factor affine diffusion process with time-varying conditional variances and

the conditional covariance (a13(xt) 6= 0) is: x1t
x2t
x3t

=

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 x1t
x2t
x3t

dt +

 x1/2
1t 0 x1/2

1t

0 x1/2
2t 0

0 0 x1/2
3t

d

 w1t
w2t
w3t

 , (23)

and its diffusion matrix is a(xt)≡ {ai j(xt)}1≤i, j≤3 =

 2x1t 0
√

x1tx3t
0 x2t 0√

x1tx3t 0 x3t

 . The same val-

ues for the parameters are taken as in DGP2.

Compared with DGP2 and DGP3, DGP4 is used to examine the power performance of Jn13 to

detect the misspecification from the conditional covariance a13(xt), and is also used to examine the

power performance of Jnii, for i = 1,2,3, when there exists a misspecification in the conditional

covariance a13(xt).

Since the conditional covariances a12(xt) (= 0) and a23(xt) (= 0) in DGP4 are correctly spec-

ified, DGP4 is also used to investigate the size performance of Jn12 and Jn23 when there exists a

misspecification in both the conditional variances and the conditional covariance.
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DGP5. The three-factor diffusion process with a time-varying conditional variance and condi-

tional covariance(a23(xt) 6= 0) is: x1t
x2t
x3t

=

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 x1t
x2t
x3t

dt +

 x1/2
1t 0 0
0 x1/2

2t x1/2
2t

0 0 x1/2
3t

d

 w1t
w2t
w3t

 , (24)

and its diffusion matrix is a(xt) ≡ {ai j(xt)} =

 x1t 0 0
0 2x2t

√
x2tx3t

0
√

x2tx3t x3t

 . The same values for

the parameters are taken as in DGP2.

DGP5 is used to examine the power performance of Jn23 to detect the misspecification from

the conditional covariance a23(xt); it is also used to examine the power performance of Jnii, for

i = 1,2,3, when there exists a misspecification in the conditional covariance a23(xt).

Given that the conditional covariances a12(xt) (= 0) and a13(xt) (= 0) in DGP5 are correctly

specified, DGP5 is also used to investigate the size performance of Jn12 and Jn13 when there exists

a misspecification in the conditional variances and the conditional covariance.

Since the closed-form transition densities are not available for these alternative models, we use

Milstein’s scheme to simulate 1,000 data sets of the random sample {(x1
n,t ,x

2
n,t ,x

3
n,t)}n

t=1 for sample

sizes n = 240,420,600, and 840, respectively. For each data set, we estimate the Vasicek model in

(19) by the minimum contrast estimator.

Panel(a) and panel(b) in Table 2 report the simulation results from DGP2 and DGP3, respec-

tively. Panel(a) shows that the estimated powers of Jn11,Jn22 and Jn33 increase with the sample size

n and almost reach unity when n = 840, in line with the consistency property of these tests, sug-

gesting that Jn11,Jn22, and Jn33 have good power for detecting a misspecification of the conditional

variances in DGP2 against the null model DGP1. Compared with the results in Table 1, panel(a)

shows that Jn12,Jn13, and Jn23 still have good size performance even when there exists a misspeci-

fication from the conditional variances (aii(xt), i = 1,2,3), indicating that the size performances of
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Jn12,Jn13, and Jn23 are not impacted by either the correct specification or the misspecification of the

other components in the diffusion process. Panel(b) shows that Jn12 has good power in detecting

a misspecification due to the covariance a12(xt), while Jn11,Jn22, and Jn33 still maintain a good

power performance despite the misspecified covariance a12(xt). Furthermore, panel(b) shows that

J13 and J23 have a good size performance even if both the conditional variances (aii(xt), i = 1,2,3)

and the conditional covariance a12(xt) are misspecified.

The simulation results from DGP4 and DGP5 are reported in panel(a) and panel(b) of Table 3,

respectively. Panel(a) and panel(b) show that Jn13 and Jn23 are quite powerful against the misspec-

ifications from a13(xt) and a23(xt), respectively. We observe that the power patterns of Jn11,Jn22,

and Jn33 under DGP4 and DGP5 against DGP1 are very similar to those under DGP2 and DGP3

against DGP1. The size performance of Jn12 and Jn23 in panel(a) and Jn12 and Jn13 in panel (b) is

satisfactory in detecting misspecifications from the conditional covariances.

Overall, our simulation study shows that our test statistics Jni j,1≤ i≤ j≤ 3 have a satisfactory

size performance even for highly persistent dependent data. In particular, our tests still have a

satisfactory size performance even if there exists a misspecification in the other components of the

diffusion matrix. Our tests perform rather well in detecting misspecifications coming from either

the conditional variance or the conditional covariance.

5 Empirical Application

We now apply our tests to the diffusion functions in five popular univariate diffusion models for the

daily seven-day eurodollar deposit spot rate used in Aı̈t-Sahalia (1996) and Hong and Li (2005),

and the diffusion matrix in multivariate affine term-structure models for monthly U.S. Treasury

yields used in Duffee (2002) and Hong and Li (2005). Although these data have been used in ex-
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tensive analyses of the term structure of interest rates (e.g., Hong and Li, 2005), how to use these

data to directly detect the specification of the diffusion function or the diffusion matrix in a diffu-

sion process remains an unanswered question. We reuse these data to examine the specifications

of the diffusion functions and diffusion matrices and to evaluate their performance, which is of

crucial importance in building up a model for the term structure of interest rates because volatility

plays an important role in capturing the stochastic behavior of interest rate dynamics.

5.1 Scalar term-structure models of the spot interest rate

We first apply our test to the diffusion functions in five popular models of short-term interest

rates considered in this literature; namely, the Vasicek model (1977): dxt = κ(α− xt)dt +σdwt ;

the Cox, Ingersoll, and Ross model (CIR)(1985): dxt = κ(α− xt)dt + σ
√

xtdwt ; the Ahn and

Gao model (1999): dxt = xt [κ− (σ2− κα)xt ]dt +σx3/2
t dwt ; the Chan, Karolyi, Longstaff, and

Sanders model(CKLS)(1992): dxt = κ(α− xt)dt + σxρ

t dwt ; and the Aı̈t-Sahalia nonlinear drift

model (1996): dxt = (α1x−1
t +α0 +α1xt +α2x2

t )dt +
√

β0 +β1xt +β2xβ3
t dwt .

We use the same data set as in Aı̈t-Sahalia (1996) and Hong and Li (2005): the seven-day

eurodollar deposit rate with 5,505 daily observations from 1 June 1973 to 25 February 1995. The

detailed descriptive statistics of the data are provided in Aı̈t-Sahalia (2006). Both the Aı̈t-Sahalia

(1996) test and the Hong and Li (2005) test firmly reject all five models, but their tests cannot

provide evidence whether the diffusion functions in these models are misspecified. For each of

the five popular models, suppose that we do not have any information on the functional form of

the drift function, and our focus is on testing the parametric specification of the diffusion function

in the model. The parameters in the diffusion functions are estimated by the minimum contrast

method (7). In this empirical application, we use the univariate normal kernel function, and the

smoothing parameter is determined by minimizing the EPE (page 14). The weighting function
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w(x) is chosen as the indicator function of the interval S = [0,0.5].

Table 4 reports the parameter estimations. Table 5 reports the test statistic values for the five

models. The results show that the diffusion functions in all five models are overwhelmingly re-

jected at conventional significance levels, which suggests that the diffusion functions in these mod-

els are severely misspecified. The diffusion function in the Vasicek model has the worst perfor-

mance, with the test statistic value 849.79, followed by the diffusion function in the CIR model,

with 589.69. The diffusion function in the Ahn and Gao (1999) model dramatically reduces the

test statistic value to 108.59, and the performance is further improved by the diffusion function in

the Aı̈t-Sahalia nonlinear drift model (1996), with 96.75, and the diffusion function in the CKLS

model, with 39.36, which performs the best.

While Aı̈t-Sahalia (1996) shows that the Aı̈t-Sahalia nonlinear drift model outperforms the

popular constant elasticity of variance (CEV) models in modeling the daily seven-day eurodollar

spot interest rate, we find that the diffusion function in the CKLS model (1999) (with the CEV

diffusion function) performs better than the diffusion function in the Aı̈t-Sahalia nonlinear drift

model. The difference is that the Aı̈t-Sahalia test (1996) evaluates the performance of the density

function implied by the model, while our test evaluates the performance of the diffusion function

in the model. Therefore, although the Aı̈t-Sahalia nonlinear drift model has better performance

in fitting the density function than the CKLS model, it does not mean that the diffusion function

in the Aı̈t-Sahalia nonlinear drift model has better performance than the diffusion function in the

CKLS model in fitting the true diffusion function. This result suggests that the specification of the

drift is important for capturing interest rate dynamics, and confirms the findings from Aı̈t-Sahalia

(1996) and Stanton (1997) that the nonlinear specification of the drift improves the performance of

the density function in modeling interest rate dynamics, but in contrast to the findings by Durham
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(2003) who finds that allowing for additional flexibility beyond a constant term in the drift provides

negligible benefits.13

The testing results indicate that none of the diffusion functions in the five univariate diffusion

models adequately captures the dynamics of volatility, but some diffusion functions perform rela-

tively better than others. To show the possible reasons for the rejection of the diffusion functions

in the univariate interest rate models, Figure 1 plots the estimated nonparametric diffusion func-

tion and the parametric diffusion functions for different models. The first noticeable aspect of

Figure1 is that the nonparametric diffusion function is an increasing function of the interest rate

between 0 and 0.17. Above 0.17, however, the diffusion function slightly decreases and then in-

creases quickly, which provides strong evidence to reject the constant or flat specification of the

diffusion function in the Vasicek model (1977). The nonparametric diffusion function looks neither

linear nor uniformly increasing, which provides strong evidence to reject the uniformly increasing

pattern specified by the popular CEV models, such as the diffusion functions in the models of

Cox-Ingersoll-Ross (1985), Ahn and Gao (1999), and CKLS (1992). In the Aı̈t-Sahalia nonlinear

drift model (1996), the diffusion function at low interest rates shows more volatility than that in the

CKLS model, which is the major reason why the diffusion function in the Aı̈t-Sahalia nonlinear

drift model (1996) has a worse performance than that in the CKLS model.

5.2 Multivariate affine term-structure models

A multivariate affine term-structure model typically specifies that the instantaneous riskless rate rt

is an affine function of N latent state variables xt = (x1
t , ...,x

N
t )
′,

rt = δ0 +δ
′xt , (25)

13Our findings are consistent with the findings in Hong and Li (2005), who develop an omnibus nonparametric
specification test for a diffusion process based on the transition density, which, unlike the marginal density function
used by Aı̈t-Sahalia (1996), captures the full dynamics of a diffusion process.
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where δ0 is a scalar and δ is an N× 1 vector, and the state vector xt follows an affine diffusion

process,

dxt = κ(θ− xt)dt +Σ
√

S(xt ,α,β)dwt , (26)

where κ and Σ are N×N matrices, and S(xt ,α,β) is the diagonal matrix with elements

Sii = αi +β
′
ixt , (27)

with αi a scalar and βi an N×1 vector. Without loss of generality, the matrix Σ is supposed to be

the identity matrix. This is because if Σ is not equal to identity, we can construct a new set of state

variables zt ≡ Σ−1xt , which is a diffusion process with a diagonal diffusion matrix (Aı̈t-Sahalia and

Kimmel, 2010).

Denote the times to maturity of the yields observed without error as τ1, ...,τN . Under (25)–(27),

it can be shown that the observed values of yields on zero coupon bonds (y(xt ,τ1), ...,y(xt ,τN))
′

can be expressed as an affine function of the state variables,

yt ≡

 y(xt ,τ1)
...

y(xt ,τN)

≡
 y1

t
...

yN
t

=

 γ0(τ1)
...

γ0(τN)

+

 γ(τ1)
′

...
γ(τN)

′


 x1

t
...

xN
t

 , (28)

where the scalar function γ0(τ) and the N×1 vector-valued function γ(τ) solve a pair of ordinary

differential equations given in Dai and Singleton (2000). Equation (28) can be expressed in matrix

form,

yt = Γ0 +Γ
′xt . (29)

We first apply our tests to examine whether the affine specification of the state variable xt can

capture the volatility dynamics of U.S. Treasury yields yt . Using Ito’s lemma to yt , we have

dyt = Γ
′
κ{[Γ′]−1

Γ0 +θ− [Γ′]−1yt}dt +Γ
′
√

S([Γ′]−1[yt−Γ0],α,β)dwt . (30)
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Equation (30) indicates that under (25)–(27), yield yt follows an affine diffusion process. We

empirically test whether the diffusion matrix of yt follows an affine specification.

We use the same data as Duffee (2002) and Hong and Li (2005): monthly yields on zero-coupon

bonds with 6-month, 2-year and 10-year maturities from January 1952 to December 1998. The

zero-coupon bond yields are interpolated from coupon bond prices using the method in McCulloch

and Kwon (1993), whose sample is extended by Bliss (1997) beyond February 1991. A time-series

plot of the data is provided in Figure 2. Due to the shift in monetary policy, the years from 1980

to 1982 are characterized by substantially higher interest rate levels than the rest of the sample

period. Table 6 reports the descriptive statistics. Dickey-Fuller non-stationarity tests have been

conducted, and the presence of a unit root is rejected under the 5% significance level for each of

the three yields.

We suppose that the diffusion matrix in the diffusion process of yt is as follows,

a0(yt ,θ)≡

 a0
11 +∑

3
l=1 a0

11ly
l
t ... ...

a0
21 +∑

3
l=1 a0

21ly
l
t a0

22 +∑
3
l=1 a0

22ly
l
t ...

a0
31 +∑

3
l=1 a0

31ly
l
t a0

32 +∑
3
l=1 a0

32ly
l
t a0

33 +∑
3
l=1 a0

33ly
l
t

 , (31)

and that the true diffusion matrix of yt is a(y) = {ai j(y)}1≤i, j≤3. The null hypotheses we are inter-

ested in are :

ai j(yt) = a0
i j +

3

∑
l=1

a0
i jly

l
t ,1≤ i≤ j ≤ 3. (32)

In the empirical application, we use the three-dimensional standard normal kernel function, and

compute the smoothing parameter by minimizing EPE (page 14). The weighting function is chosen

as the indicator function of the interval S = {(x,y,z)|x ∈ [0,0.50],y ∈ [0,0.50],z ∈ [0,0.50]}. We

estimate the model parameters by the methods from the minimizing distance estimator (Eq.(8)).

The parameter estimations and the test statistic of each component in the diffusion matrix a0(yt ,θ0)

are reported in Table 7. Compared with upper-tailed N(0,1) critical values (e.g., 2.33 at the 1%
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level), the statistic Jni j strongly rejects the affine specification of each component in the diffusion

matrix of the diffusion process of yt , indicating that the linear specification of each component in

the diffusion matrix of yt cannot adequately capture the volatility dynamics in the observed data

of yt , and particularly implying that the joint linear specification of the drift vector and diffusion

matrix in the diffusion process xt is overwhelmingly rejected by the data.

To display possible reasons for the rejection of each component in an affine specification of the

diffusion matrix of yt , the nonparametric estimator of each component is reported in Figures 3 to

8. Given the nonparametric shape of each component in the diffusion matrix, the rejection is not

surprising. The joint linear specification of the drift vector and diffusion matrix in xt constrains

each component of the diffusion matrix in yt to be linearly increasing, while the relative nonpara-

metric estimator looks neither increasing nor decreasing, i.e., it is nonmonotonic. The empirical

evidence indicates that the misspecification of the diffusion matrix of yt is caused jointly by the

linear specification of the drift vector and the diffusion matrix in xt .

Next, we use the test statistics to examine the performance of the popular three-factor affine

term-structure models in Dai and Singleton (2000), A0(3),A1(3),A2(3), and A3(3), in capturing the

volatility dynamics of yt .14 Hong and Li (2005) use their transition density-based tests to reject all

these models, but their tests cannot be used to evaluate the performance of the diffusion matrix in an

affine model in capturing the volatility dynamics of yt . For each model, we estimate the parameters

in equations (25) to (28) by Quasi-MLE, from which we derive the estimations of the parameters

in the diffusion matrix in (30). Table 8 reports the test statistics for the components in the diffusion

matrixes derived from Ai(3), i = 0,1,2, and 3. Jni j (1≤ i≤ j≤ 3) strongly rejects each component

14The three-factor affine term-structure models, A0(3),A1(3),A2(3), and A3(3), are defined in Dai and Singleton
(2000) by taking different values of the parameters in equations (26) and (27). Γ0 and Γ1 in (29) can be obtained
by solving numerically the ordinary differential equations with the initial conditions Γ0 = 0 and Γ = 03×1 in Dai and
Singleton (2000).
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in the diffusion matrix in each model at conventional significance levels, although some models

have better performance than others. Among the four affine models, A2(3) has the best overall

performance across all components, while A0(3) performs the worst across all components. For

A1(3) and A3(3), none of the models outperforms another across all components in the diffusion

matrix.

Our empirical finding can be explained by the well-known trade-off between the flexibility in

modeling the conditional variances of xt and the conditional correlation between the components

of xt . A0(3) assumes that the conditional variances are constant, i.e., none of xt affects the volatility

of xt , although it is more flexible in modeling the conditional correlation of xt . A3(3) is character-

ized by the assumption that the volatility of each state variable is determined by the affine functions

of xt , but the requirements of admissibility (Dai and Singleton, 2000) impose strong restrictions

on the correlations between the components of xt . Dai and Singleton (2000) conjecture that the

models that are able to accommodate both the time-varying volatilities of state variables and their

time-varying correlations, such as A1(3) and A2(3), are more likely to perform better. Our empir-

ical finding confirms the Dai and Singleton (2000) conjecture by showing that A2(3) has a better

performance in capturing the volatility dynamics in modeling the 6-month, 2-year and 10-year

maturities over the given time periods.

6 Conclusion

This paper focuses on testing the validity of the parametric specification of the diffusion matrix

in a d-dimensional diffusion process. For this purpose, we test whether each component in this

diffusion matrix is correctly specified. We propose a consistent test for the parametric specification

of each component in the diffusion matrix without information on the functional form of the drift
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vector. Consequently, not only can these tests detect whether the diffusion matrix is specified

correctly, but they can also provide a clear indication of the direction of the misspecification.

We apply our tests to evaluate the performance of the diffusion functions of five popular univari-

ate interest rates and the performance of the well-known multivariate affine term-structure models

in capturing the volatility of the diffusion matrix of the diffusion process of yields. As a result, we

obtain new empirical findings for the specification of the diffusion functions and diffusion matrixes

in popular univariate term-structure models.
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Table 1: Percentage Rejection Rates of the True Null Hypothesis
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

Panel(a): Three-Factor Vasicek Model with Low Level of Persistent Dependence
H11

0 : a11(x) = constant H12
0 : a12(x) = 0 H13

0 : a13(x) = 0
Jn11 Jn12 Jn13

240 0.033 0.056 0.084 0.032 0.041 0.130 0.003 0.021 0.054
420 0.036 0.070 0.097 0.027 0.073 0.113 0.004 0.017 0.038
600 0.013 0.062 0.101 0.012 0.053 0.072 0.011 0.028 0.061
840 0.011 0.055 0.122 0.008 0.052 0.086 0.006 0.042 0.065

H22
0 : a22(x) = constant H23

0 : a23(x) = 0 H33
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.017 0.042 0.069 0.024 0.052 0.092 0.024 0.045 0.092
420 0.021 0.055 0.063 0.019 0.060 0.073 0.015 0.058 0.132
600 0.032 0.048 0.062 0.021 0.064 0.121 0.011 0.061 0.078
840 0.008 0.054 0.078 0.013 0.052 0.071 0.009 0.062 0.092

Panel(b): Three-Factor Vasicek Model with High Level of Persistent Dependence
H11

0 : a11(x) = constant H12
0 : a12(x) = 0 H13

0 : a13(x) = 0
Jn11 Jn12 Jn13

240 0.025 0.062 0.111 0.031 0.047 0.121 0.004 0.034 0.075
420 0.030 0.061 0.120 0.025 0.057 0.082 0.007 0.044 0.066
600 0.019 0.041 0.121 0.022 0.059 0.087 0.014 0.053 0.072
840 0.012 0.047 0.108 0.008 0.048 0.091 0.012 0.054 0.096

H22
0 : a22(x) = constant H23

0 : a23(x) = 0 H33
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.007 0.036 0.043 0.011 0.043 0.051 0.013 0.037 0.058
420 0.020 0.041 0.072 0.008 0.053 0.078 0.020 0.043 0.071
600 0.012 0.045 0.089 0.010 0.054 0.081 0.011 0.048 0.083
840 0.007 0.052 0.087 0.012 0.048 0.092 0.008 0.051 0.090

This table reports the empirical sizes of the test statistics, Jn11,Jn12,Jn13,Jn22,Jn23, and Jn33. The data are simulated
from the three-factor Vasicek model (E.q. 19) at monthly frequencies for n = 240,420,600, and 840, respectively. For
each data set, we estimate model parameters and compute test statistics Jni j (1≤ i≤ j ≤ 3). We set (b11,b21,b22,b31,
b32,b33,σ11,σ22,σ33) = (0.50,−0.20,1.00,0.10,0.20,2.00,1.00,1.00,1.00), and (b12,b13,b23,α1,α2,α3) = (0,0,
0,0,0,0) for the low-persistence dependence case; and (b11,b21,b22,b31,b32,b33,σ11,σ22,σ33) = (0.20,−0.20,0.5,
0.10,0.20,0.5,1.00,1.00,1.00), and (b12,b13,b23,α1,α2,α3)

′ = (0,0,0,0,0,0) for the high-persistence dependence
case.
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Table 2: Percentage Rejections of the False Null Hypothesis or the True Null Hypothesis
n 1% 5% 10% 1% 5% 10% 1% 5% 10%
Panel(a): Three-factor affine diffusion process with time-varying conditional variance (DGP 2)

H11
0 : a11(x) = constant H12

0 : a12(x) = 0 H13
0 : a13(x) = 0

Jn11 Jn12 Jn13

240 0.280 0.369 0.436 0.001 0.017 0.040 0.001 0.023 0.047
420 0.561 0.643 0.706 0.003 0.025 0.058 0.003 0.032 0.066
600 0.791 0.858 0.894 0.002 0.023 0.054 0.015 0.034 0.051
840 0.866 0.940 0.958 0.003 0.041 0.072 0.003 0.039 0.085

H22
0 : a22(x) = constant H23

0 : a23(x) = 0 H33
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.211 0.275 0.323 0.001 0.011 0.032 0.301 0.372 0.482
420 0.398 0.402 0.451 0.013 0.025 0.042 0.411 0.456 0.523
600 0.710 0.814 0.883 0.003 0.034 0.040 0.753 0.834 0.901
840 0.908 0.921 0.943 0.005 0.036 0.042 0.924 0.930 0.943

Panel(b):Three-factor affine diffusion process with time-varying conditional covariance (DGP 3)
H11

0 : a11(x) = constant H12
0 : a12(x) = 0 H13

0 : a13(x) = 0
Jn11 Jn12 Jn13

240 0.054 0.072 0.125 0.301 0.382 0.411 0.001 0.020 0.035
420 0.222 0.282 0.401 0.521 0.545 0.581 0.000 0.027 0.048
600 0.549 0.582 0.681 0.742 0.827 0.894 0.012 0.037 0.056
840 0.761 0.813 0.871 0.933 1.000 1.000 0.006 0.043 0.058

H11
0 : a22(x) = constant H12

0 : a23(x) = 0 H13
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.291 0.305 0.361 0.005 0.013 0.040 0.142 0.177 0.218
420 0.413 0.446 0.517 0.021 0.043 0.057 0.319 0.341 0.407
600 0.756 0.832 0.911 0.005 0.034 0.059 0.662 0.716 0.743
840 0.833 0.902 0.957 0.013 0.065 0.084 0.805 0.834 0.922

For panel(a) in Table 2, the data are simulated from the three-factor affine diffusion process with time-varying
conditional variances (E.q. 21) at a monthly frequency. Given that DGP1 is the null model, panel(a) reports the
empirical powers of the test statistics, J11,J22 and J33, while panel(a) also reports the empirical sizes of the test
statistics, J12,J13, and J23. The parameters are set as (b11,b22,b33,α1,α2,α3) = (0.50,2.00,5.00,2.00,1.00) and
(b12,b13,b21,b23,b31,b32) = (0,0,0,0,0,0). For panel(b) in Table 2, the data are simulated from the three-factor
affine diffusion process with a time-varying conditional covariance (E.q. 22) at monthly frequencies. Given that
DGP1 is the null model, panel(b) reports the empirical powers of the test statistics, J11,J12,J22, and J33, while panel
(b) also reports the empirical sizes of J13 and J23. The parameters are set as in DGP2.
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Table 3: Percentage Rejections of Either the False Null Hypothesis or the True Null Hypoth-
esis

n 1% 5% 10% 1% 5% 10% 1% 5% 10%
Panel(a):Three-factor affine diffusion process with time-varying conditional covariance (DGP 4)

H11
0 : a11(x) = constant H12

0 : a12(x) = 0 H13
0 : a13(x) = 0

Jn11 Jn12 Jn13

240 0.201 0.254 0.439 0.023 0.061 0.142 0.159 0.236 0.358
420 0.421 0.583 0.617 0.007 0.038 0.096 0.297 0.356 0.477
600 0.654 0.767 0.809 0.004 0.046 0.115 0.479 0.560 0.733
840 0.913 0.928 0.947 0.006 0.043 0.087 0.809 0.921 0.933

H22
0 : a22(x) = constant H23

0 : a23(x) = 0 H33
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.223 0.254 0.307 0.009 0.035 0.048 0.150 0.220 0.365
420 0.323 0.365 0.389 0.011 0.032 0.052 0.208 0.341 0.421
600 0.420 0.465 0.498 0.006 0.042 0.071 0.416 0.445 0.569
840 0.663 0.703 0.856 0.005 0.056 0.066 0.778 0.847 0.951

Panel(b):Three-factor affine diffusion process with time-varying conditional covariance (DGP 5)
H11

0 : a11(x) = constant H12
0 : a12(x) = 0 H13

0 : a13(x) = 0
Jn11 Jn12 Jn13

240 0.179 0.205 0.258 0.001 0.022 0.026 0.000 0.007 0.009
420 0.311 0.355 0.401 0.002 0.030 0.041 0.005 0.012 0.055
600 0.457 0.498 0.502 0.006 0.025 0.039 0.006 0.034 0.060
840 0.781 0.835 0.901 0.012 0.030 0.041 0.007 0.043 0.075

H22
0 : a22(x) = constant H23

0 : a23(x) = 0 H33
0 : a33(x) = constant

Jn22 Jn23 Jn33

240 0.214 0.256 0.311 0.198 0.303 0.355 0.320 0.356 0.411
420 0.447 0.511 0.559 0.400 0.457 0.568 0.431 0.521 0.506
600 0.600 0.634 0.712 0.519 0.589 0.623 0.676 0.700 0.725
840 0.833 0.913 0.955 0.758 0.811 0.876 0.821 0.864 0.914

For panel(a) in Table 3, the data are simulated from the three-factor affine diffusion process with time-varying
conditional variances (E.q. 23)at monthly frequencies. Given that DGP1 is the null model, panel(a) reports the
empirical powers of the test statistics, J11,J13,J22, and J33, as well as the empirical sizes of the test statistics, J12 and
J23. The parameters are set as DGP 2. For panel (b) in Table 3, the data are simulated from the three-factor affine
diffusion process with time-varying conditional covariances (E.q. 24) at monthly frequencies. Given that DGP1 is the
null model, panel(b) reports the empirical powers of the test statistics, J11,J22,J23, and J33, as well as the empirical
sizes of J12 and J13. The parameters are set as DGP2.
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Table 4: The estimations of parameters in the diffusion functions of univariate models of interest rates
Parameter Vasicek CIR Ahn and Gao CKLS Nonlinear drift

β0 0.0041 0 0 0 0.0089
(0.0020) (0.0012)

β1 0 0.0527 0 0 −1.28
(0.011) (0.275)

β2 0 0 3.196 1.47 1.67
(0.561) (0.185) (0.0123)

β3 0 0 3 2.57 1.13
(0.746) (0.465)

This table reports the estimations of parameters in the diffusion functions in five univariate diffusion models of spot
interest rates using the seven-day eurodollar interest rates in Aı̈t-Sahalia (1996) from 1 June 1973 to 25 February
1995. The diffusion function is generally specified as β0 +β1r+β2rβ3 . Therefore, we have for the Vasicek model:
diffusion function=β0; for the CIR model: diffusion function=β1r; for the Ahn and Gao model: diffusion
function=β2r3; and for the nonlinear drift model: diffusion function=β0 +β1r+β2rβ3 . Parameter estimations are
obtained by the minimum contrast estimator method in Eq.(7). Standard errors are given in the parentheses.

Table 5: Tests of the parametric specifications of the diffusion functions of univariate models of interest rates
Diffusion function Reference Test statistic Critical value Result

β0 Vasicek (1977) 849.79 1.65 reject

β1x CIR (1985) 589.69 1.65 reject

β2x3 Ahn and Gao (1999) 108.59 1.65 reject

β2xβ3 CKLS (1992) 39.36 1.65 reject

β0 +β1x+β2xβ3 Aı̈t-Sahalia (1996) 96.75 1.65 reject

This table reports the testing results for the diffusion functions in the five interest rate models using the seven-day
eurodollar interest rates in Aı̈t-Sahalia (1996) from June 1, 1973, to February 25, 1995. We have for Vasicek model:
diffusion function=β0; for CIR model: diffusion function=β1r; for Ahn and Gao model: diffusion fucntion= β2r3;
and for the nonlinear drift model: diffusion function=β0 +β1r+β2rβ3 . Parameter estimations are obtained by the
minimum contrast estimator method in Eq.(7).

32



Table 6: Summary Statistics of the Data
Frequency Mean Std.Dev Skewness Kurtosis Min Max JB Test A.D.F. Test
6-month 0.056 0.029 0.57 2.93 0.007 0.165 126.9 -2.66
2-year 0.061 0.028 0.81 3.64 0.012 0.161 71.87 -2.40
10-year 0.067 0.027 0.58 2.95 0.023 0.151 31.53 -1.71

JB test is the Jarque-Bera test, which tests for the normality of the unconditional distribution of yields. The full
sample is from January 1952 to December 1998. The critical value of the Dickey-Fuller non-stationary test is −1.648
under the 5% significant level.

Table 7: Testing the linear specification of the diffusion matrix in the diffusion process of yields

Duffee’s model (2002): monthly yields on zero-coupon bonds with 6-month, 2-year and 10-year maturities

H11
0 : a11(yt) = a0

11 +∑
3
l=1 a0

11ly
l
t H12

0 : a12(yt) = a0
12 +∑

3
i=1 a0

12ly
l
t H13

0 : a13(yt) = a0
13 +∑

3
i=1 a0

13ly
l
t

a0
10 a0

111 a0
112 a0

113 a0
12 a0

121 a0
122 a0

123 a0
13 a0

131 a0
132 a0

133
0.014 0.009 0.008 0.006 0.011 0.007 0.006 0.004 0.005 0.003 0.003 0.002
(0.003) (0.001) (0.000) (0.000) (0.002) 0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Jn11 = 34.27 Jn12 = 39.17 Jn13 = 39.57
H22

0 : a22(yt) = a0
22 +∑

3
l=1 a0

22ly
l
t H23

0 : a23(yt) = a0
23 +∑

3
l=1 a0

23ly
l
t H33

0 : a33(yt) = a0
33 +∑

3
l=1 a0

33ly
l
t

a0
22 a0

221 a0
222 a0

223 a0
23 a0

231 a0
232 a0

233 a0
33 a0

331 a0
332 a0

333
0.014 0.009 0.008 0.006 0.011 0.007 0.006 0.004 0.005 0.003 0.003 0.002
(0.003) (0.001) (0.000) (0.000) (0.002) 0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Jn22 = 69.56 Jn23 = 64.95 Jn33 = 106.28

This table reports the parameter estimations in the diffusion matrix of the diffusion process of yields and the test
statistic values of Jni j,1≤ i≤ j ≤ 3 using monthly 6-month, 2-year and 10-year zero coupon yields from January
1952 to December 1998. Standard errors of the estimators of the parameters are given in the parentheses. The
diffusion matrix has the affine specification:

a0(yt ,θ)≡

 a0
11 +∑

3
l=1 a0

11ly
l
t ... ...

a0
21 +∑

3
l=1 a0

21ly
l
t a0

22 +∑
3
l=1 a0

22ly
l
t ...

a0
31 +∑

3
l=1 a0

31ly
l
t a0

32 +∑
3
l=1 a0

32ly
l
t a0

33 +∑
3
l=1 a0

33ly
l
t

 ,

Table 8: The empirical performance of multivariate affine term-structure models
a11(yt) a12(yt) a13(yt) a22(yt) a23(yt) a33(yt)

Jn11 Jn12 Jn13 Jn22 Jn23 Jn23
A0(3) 93.07 103.49 77.38 153.55 119.52 183.89
A1(3) 41.16 46.86 47.90 88.14.71 89.92 288.57
A2(3) 29.78 32.46 36.83 70.07 81.08 83.94
A3(3) 45.15 40.26 48.49 92.67 108.37 217.42

This table reports the Jni j statistics for four affine models, A0(3),A1(3),A2(3), and A3(3) to capture the volatility
dynamics of yt using monthly 6-month, 2-year and 10-year zero-coupon Treasury yields from January 1952 to
December 1998. For each model, Ai(3), i = 0,1,2,3, using Ito’s Lemma to yt , we have E.q.(30). We evaluate the
performance of these models to capture the diffusion matrix of the diffusion process yt .
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 Figure 1: Estimated Diffusion Functions for a Variety of Univariate Models of the Spot Interest Rate 
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Appendix
Let F(x) express the cumulative distribution function of xt , and E j the conditional expectation

with respect to the σ-field generated by {xu : u≤ t0+ j4n}. Also let B(·, ·, ·) : Rd×Rd×Rd→R be a

Borel measurable function and Fn(x, x̄) be the joint distribution function for (xn,i,xn, j), where i 6= j.

We denote Ei[B(xn,i,xn, j,xn,k)]≡
∫

B(x,xn, j,xn,k)dF(x),Ek[B(xn,i,xn, j,xn,k)]≡
∫

B(xn,i,xn, j,x)dF(x),

and Ei, j[B(xn,i,xn, j,xn,k)] ≡
∫

B(x, x̄,xn,k)dFn(x, x̄). hn and K((xn, j − x)/hn) are expressed by h

and K j(x), respectively. The symbol C denotes a generic big enough positive constant. Recall

m = [d
2 ]+1.

Lemma 1. Suppose that Assumptions 1-6 hold, E(|xt0|2l)<∞ for some positive integer l. Then,
(i) for t0 + j4n < t ′ < T,

E j(|xt ′− xn, j|2l)≤ Dn(1+ |xn, j|2l)(t ′− t0− j4n)
l, (A.1)

where Dn = 22(2l−1)C2l
D e2l(2l+1)C2

D(t
′−t0− j4n){(t ′− t0− j4n)

l +[l(2l−1)]l};

(ii) let sn(zn,l,x,θ) = (1/nhd4n)Kl(x)[(x
j
n,l+1− x j

n,l)(x
i
n,l+1− xi

n,l)−4na0
i, j(x,θ)],where zn,l =

(xi
l,x

i
l+1,x

j
l ,x

j
l+1). Then, under the null hypothesis, for x ∈ S, we have,

E[sn(zn,l,x,θ0)] = O(n−141/2
n )+O(n−1hr), (A.2)

and for d ≤ 3 :

∫
Es2

n(zn, j,x,θ0)w(x)dF(x) = (n2hd)−1
∫
[aii(x)a j j(x)+a2

i j(x)]w(x) f (x)dF(x)
∫

K2(u)du

+O(n−2h−d+2)+O(n−2h−d41/2
n ), (A.3)

for d ≥ 4 :

∫
Es2

n(zn, j,x,θ0)w(x)dF(x)

= (n2hd)−1
∫
[aii(x)a j j(x)+a2

i j(x)]w(x) f (x)dF(x)
∫

K2(u)du
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+(n2hd)−1
m−1

∑
l=2

hl

l!

∫ ∫
[(u′∇)l(aii(x)a j j(x) f (x))]w(x)K2(u)dF(x)du

+2(n2hd)−1
m−1

∑
l=2

hl

l!

∫ ∫
[(u′∇)l(a2

i j(x) f (x))]w(x)K2(u)dF(x)du

−2(n2hd)−1
m−1

∑
l=2

hl

l!

∫ ∫
[(u′∇)l(ai j(x) f (x))]ai j(x)w(x)K2(u)dF(x)du

+(n2hd)−1
m−1

∑
l=2

hl

l!

∫ ∫
[(u′∇)l f (x)]a2

i j(x)w(x)K
2(u)dF(x)du

+O(n−2h−d41/2
n )+O(n−2h−d+m), (A.4)

where m = [d/2]+1.

Proof of Lemma 1: we only prove (A.3) and (A.4) because (A.1) and (A.2) can be proven by

following a method similar to the one for proving (A.2) in Lemma 2 in Li (2007).

For notational simplicity, we denote
∫ t0+( j+1)4n

t0+ j4n
G(u)du by

∫
4n

G(u)du, where G(u) is any

integrable function. To prove (A.3) and (A.4), applying the Itô formula to

(xi
n,l+1− xi

n,l)
2(x j

n,l+1− x j
n,l)

2,(xi
n,l+1− xi

n,l)(x
j
n,l+1− x j

n,l),(x
j
n,l+1− x j

n,l)
2, and (xi

n,l+1− xi
n,l)

2,

respectively, under H i j
0 we have,

E
∫
[sn(zn,l,x,θ0)]

2w(x)dF(x)

= (nhd4n)
−2E{

∫
K2

l (x)[(x
j
n,l+1− x j

n,l)(x
i
n,l+1− xi

n,l)−a0
i, j(x)4n]

2w(x)dF(x)}

= (nhd4n)
−2{

∫
E{K2

l (x)
∫
4n

2[(xi
u− xi

n,l)(x
j
u− x j

n,l)
2µi(xu)

+(xi
u− xi

n,l)
2(x j

u− x j
n,l)µ j(xu)]du}w(x)dF(x)

−24n

∫
E{K2

l (x)
∫
4n

[(x j
u− x j

n,l)µi(xu)+(xi
u− xi

n,l)µ j(xu)]du}w(x)dF(x)

+
∫

E{K2
l (x)

∫
4n

[4(x j
u− x j

n,l)(x
i
u− xi

n,l)(ai j(xu)−ai j(xn,l))

+(x j
u− x j

n,l)
2(aii(xu)−aii(xn,l))+(xi

u− xi
n,l)

2(a j j(xu)−a j j(xn,l))]du}w(x)dF(x)

+
∫

E{K2
l (x)

∫
4n

∫ u

t0+l4n

[4(x j
s− x j

n,l)µi(xs)+4(xi
s− xi

n,l)µ j(xs)]ai j(xn,l)dsdu}w(x)dF(x)
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+4
∫

E{K2
l (x)

∫
4n

∫ u

t0+4n

[ai j(xs)−ai j(xn,l)]ai j(xn,l)dsdu}w(x)dF(x)

+
∫

E{K2
l (x)

∫
4n

∫ u

t0+4n

[(a j j(xu)−a j j(xn,l))aii(xn,l)+(aii(xu)−aii(xn,l))a j j(xn,l)]

×dsdu}w(x)dF(x)

+2
∫

E{K2
l (x)

∫
4n

∫ u

t0+4n

[(xi
s− xi

n,l)µi(xs)a j j(xn,l)+(x j
s− x j

n,l)µi(xs)aii(xn,l)]

×dsdu}w(x)dF(x)

−24n

∫
E{K2

l (x)
∫
4n

(ai j(xu)−ai j(xn,l))ai j(x)duw(x)}dF(x)

+2
∫

E{K2
l (x)

∫
4n

∫ u

t0+4n

aii(xn,l)a j j(xn,l)w(x)dsdu}dF(x)

+4
∫

E{K2
l (x)

∫
4n

∫ u

t0+4n

a2
i j(xn,l)w(x)dsdu}dF(x)

−24n

∫
E{K2

l (x)
∫
4n

ai j(xn,l)ai, j(x)w(x)du}dF(x)

+42
n

∫
E{K2

l (x)a
2
i j(x)w(x)}dF(x)}

≡ B1
n + ...+B12

n . (A.5)

From (xi′
u − xi′

n,l)
2 ≤ |xu− xn,l|2, i′ = i or i′ = j, Schwarz’s inequality, (A.1), and 4nh−d =

T hd/2

n(2γ−d3)/2γ
= o(1), we have Bi

n = O(n−2h−d41/2
n ) for i = 1, ...,8. Now, we consider Bi

n for i =

9, ...,12.

Using the changing variable u =
xn,l−x

h , we have,

B9
n = (nhd)−2

∫
E{K2

l (x)aii(xn,l)a j j(xn,l)w(x)}dF(x)

= (n2hd)−1
∫ ∫

K2(u)aii(x+hu)a j j(x+hu) f (x+hu)w(x)dudF(x)

= (n2hd)−1
∫

aii(x)a j j(x) f (x)w(x)dF(x)
∫

K2(u)du

+(n2hd)−1 h2

2

∫ ∫
[(u′∇)2(aii(x)a j j(x) f (x))]w(x)K2(u)dF(x)du+ ...

+(n2hd)−1 hm−1

(m−1)!

∫ ∫
[(u′∇)m−1(aii(x)a j j(x) f (x))]w(x)K2(u)dF(x)du

+O(n−2h−d+m), (A.6)
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where ∇ is the differential operator, which is defined on page 8. To obtain (A.6), we have used the

Taylor expansion of aii(x+hu)a j j(x+hu) f (x+hu) at x. Similarly, we have,

B10
n = 2(nhd)−2

∫
E{K2

l (x)a
2
i j(xn,l)}w(x)dF(x)

= 2(n2hd)−1
∫ ∫

K2(u)a2
i j(x+hu) f (x+hu)duw(x)dF(x)

= 2(n2hd)−1
∫

a2
i j(x) f (x)w(x)dF(x)

∫
K2(u)du,

+(n2hd)−1h2
∫ ∫

[(u′∇)2(a2
i j(x) f (x))]w(x)K2(u)dF(x)du+ ...

+2
(n2hd)−1hm−1

(m−1)!

∫ ∫
[(u′∇)m−1(a2

i j(x) f (x))]w(x)K2(u)dF(x)du

+O(n−2h−d+m), (A.7)

B11
n = −2(nhd)−2

∫
E{K2

l (x)ai j(xn,l)}ai, j(x)w(x)dF(x)

= −2(n2hd)−1
∫ ∫

ai j(x+hu) f (x+hu)ai j(x)w(x)K2(u)dF(x)du

= −2(n2hd)−1
∫

a2
i j(x) f (x)w(x)dF(x)

∫
K2(u)du

−(n2hd)−1h2
∫ ∫

[(u′∇)2(ai j(x) f (x))]ai j(x)w(x)K2(u)dF(x)du− ...

−2(n2hd)−1 hm−1

(m−1)!

∫ ∫
[(u′∇)m−1(ai j(x) f (x))]ai j(x)w(x)K2(u)dF(x)du

+O(n−2h−d+m), (A.8)

B12
n = (n2hd)−1

∫
EK2

l (x)a
2
i j(x)w(x)dF(x)

= (n2hd)−1
∫ ∫

a2
i j(x) f (x+hu)K2(u)w(x)dF(x)du

= (n2hd)−1
∫

a2
i j(x) f (x)w(x)dF(x)

∫
K2(u)du

+(n2hd)−1 h2

2

∫ ∫
[(u′∇)2( f (x))]a2

i j(x)w(x)K
2(u)dF(x)du+ ...

+(n2hd)−1 hm−1

(m−1)!

∫ ∫
[(u′∇)m−1( f (x))]a2

i j(x)w(x)K
2(u)dF(x)du

+O(n−2h−d+m). (A.9)

From Bi
n = O(n−2h−d)41/2

n (i = 1, ...,8) and (A.5) to (A.9), (A.4) holds for any d ≥ 1. However,
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if d ≤ 3, we have,

B9
n1 +B10

n1 +B11
n1 +B12

n1

= (n2hd)−1
∫ ∫

(a2
i j(x)+aii(x)a j j(x)) f (x)w(x)K2(u)dF(x)du

+O(n−2h−d+2). (A.10)

Bi
n = O(n−2h−d41/2

n ) (i = 1, ...,8) and (A.5)− (A.10) imply (A.3) and (A.4).

Lemma 2. Under the same assumptions as in Theorem 1, we have,

supx∈S|ai j(x)− âi j(x)|= Op(hr +n−1/2h−d/2ln(n)+41/2
n ). (A.11)

supx∈S|
∂Lâi j(x)

∂xd1...∂xdL
−

∂Lai j(x)
∂xd1...∂xdL

|= Op(hr−L +n−1/2h−L−d/2ln(n)+41/2
n h−L), (A.12)

where L≤ m−1, and 1≤ di ≤ d, for i = 1,2, ...,L.

Proof of Lemma 2: to prove (A.11), let vn(x)= n−1h−d
∑

n−1
t=1 K(

xn,t−x
h )4−1

n [xi
n,t+1−xi

n,t ][x
j
n,t+1−

x j
n,t ] and v(x) = ai j(x) f (x), then we have the following decomposition,

âi j(x)−ai j(x) = [S1(x)+S2(x)−ai j(x)S3(x)−ai j(x)S4(x)]( f̂ (x))−1, (A.13)

where S1(x) = vn(x)−Evn(x),S2(x) = Evn(x)−v(x),S3(x) = f̂ (x)−E f̂ (x), and S4(x) = E f̂ (x)−

f (x). Since f (x) is bounded away from zero on S, it is enough to show that,

supx∈SS1(x) = Op(n−1/2h−d/2ln(n)), (A.14)

supx∈SS2(x) = Op(hr)+Op(4
1/2
n ), (A.15)

supx∈SS3(x) = Op(n−1/2h−d/2ln(n)), (A.16)

supx∈SS4(x) = Op(hr). (A.17)

The bias terms S3(x) and S4(x) can be treated exactly as in Härdle and Luckhaus (1984). Therefore

the proofs of (A.16) and (A.17) are omitted and our proofs focus on (A.14) and (A.15). To prove
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(A.15), by using the Itô Lemma to [xi
n,t+1− xi

n,t ][x
j
n,t+1− x j

n,t ], we have,

S2(x) = Evn(x)− v(x)

= n−1h−d4−1
n

n−1

∑
t=1

E{K(
xn,t− x

h
)
∫
4n

Et [(x j
u− x j

t0+t4n
)(µi(xu)−µi(xt0+t4n))]du}

+n−1h−d4−1
n

n−1

∑
t=1

E{K(
xn,t− x

h
)
∫
4n

Et [(x j
u− x j

t0+t4n
)µi(xt0+t4n)]du}

+n−1h−d4−1
n

n−1

∑
t=1

E{K(
xn,t− x

h
)
∫
4n

Et [(ai j(xu)−ai j(xt0+t4n))]du}

+n−1h−d
n−1

∑
t=1

E{K(
xn,t− x

h
)ai j(xt0+t4n)}−ai j(x) f (x)

≡ S21(x)+S22(x)+S23(x)+S24(x). (A.18)

Using the same method for showing Bi
n = O(n−2h−d41/2

n ) in Lemma 1 , i = 1,2,3,4,5, we can

prove that S2i(x) = Op(4
1/2
n ) for i = 1,2,3. We consider S24(x).

S24(x) =
∫

K(u)ai j(x+hu) f (x+hu)du−ai j(x) f (x)−n−1
∫

K(u)ai j(x+hu) f (x+hu)du

= Op(hr), (A.19)

where we use the Taylor expansion of the function ai j(x+ hu) f (x+ hu) at x. Therefore, (A.15)

holds from S2i(x) = Op(4
1/2
n ), for i = 1,2,3, and (A.19). To prove (A.14), let Yn,t ≡4−1

n [xi
n,t+1−

xi
n,t ][x

j
n,t+1− x j

n,t ] and vn(x) ≡ v+n (x) + v−n (x), where v+n (x) ≡ (nhd)−1
∑t K(

xi
n,t+1−x

h )Yn,tI[|Yn,t | ≥

ln(n)]. Let zn,t ≡ exp(αYn,t), where α > 0. For the Jensen inequality, Schwarz inequality, and

Lemma 1, we have E(zn,t) ≤ eE(αYn,t) ≤ e4
−1
n [E(xi

n,t+1−xi
n,t)

2]1/2[E(x j
n,t+1−x j

n,t)
2]1/2
≤C. Then, (A.14) is

shown by using Theorem 3.3.2 (Remark 3.3.4) in Györfi et al. (1989).

(A.12) can be shown by following the similar arguments as in proving (A.11). The detailed

proof of (A.12) is not incorporated here, but it is available from the author upon request.

Lemma 3. Under Assumptions 1-6 and the null hypothesis, Ini j can be written as

Ini j = Īni j +op((nhd/2)−1), (A.20)
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where Īni j =
∫
[(âi j(x)−ai j(x)) f̂ (x)]2w(x)dF(x).

Proof of Lemma 3: The detailed proof of Lemma 3 is omitted because Lemma 3 can be proven

by following a similar method to the one for proving Lemma 3 in Li (2007).

Proof of part (i) of Theorem 1: we will complete the proof of (i) of Theorem 1 by showing:

(a) J̄ni j ≡ nhd/2[Īni j− rni j(d)]→ N[0,v2] in distribution, and (b) v2
ni j→ v2 in probability.

Proof of (a): The CLT in Fan and Li (1999) for degenerate U-statistics is extended to the

triangular arrays of random variables {Xn,t , t ≤ n} in Li (2007); that is, if the Assumptions (A1)-

(A3) in Fan and Li (1999) are satisfied, then
√

2Un/(nσn)→ N(0,1) is in distribution as n→ 0.

Note that the Assumptions (A1)-(A3) in Fan and Li (1999) are said to be satisfied by {Xn,t} if the

conditions in Assumptions (A1)-(A3) in Fan and Li (1999) as calculated by every row of {Xn,t}

are satisfied.

Let s̄n(zn,l,x,θ0) = sn(zn,l,x,θ0)−Esn(zn,l,x,θ0), where zn,l = (xi
n,l,x

i
n,l+1,x

j
n,l,x

j
n,l+1,). We de-

compose Īni j according to,

Īni j = 2 ∑
1≤l<l′≤n

∫
s̄n(zn,l,x,θ0)s̄n(zn,l′,x,θ0)w(x)dF(x)

+
n

∑
l=1

∫
s2

n(zn,l,x,θ0)w(x)dF(x)

+2(n−1)
n

∑
l=1

∫
s̄n(zn,l,x,θ0)E(sn(zn,l,x,θ0))w(x)dF(x)

+n(n−1)
∫
[Esn(zn,l,x,θ0)]

2w(x)dF(x)

≡ Ī11
ni j + Ī12

ni j + Ī13
ni j + Ī14

ni j. (A.21)

We will show under our assumptions that Ī11
ni j is asymptotically normal in distribution, and Ī13

ni j

and Ī14
ni j are asymptotically negligible in probability, while Ī12

ni j gives a bias term. First, we prove

that nhd/2(Ī12
ni j−EĪ12

ni j)→ 0 in probability under the null hypothesis.

var(Ī12
ni j) =

n

∑
l=1

var(
∫

s2
n(zn,l,x,θ0)w(x)dF(x))
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+2 ∑
1≤l<l′≤n

{E[
∫

s2
n(zn,l,x,θ0)w(x)dF(x)

∫
s2

n(zn,l′,x,θ0)w(x)dF(x)]

−
∫

Es2
n(zn,l,x,θ0)w(x)dF(x)

∫
Es2

n(zn,l′,x,θ0)w(x)dF(x)}

= Ī12
ni j(1)+ Ī12

ni j(2). (A.22)

Changing the variable in (xn,l− x)/h = u and using (A.1), we have,

n−1Ī12
ni j(1) ≤ E[

∫
s2

n(zn,l,x,θ0)w(x)dF(x)]2

= E{
∫
(nhd4n)

−2K2
l (x)[(x

j
n,l+1− x j

n,l)
2(xi

n,l+1− xi
n,l)

2

− 2ai j(x)4n(x
j
n,l+1− x j

n,l)(x
i
n,l+1− xi

n,l)+a2
i j(x)42

n]w(x)dF(x)}2

≤ C((n4n)
−4h−2d)E{[

∫
K2(u)w(xn,l +hu) f (xn,l +hu)du]2(x j

n,l+1− x j
n,l)

4(xi
n,l+1− xi

n,l)
4}

+ C((n2h)−24−2
n )E{[

∫
K2(u)ai j(xn,l +hu)w(xn,l +hu,θ) f (xn,l +hu)du]2

×(x j
n,l+1− x j

n,l)
2(xi

n,l+1− xi
n,l)

2}

+ C(n2hd)−2E{
∫

K2(u)a2
i j(xn,l +hu)w(xn,l +hu) f (xn,l +hu)du}2

= O(n4h2d)−1. (A.23)

Under Assumption 3, the observed data sequence {xn,t} satisfies the absolutely regular condi-

tion with mixing coefficient βn,τ =O(λτ), where 0< λτ < 1. Let τ= [blog(n)] and κ= logλ, where

b is a sufficiently large positive constant. Then we have βn,τ = O(λτ) = O(λ−bklogλn) = O(n−bκ).

For Ī12
ni j(2), we consider two different cases: (a) {|l− l′|> τ+1} and (b) {|l− l′| ≤ τ+1}. We

use EBa and EBb to denote cases (a) and (b), respectively. By Schwarz’s Inequality and Lemma 1

in Li (2007), we have,

EBa +EBb ≤ Ch−d
β

1/2
n,τ +Cτn−3h−2d

= O(h−dn−bκ/2)+O(τn−3h−2d). (A.24)

From (A.22)-(A.24) and Chebyshev’s inequality, it follows that nhd/2(Ī12
ni j−EĪ12

ni j) = op(1). From
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(A.3),(A.4),(A.10)−(A.12), and CLT, we know that nhd/2[Ī12
ni j−rni j(d)] = op(1), which indicates

that nhd/2[Īni j−rni j(d)] = (nhd/2)[Ī11
ni j+ Ī13

ni j+ Ī14
ni j]+op(1). To prove that nhd/2Ī13

ni j = op(1), we first

evaluate

E[
∫

s̄n(zn,l,x,θ0)E(sn(zn,l,x,θ0))w(x)dF(x)]2 (A.25)

=
∫ ∫

E[sn(zn,l,x,θ0)sn(zn,l,y,θ0)]E[sn(zn,l,x,θ0)]

×E[sn(zn,l,y,θ0)]w(x)w(y)dF(x)dF(y)

−{
∫
[Esn(zn,l,x,θ0)]

2w(x)dF(x)}2

= O(n−4h−d4n +n−4h2r−d), (A.26)

which is derived from Schwarz’s inequality, (A.2),(A.3), and (A.4). Because of Es̄n(zn,l,x,θ0) = 0,

it follows that nhd/2Ī13
ni j = Op(1) by (A.26) and Chebyshev’s Inequality.

For Ī14
ni j, by (A.2) we have,

nhd/2Ī14
n1 = n2(n−1)hd/2

∫
[Esn(zn,l,x,θ0)]

2w(x)dF(x)

= n2(n−1)hd/2(O(n−24n)+O(n−2h2r))

= O(nhd/24n)+O(nhd/2+2r) = o(1).

According to Lemma 4 in Li (2007), to prove that Ī11
ni j is asymptotically normal in distribution,

we will only prove that the Assumptions (A1)-(A3) in Fan and Li (1999) are satisfied under the

conditions in Theorem 1.

Let H(zn, j,zn,k) ≡
∫

s̄n(zn, j,x,θ0)s̄n(zn,k,x,θ0)w(x)dF(x) and {z̃n, j}n
j=1 be an i.i.d. sequence

having the same marginal distribution as {zn, j}n
j=1. Then we have,

σ
2
n ≡ E[H2(z̃n,1,x,θ0, z̃n,2,x,θ0)]

=
∫ ∫

E[sn(z̃n,1,x,θ0)rn(z̃n,1,y,θ0)]E[sn(z̃n,2,x,θ0)sn(z̃n,2,y,θ0)]
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×w(x)w(y)dF(x)dF(y)

−2
∫ ∫

E[sn(z̃n,1,x,θ0)sn(z̃n,1,y,θ0)]E[sn(z̃n,2,x,θ0)]E[sn(z̃n,2,y,θ0)]

×w(x)w(y)dF(x)dF(y)

+
∫ ∫

E[sn(z̃n,1,x,θ0)]E[sn(z̃n,1,y,θ0)]E[sn(z̃n,2,x,θ0)]E[sn(z̃n,2,y,θ0)]

×w(x)w(y)dF(x)dF(y)

= (n4hd)−1
∫
[aii(x)a j j(x)+a2

i j(x)]
2 f 4(x)w2(x)dx

×
∫
[
∫

K(u)K(w+u)du]2dw+o((n4hd)−1). (A.27)

The detailed proof of the following results is not incorporated to conserve space, but it is available

upon request.

µn4 ≡
∫ ∫ ∫ ∫

E[s̄n(zn,1,x,θ0)s̄n(zn,1, x̄,θ0)s̄n(zn,1,y,θ0)s̄n(zn,1, ȳ,θ0)]

×E[s̄n(zn,2,x,θ0)s̄n(zn,2, x̄,θ0)s̄n(zn,2,y,θ0)s̄n(zn,2, ȳ,θ0)]

×w(x)w(x̄)w(y)w(ȳ)dxdx̄dydȳ

= O((n8h3d)−1).

γn11 ≡ maxt 6=s,t ′ 6=s′E[H(zn,t ,zn,s)H(zn,t ′,zn,s′)] = O(n−4h4d/η−4d), (A.28)

where 1 < η = (1−ξ−1)−1 < 4/3, and ξ is slightly larger than 2.

γn22 ≡ maxt 6=s,t ′ 6=s′E[H
2(zn,t ,zn,s)H2(zn,t ′,zn,s′)] = O(n−8h4d/η−6d), (A.29)

γn13 ≡ maxt 6=s,t ′ 6=s′E[H(zn,t ,zn,s)H3(zn,t ′,zn,s′)] = O(n−8h4d/η−6d), (A.30)

where 1 < η < 4/3.

γ̃n22 ≡ maxt 6=s,t ′ 6=s′E[H
2(z̃n,1, z̃n,2)H2(z̃n,1, z̃n,3)] = O(n−8h2d/η−4d), (A.31)
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where 1 < η < 2.

γ̃n14 ≡ maxt 6=s

∫
{E[H(z,Zn,t)H(z,Zn,s)]}2dF(z) = O(n−8h5d/η−5d), (A.32)

where 1<η< 5/3. Summarizing the above results, we have σ2
n =O(n−4h−d), µn4 =O((n8h3d)−1),

γn ≡ max{γn11, γ̄n22, γ̄n14} = O(n−4h4d/η−4d), and vn = max{γn22,γn13} = O(n−8h4d/η−6). These

results imply (A1)(i)-(iii) in Fan and Li (1999).

Define Gn(x,y)≡ E[H(Z1,zt)H(Z1,zs)]. Then we have,

σ
2
G ≡ E[G2

n(Zn,t ,Zn,t)] = O(n−8h3d/η−4d),

µnG2 ≡ maxt 6=s

∫
G2(Zn,t ,Zn,s)dQn(Zn,t ,Zn,s) = O(n−8h3d/η−4d),

where 1 < η < 3/2.

γnG11 ≡ max{maxs 6=s′ 6=s′′ |E[G(zn,s,zn,s)G(zn,s′,zn,s′′)]|,

maxs6=s′ 6=s′′|E[G(zn,s,zn,s′)G(zn,s,zn,s′′)]|,

maxs6=s′ 6=s′′ 6=s′′′ |E[G(zn,s,zn,s′)G(zn,s′′ ,zn,s′′′)]|}= O(n−8h3d/η−4d),

where 1 < η < 3/2. Thus, (A2)(i)-(iii) in Fan and Li (1999) are satisfied.

Finally, it is easy to show that Mn in Fan and Li (1999) is bounded by a positive constant.

Also σ2
n = O( 1

n4hd ) and βn,τ = O(n−bκ). Hence, we have τ2n2β
1/2
n,τ /σ4

n = o(1) provided we make

b sufficiently large, which implies n2β
1/2
n,τ = o(1). Thus, (A3)(i) and (ii) in Fan and Li (1999) are

all satisfied. Hence, we get Ī11
ni j/(
√

2nσn)→ N(0,1) in distribution, which indicates that J̄ni j →

N[0,v2] in distribution.

Proof of (b): from Assumption 6, Lemma 2, and its proof, we have,

in fx∈S f (x)> 0, (A.33)

supx∈S|[âii(xn,t) f̂ (xn,t)â j j(xn,t f̂ (xn,t)]
2− [aii(xn,t) f (xn,t)a j j(x) f (x)]2|= op(1). (A.34)
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From (A.33), (A.34), and Lemma 2, it follows that,

1
n

n

∑
t=1
|
[âii(xn,t) f̂ (xn,t)â j j(xn,t) f̂ (xn,t)+ â2

i j(xn,t) f̂ 2(xn,t)]
2w2(xn,t)

f̂ (xn,t)

−
[aii(xn,t) f (xn,t)a j j(xn,t) f (xn,t)+a2

i j(xn,t) f 2(xn,t)]
2w2(xn,t)

f (xn,t)
|

≤ supx∈S|
[âii(x) f̂ (x)â j j(x) f̂ (x)+ â2

i j(x) f̂ 2(x)]2− [aii(x) f (x)a j j(x) f (x)+a2
i j(x) f 2(x)]2

f (x)
w2(x)|

+supx∈S|
[âii(x)â j j(x)+ â2

i j(x)]
2 f̂ 4(x)( f̂ (x)− f (x))

f (x) f̂ (x)
w2(x)|

= op(1),

which indicates

1
n

n

∑
t=1

[âii(xn,t)â j j(xn,t)+ â2
i j(xn,t)]

2 f̂ 4(xn,t)w2(xn,t)

f̂ (xn,t)

=
1
n

n

∑
t=1

[aii(xn,t)a j j(xn,t)+a2
i j(xn,t)]

2 f 4(xn,t)w2(xn,t)

f (xn,t)
+op(1)

=
∫
[aii(x)a j j(x)+a2

i j(x)]
2 f 4(x)w2(x)dx+op(1),

by the law of large numbers. Therefore, we have v2
ni j = v2 +op(1).

Proof of part (ii) of Theorem 1: given assumptions 1-6, we can show, by using similar argu-

ments to those for the proof of part (a) in (i) of Theorem 1 that, under H i j
a , Ini j =

∫
[(ai j(x)−

a0
i j(x,θ

∗)) f (x)]2w(x)dF(x) + op(1), where θ∗ ∈ Θ, and (θn − θ∗) = Op(
1√
n). Hence, we have

Jni j = Op(nhd/2).
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