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Abstract 

This paper studies the use of information for incentives and risk sharing in agency 
problems. When the principal is risk neutral or the outcome is contractible, risk sharing is 
unnecessary or completely taken care of by a contract on the outcome. In this case, 
information systems are ranked according to their informativeness of the agent’s action. 
When the outcome is noncontractible, however, the principal has to rely on imperfect 
information for both incentives and risk sharing. Under the first-order approach, we 
characterize a problem-independent ranking of information systems, which is relaxed 
from Gjesdal’s (1982) criterion. We also find sufficient conditions justifying the first-
order approach. 

JEL classification: D8 
Bank classification: Economic models 

Résumé 

L’auteur se penche sur l’utilisation de l’information à des fins d’incitation et de partage 
des risques pour résoudre les problèmes d’agence. Lorsque le mandant est neutre à 
l’égard du risque ou que le résultat de l’action du mandataire est « contractualisable », le 
partage des risques est superflu ou ses modalités sont entièrement établies par un contrat 
ayant pour objet ce résultat. Dans ce dernier cas, les systèmes d’information sont classés 
selon l’information qu’ils apportent sur l’action du mandataire. Par contre, lorsque le 
résultat n’est pas contractualisable, le mandant doit se fier à une information imparfaite à 
des fins tant d’incitation que de partage des risques. L’auteur retient l’approche du 
premier ordre et propose un classement des systèmes d’information indépendant des 
problèmes d’agence, ce qui représente un assouplissement par rapport au critère formulé 
par Gjesdal (1982). Il expose en outre les conditions suffisantes sous lesquelles cette 
approche est valable.  

Classification JEL : D8 
Classification de la Banque : Modèles économiques 

 

 



Non-technical summary

The “informativeness principle” in contract theory predicts that an agent should only

be paid according to performance measures that reveal information about the agent’s effort

level.

There are, however, real-life cases where the agent is paid not only according to measures

of his effort, but also to measures of the outcome. For example, in many medical malpractice

cases, the fee that the client (the principal) pays the lawyer (the agent) is usually based on

both the time the lawyer has spent on the case—a measure of the lawyer’s effort—and the

outcome of the case. Project managers are usually paid according to both the time they

spent on projects, as well as the outcome of the projects.

In this paper, we argue that the “informativeness principle” is suitable when the principal

is risk neutral. In this case, the only purpose of the contract is to motivate the agent to

work hard. Paying the agent based on anything that is not informative of the agent’s effort

will expose the agent to unnecessary compensation risks but provide no incentive.

A new theorem is therefore developed for the case where the principal is risk averse. A

risk-averse principal uses the compensation contract for two purposes: (i) to motivate the

agent to work hard, and (ii) to share risks in the outcome with the agent. Therefore, the

optimal compensation contract should include measures of the agent’s effort, as well as the

outcome of the agent’s effort.
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1 Introduction

The principal-agent problem consists of two stages: the first stage is the principal’s choice of

an information system, which generates contractible (i.e., commonly observable and verifi-

able) signals or performance measures. The second stage is the optimal design of a contract

based on the information system chosen in the first stage. Much of the literature focuses on

the second stage, assuming that the information system is given. In this paper, we focus on

the first stage and study the choice of information systems by the principal.

In general, information systems should be evaluated according to their efficiency in serving

two potential purposes: (i) providing incentives to the agent’s action and (ii) allocating the

risk in the outcome of the agent’s action. There are, however, two cases where risk sharing

is unnecessary or straightforward, so information systems are in effect evaluated by their

efficiency in providing incentives only. The first case involves a risk-neutral principal, who

uses information systems for incentives only. In the second case where the principal is

strictly risk-averse and the outcome is contractible, risk sharing can be completely taken

care of by a contract contingent solely on the outcome. Additional observables may be

used for incentives if they provide more information about the agent’s action beyond that

conveyed by the outcome. In this case, information systems are ranked by how informative

the additional observables are about the agent’s action.

In many cases, however, the outcome is noncontractible. Gjesdal (1982) gives three main

reasons for this.1 First, the outcome may be unobservable at the time when the agent is

paid. For instance, the manager of a firm may be paid irreversibly before the outcome of

his action is observed. Second, contracting on the outcome may be too costly. For instance,

perfect auditing of income tax returns is expensive. Lastly, the outcome is often an imperfect

estimate of the “real” outcome. For instance, the quality measure of a project is an imperfect

estimate of the “real” quality.

1See also Mirrlees (1976) and Maskin (2002). Baker (2002) also justifies noncontractible outcomes for
organizations where the total value of the organization is the noncontractible outcome.
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When the outcome is noncontractible, a strictly risk-averse principal has to reply on

imperfect information for both incentives and risk sharing. Following this line of reasoning,

we develop a criterion that ranks information systems by how informative they are of the

agent’s action and the outcome.

Our criterion is developed under the first-order approach, by which the principal can pre-

dict the agent’s action using the agent’s first-order conditions alone. The first-order approach

can be justified by conditions ensuring that the agent’s utility is concave in his action.2 Find-

ing these conditions for the case with a risk-averse principal and a noncontractible outcome

presents technical difficulties: the interaction between the two roles of information systems

may cause the agent’s utility to be nonconcave in his action. Nevertheless, we show that, by

imposing restrictions on the information structure and both parties’ risk aversions, we can

justify the first-order approach.

Comparing information systems in agency problems was first raised by Holmström (1979),

and further studied by Kim (1995), Jewitt (1997, 2007), Dewatripont, Jewitt and Tirole

(1999), Demougin and Fluet (2001), Fagart and Sinclair-Desgagne (2007), and Xie (2011).

These studies assume either a risk-neutral principal or a contractible outcome. Therefore,

these studies are about information systems for incentive as opposed to risk-sharing purposes.

The main prediction of these studies is the “informativeness principle,” which says that an

information system is valuable if and only if it provides information about the agent’s action.3

This paper studies an alternative scenario where the principal is risk averse and the outcome

is noncontractible. We find that the “informativeness principle” does not hold in the current

context, and a new criterion is proposed.

Gjesdal (1982) compares information systems in the same context as the current paper,

noting that when both the action and the outcome are noncontractible, a risk-averse principal

2See Rogerson (1985), Jewitt (1988), Sinclair-Desgagne (1994), and more recently, Conlon (2009) for
justification of the first-order approach in cases where the principal is risk neutral and/or the outcome is
contractible.

3See also Shavell (1979), Laffont and Martimort (2002), Tirole (2006), and Bolton and Dewatripont
(2005).
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has to rely on imperfect information for risk-sharing as well as incentive purposes. Gjesdal

develops a sufficient statistic criterion that is more restrictive than our criterion, but does

not rely on the first-order approach. In other words, we relax Gjasdal’s sufficient statistic

criterion under the first-order approach.

The rest of the paper is organized as follows. We set up the model in Section 2. In

Section 3, we study the two cases where risk sharing is not a challenge. In Section 4, we

study the case where information systems are ranked for both the incentive and risk-sharing

purposes. We justify the first-order approach in Section 5, and conclude in Section 6. All

proofs are in the Appendix.

2 The Model

A principal faces a feasible set Γ of information systems, each of which can be represented

by a random vector x̃. After choosing an x̃ ∈ Γ, the principal makes a take-it-or-leave-it

contract, sx̃(·) ∈ [s, s̄], with an agent, who has an outside reservation utility of 0. The

parameters s and s̄ are the lower and upper bounds of the agent’s payments, respectively.4

If the contract is accepted, the agent chooses an unobservable real-valued action a ∈ R+,

and incurs private cost c(a) with c′ > 0 and c′′ ≥ 0. The action a stochastically generates

a real-valued outcome b̃ on a fixed support b ∈ [b, b̄],5 and is imperfectly correlated with the

information system x̃.

The principal’s utility v(b − sx̃) is defined on her residual, which is the outcome minus

the compensation to the agent. The agent derives utility from the received payment minus

the private cost of action, u(sx̃) − c(a). We assume that v′ > 0, v′′ ≤ 0, u′ > 0, u′′ < 0,

c′ > 0, and c′′ > 0. In particular, the agent is strictly risk-averse, while the principal could

4The upper and the lower bounds are introduced to avoid nonexistence problems (see Page, 1987). In
addition, contracts in real life are always bounded due to legal and other constraints on what payments the
parties can make.

5b̃ is measured in monetary units and can be interpreted as the principal’s willingness to pay for the
outcome, if the outcome itself, e.g., quality, is not monetary.
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be risk-neutral or strictly risk-averse.

We assume that all information systems in Γ are contractible – commonly observable and

verifiable by both the principal and the agent. We thereby exclude the cases considered by

Maskin and Tirole (1999) and Maskin (2002) where information systems are either observable

by one party but not the other, or are commonly observable but nonverifiable. As shown

by Maskin and Tirole (1999) and Maskin (2002), the principal’s problems in these cases are

mechanism design problems mixed with moral hazard, which are not the focus of this paper.

All distribution and density functions are denoted by F and f , respectively, with the sub-

script indicating which random variables are intended. For instance, Fb̃(b|a) is the marginal

distribution function of b̃, given the agent’s action a, and f(b̃,x̃)(b,x|a) is the joint density of b̃

and x̃, given a. All density functions are positive and continuous on their corresponding sup-

ports, and are differentiable in each of their arguments to the order needed. All distributions

are common knowledge.

Following the literature, we focus on ranking information systems for inducing a given

action a. Given a, the principal solves for sx̃ in the following program:

V (x̃) = max
sx̃∈[s,s̄]

∫∫
v(b− sx̃(x))f(x̃,b̃)(x, b|a)db dx

s.t.

∫
u(sx̃(x))fx̃(x|a)dx− c(a) ≥ 0, and(1)

a ∈ max
â

∫
u(sx̃(x))fx̃(x|â)dx− c(â).(2)

Constraint (1) is the participation constraint, which states that the agent’s expected utility

must be no less than his outside reservation utility. Constraint (2) is the incentive compati-

bility constraint, which states that, given the payment schedule sx̃, a maximizes the agent’s

expected utility.

A technical challenge is the infinite number of constraints imposed by (2). A common

solution is to use the first-order approach, which replaces (2) with the first-order necessary
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condition that

(3)

∫
u(sx̃(x))fx̃a(x|a)dx− c′(a) = 0,

where the subscript a denotes partial derivative in a. Equation (3) is called the relaxed

incentive compatibility constraint. We do not restrict our analysis to the first-order approach.

We will instead evaluate how the validity of the first-order approach, or the lack thereof,

affects the results that can be obtained about ranking of information systems, and then find

conditions under which the first-order approach is valid.

Before proceeding with the analysis, we need to define precisely the concept of a “more

valuable” information system.

Definition 1. Given two information systems, x̃ and ỹ ∈ Γ, x̃ is weakly more valuable at a

than ỹ if V (x̃, a) ≥ V (ỹ, a). x̃ is strictly more valuable at a than ỹ if V (x̃, a) > V (ỹ, a).

The principal uses information systems for two potential purposes: (i) providing incen-

tives for the agent’s action and (ii) allocating the risk in the outcome between the two parties.

To serve the two purposes, an information system needs to be informative of the agent’s ac-

tion and the outcome, respectively, though the statistical meaning of “being informative”

may be different for the two purposes and in different scenarios. There are, however, cases

where risk sharing is unnecessary or straightforward, so information systems will be evalu-

ated by how informative they are of the agent’s action only. We will study these cases in

the next section, before jumping into the more complicated case where information systems

are ranked by their relative informativeness of both the agent’s action and the outcome.
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3 Ranking of Information Systems When Risk-Sharing

Is Not a Challenge

There are two cases where risk sharing is not a challenge: (i) when the principal is risk

neutral, and (ii) when the principal is risk averse and the outcome is contractible. In the

first case, risk sharing is unnecessary so information systems will simply be evaluated by how

informative they are of the agent’s action. In the second case, risk sharing can be completely

taken care of by the outcome, and ranking of information systems is determined by how

informative the other observables (besides the outcome) in the information system are about

the agent’s action.

Definition 2. Information system x̃ is sufficient for (x̃, ỹ) when estimating a if the condi-

tional distribution of ỹ given x is invariant with respect to a, i.e.,

fỹ(y|x, a) = fỹ(y|x), for almost all x,y, and a.

Definition 3. Let Lx̃(x̃|a) denote the likelihood ratio of x̃ given a, i.e.,

Lx̃(x̃|a) ≡ fx̃a(x̃|a)

fx̃(x̃|a)
.

Similarly, let Lx̃(x̃|a, b) denote the likelihood ratio of x̃ given a and b,

Lx̃(x̃|a, b) ≡ fx̃a(x̃|a, b)
fx̃(x̃|a, b)

.

Note that both Lx̃(x̃|a, b) and Lx̃(x̃|a) are random variables, as they are functions of the

random vector x̃.

Definition 4. Given two random variables x̃ and ỹ, the distribution of x̃ is a mean-preserving
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spread of the distribution of ỹ, if x̃ and ỹ have the same mean and

∫
n(x)dFx̃(x) ≤

∫
n(y)dFỹ(y),

for all increasing and concave functions n(·).

Rothschild and Stiglitz (1970) show that the above mean-preserving spread condition is

equivalent to the existence of a random variable ε̃ such that

(4) x̃
d
= ỹ + ε̃, and E[ε̃|y] = 0, ∀y,

where
d
= means “has the same distribution as.” If we define z̃ ≡ ỹ + ε̃, then (4) is further

equivalent to the following martingale condition:

(5) E[z̃|y] = E[ỹ + ε̃|y] = y, ∀y.

In sum, the mean-preserving spread condition is equivalent to the existence of an arti-

ficial random variable z̃, which has the same marginal distribution as x̃, and for which the

martingale condition (5) holds.

3.1 The Case Where the Principal Is Risk-Neutral

This case has been well studied in the literature (see Gjesdal, 1982; Grossman and Hart,

1983; Kim, 1995; and Jewitt, 2007). A risk-neutral principal in effect solves the following

cost-minimization problem:

(6) min
sx̃,a

∫
sx̃(x)fx̃(x|a)dx,

subject to (1) and (2). Since the object of the principal is to minimize the expected payment,

risk sharing is unnecessary. Therefore, information systems are ranked by how informative
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they are about the agent’s action only. Let x̃
d
=a ỹ stand for “x̃ has the same conditional

distribution as ỹ, given a.” We have the following proposition:

Proposition 1. Information system x̃ is weakly more valuable at a than ỹ for all risk-neutral

principals, if there exists an artificial density function φ(y|x), such that

(7) fỹ(y|a) =

∫
φ(y|x)fx̃(x|a)dx, for almost all y,

or equivalently, if there exists an artificial random vector z̃, such that

(8) z̃
d
=a ỹ, and x̃ is sufficient for (x̃, z̃) when estimating a.

The sufficiency of (7) was first proven by Gjesdal (1982) and Grossman and Hart (1983)

using the following strategy: if (7) holds, then for an arbitrary contract sỹ, we can construct

a contract sx̃, which is equivalent to sỹ from the agent’s perspective, but weakly improves

the principal’s welfare.

Condition (8) is an artificial-random-vector representation of Condition (7). Note that

while (7) is more often presented in principal-agent textbooks, (8) is in effect more intuitive:

the first part of (8) implies that z̃ and ỹ are identical from the principal’s perspective, due to

their identical marginal distribution given a. The sufficient-statistic condition in the second

part of (8) suggests that x̃ is preferred to z̃. Then by the transitivity of preferences, x̃ is

preferred to ỹ.

Condition (8) also suggests that if x̃ is sufficient for (x̃, ỹ) when estimating a, then x̃ is

more valuable than ỹ for all risk-neutral principals, but not vice versa. In particular, x̃ could

be more valuable than ỹ, even though ỹ provides additional information about a beyond

that contained in x̃. Note that if we replace the first part of (8) with a stronger condition

that z̃ = ỹ, then (8) becomes the condition that x̃ is sufficient for (x̃, ỹ) when estimating a.

Apparently, z̃ = ỹ implies z̃
d
=a ỹ, but not vice versa.

When the first-order approach is valid, we can relax the ranking conditions as follows:
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Proposition 2. Assume that the first-order approach is valid. Information system x̃ is

weakly more valuable at a than ỹ for all risk-neutral principals, if and only if

(9) the distribution of Lx̃(x̃|a) is a mean-preserving spread of that of Lỹ(ỹ|a),

or equivalently, there exists an artificial random vector z̃, such that

(10) z̃
d
=a ỹ, and Lz̃(z|a) = E [Lx̃(x̃|a)|Lz̃(z|a)].

The proof follows from Jewitt (2007): by conjugate duality, the principal’s expected cost

can be expressed as a concave function of the likelihood ratio of the information system.

Since all likelihood ratios have zero means, a mean-preserving spread condition on likelihood

ratio functions is both necessary and sufficient for ranking information systems. Following a

different approach, Kim (1995) proves the sufficiency of Condition (9), but not the necessity.

Condition (10) is an artificial-random-vector representation of Condition (9): there exists

an artificial random vector z̃ such that the martingale condition in (10) holds.

Both Propositions 1 and 2 provide incentive conditions implying that x̃ is more infor-

mative about a than ỹ is. The statistical meaning of being “more informative,” however,

is different in the two propositions. Specifically, (7) implies (9), but not vice versa (see for

instance Propositions 4 and 5 in Kim, 1995). That is, the first-order approach relaxes the

incentive condition from (7) to (9). The economic intuition of this relaxation is that, under

the first-order approach, instead of comparing the implemented action to every other action,

the principal only needs to compare the implemented action “locally” to an arbitrarily close

action. For this “local” incentive purpose, the principal needs an information system that

allows her to easily identify any small deviation from the target action (large |fa|) at low

cost (small f) or, equivalently, a large variation of the likelihood ratio fa/f for a given effort

level a. This is also the reason why Condition (9) is imposed on likelihood ratios, instead of

on information systems themselves.
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3.2 The Case Where the Principal Is Strictly Risk-Averse and the

Outcome Is Contractible

Apparently, the principal always wants to contract on b̃. That is, information system (x̃, b̃) is

always weakly more valuable than x̃, because the former provides weakly more information.

The following proposition shows that (x̃, b̃) is in effect strictly more valuable than x̃, as long

as x̃ is not perfectly informative of b̃:

Proposition 3. Information system (x̃, b̃) is strictly more valuable at a than x̃ for all strictly

risk-averse principals, if there does not exist a function g(·, ·), such that fb̃(b|x, a) is a point

mass at g(x, a) for almost all x.

We prove Proposition 3 by showing that, given the optimal contract contingent solely on

x̃, a modified contract based on both x̃ and b̃ is Pareto improving.

Proposition 3 suggests that b̃ strictly improves risk sharing in the information system

(x̃, b̃), as long as x̃ is not perfectly informative of b̃. Note that Proposition 3 holds whether b̃

is informative about a or not. That is, b̃ may or may not improve incentives, but it strictly

improves risk sharing if fb̃(b|x, a) is not a point mass, or equivalently, if x̃ is not perfectly

informative of b̃.

In what follows, we assume that none of the contractible information systems, other than

b̃, is perfectly informative of b̃. According to Proposition 3, b̃ should always be written into

the contract. We now wonder how the principal ranks information systems (x̃, b̃) and (ỹ, b̃).

Since risk sharing has been completely taken care of by b̃, any additional observables, i.e., x̃

and ỹ, are used for incentives only. Therefore, (x̃, b̃) is weakly more valuable than (ỹ, b̃) if,

given b̃, x̃ provides more information about b̃ than ỹ does. We have the following proposition:

Proposition 4. Information system (x̃, b̃) is weakly more valuable at a than (ỹ, b̃) for all

strictly risk-averse principals, regardless of the distribution of b̃, if there exists an artificial
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density function φ(y|x, b), such that

(11) fỹ(y|a, b) =

∫
φ(y|x, b)fx̃(x|a, b)dx, for almost all b and y,

or equivalently, if there exists an artificial random vector z̃, such that

(12) z̃
d
=a ỹ, and x̃ is sufficient for (x̃, z̃) when estimating a, given b.

Proof. The proof is similar to that of Proposition 1, so is omitted.

Proposition 4 is similar to Proposition 1 in several aspects. First, The proofs are similar.

Second, both propositions involve cases where risk sharing is not a challenge, so the only

concern is to rank information systems for the incentive purpose. The difference is that

in Proposition 4, b̃ is contractible, so (11) and (12) involve b, while in Proposition 1, b̃ is

noncontractible, but the principal is risk neutral, so the conditions do not involve b at all.

Proposition 5. Assume that the first-order approach is valid. Information system (x̃, b̃) is

weakly more valuable at a than (ỹ, b̃) regardless of the distribution of b̃, for all risk-averse

principals, if and only if

(13) the distribution of Lx̃(x|a, b) is a mean-preserving spread of that of Lỹ(y|a, b),

or equivalently, there exists an artificial random vector z̃, such that

z̃
d
=a ỹ, and Lz̃(z|a, b) = E [Lx̃(x̃|a, b)|Lz̃(z|a, b)].

The proof of Proposition 5 is similar to that of Proposition 2. In particular, by conju-

gate duality, the principal’s expected utility can be transferred to an increasing and convex

function of the likelihood ratio function, Lx̃(x|a, b), which has a zero mean. Therefore, the

mean-preserving spread condition (13) is both necessary and sufficient for x̃ to be more valu-
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able than ỹ. Again, the first-order approach relaxes the incentive condition from an integral

condition (11) to a mean-preserving spread condition (13).

Different from Propositions 1 and 2, Propositions 4 and 5 show that when the outcome is

contractible, what matters for the comparison of information systems is not how informative

the other variables (x̃ and ỹ) are, but how much additional information about a they can

provide beyond that contained in b̃.

4 Ranking of Information Systems for Both the Incen-

tive and Risk-Sharing Purposes

When the principal is strictly risk averse and there is no perfect information about either the

agent’s action or the outcome, the principal has to rely on imperfect information for both

incentives and risk sharing. This suggests that information systems should be evaluated

according to their informativeness about the agent’s action and the outcome. Following this

line of reasoning, Gjesdal (1982) proves that x̃ is weakly more valuable than ỹ for all strictly

risk-averse principals, if there exists an artificial density function φ(y|x) such that

fỹ(y|a, b) =

∫
φ(y|x)fx̃(x|a, b)dx, ∀y and b.

Gjesdal’s (1982) condition has an equivalent artificial-random-vector representation as fol-

lows: Let x̃
d
=a,b ỹ stand for “x̃ has the same marginal distribution as ỹ, given a and b.”

There exists an artificial random vector z̃
d
=a,b ỹ, such that x̃ is sufficient for (x̃, z̃) when

estimating both a and b̃, i.e.,

(14) fz̃(z|x, a, b) = fz̃(z|x), ∀z,x, and b.

This sufficient statistic condition can be broken down to an incentive condition and a risk-

sharing condition separately, as shown in the following proposition:
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Proposition 6. Information system x̃ is weakly more valuable at a than ỹ for all strictly

risk-averse principals, if there exists an artificial random vector z̃, such that z̃
d
=a,b ỹ, and

fz̃(z|x, a) = fz̃(z|x), ∀z and x, and(15)

fz̃(z|x, a, b) = fz̃(z|x, a), ∀z,x, and b.(16)

Condition (15) is an incentive condition, saying that x̃ is sufficient for (x̃, z̃) when esti-

mating a. Condition (16) is a risk-sharing condition, saying that given a, x̃ is sufficient for

(x̃, z̃) when estimating b̃.

Condition (15) is identical to (8)—the incentive condition in the risk-neutral principal

case. Recall that in Proposition 2, (8) is relaxed to (10) under the first-order approach.

Therefore, it is natural to wonder if the same relaxation extends to the current case where

the principal is strictly risk averse. The following proposition shows that, indeed, under the

first-order approach, (15) can be relaxed to a condition that is similar to but more restrict

than (10).

Proposition 7. Assume that the first-order approach is valid. Information system x̃ is

weakly more valuable at a than ỹ for all strictly risk-averse principals, if there exists an

artificial conditional density function φ(y|x, a) such that

∫
φa(y|x, a)f(x|a)dx = 0, for almost all y, and(17) ∫
φ(y|x, a)f(x|a, b)dx = f(y|a, b), for almost all y and b.(18)

Or equivalently, if there exists an artificial random vector z̃ with z̃
d
=a,b̃ ỹ, and

∫
fz̃a(z|x, a)fx̃(x|a)dx = 0, and(19)

fz̃(z|x, a, b) = fz̃(z|x, a).(20)
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We prove the sufficiency of the set of conditions (17) and (18) by showing that if (17)

holds, then for any contract sỹ, we can construct a contract sx̃ that induces the same action

and the same welfare for the agent. If, in addition, (18) holds, then sx̃ generates higher

welfare for the principal than sỹ does. Conditions (19) and (20) are an artificial-random-

vector representation of Conditions (17) and (18).

Condition (19) is an incentive condition, as it is relaxed from (15), which is the incentive

condition in Gjesdal’s (1982) theorem. Condition (15) requires that fz̃a(z|x, a) = 0 at all

values of z and x, while (19) requires only that the integral of fz̃a(z|x, a) with respect

to Fx̃(x|a) be zero. On the other hand, Propositions 6 and 7 have the same risk-sharing

conditions, i.e., (20) and (16) are identical.

Also note that (19) is more restrictive than (10), which is the relaxed incentive condition

for the case with a risk-neutral principal. To see this result, we need to transform (19) to a

format similar to (10), as in the following lemma:

Lemma 1. Condition (19) is equivalent to

(21) Lz̃ (z|a) = E [Lx̃ (x̃|a) |z] .

Note that (21) is exactly Formula (3.2) in Dewatripont, Jewitt and Tirole (1999). Con-

dition (21) is close to but more restrictive than (10). Both conditions say that given the

value of a certain function g(z), the conditional expectation of Lx̃ (x̃|a) is equal to Lz̃ (z|a).

The function g, however, is different in the two conditions: in (21), g(z) = z, while in (10),

g(z) = Lz̃ (z|a). Since Lz̃ (z|a) is a function of z, (21) implies (10), but not vice versa. If,

however, Lx̃ (x|a) is a one-to-one function of x and similarly for Lz̃ (z|a)—e.g., if x̃ and z̃

are random variables, and a monotone likelihood ratio property holds so that Lx̃ (x|a) and

Lz̃ (z|a) are increasing in x and z, respectively—then (21) coincides with (10).

In sum, if the first-order approach is valid, the incentive condition (15) in Gjesdal’s (1982)

criterion can be relaxed to (19), which is nevertheless more restrictive than (10), the relaxed
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incentive condition for the case with risk-neutral principals.

4.1 Being More Informative of the Outcome Is Necessary for Be-

ing More Valuable

Both Gjesdal’s criterion (Proposition 6) and the relaxed criterion (Proposition 7) are suffi-

cient conditions requiring that the more valuable information system be more informative

about the outcome. However, it is possible that both criteria are simply too strong, in that

being more informative about the outcome is not necessary for an information system to

be more valuable. We can, however, rule out this possibility. In particular, we prove by

three means that in the current context a problem-independent ranking criterion necessarily

requires the more valuable information system to be more informative about the outcome.

First, from the principal’s first-order condition in sx̃(·), we will see why an incentive con-

dition alone is not sufficient and why a problem-independent ranking necessarily involves

certain statistical conditions on the outcome. Second, we prove that being informative of

both the agent’s action and the outcome in terms of Holmström’s (1979) informativeness con-

dition is both necessary and sufficient for comparing inclusive information systems, where

one information system is a subset of another. Third, we provide counterexamples.

4.1.1 The Principal’s First-Order Condition

In this subsection, we will study the principal’s first-order condition with respect to sx̃(·)

in the three cases we have considered: (i) when the principal is risk neutral; (ii) when the

principal is strictly risk averse and the outcome is contractible; and (iii) when the principal

is strictly risk averse and the outcome is noncontractible. We will see why an incentive

condition alone is sufficient for ranking information systems in the first two cases, but not

in the last case, and why some additional condition on b̃ is necessarily involved in the last

case.
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First, when the principal is risk neutral, the first-order condition for sx̃(x) is6

1

u′ (sx̃(x))
= λ+ µLx̃(x|a).

Clearly, sx̃(x) in the above equality depends exclusively on Lx̃(x|a), implying that Lx̃(x̃|a)

is equivalent to x̃ in a sense that x̃ delivers no additional useful information beyond that

conveyed by Lx̃(x̃|a). This is the reason why Kim’s mean-preserving spread condition is

imposed on Lx̃(x̃|a) instead of on x̃.

Second, when the principal is risk averse and the outcome is contractible, the first-order

condition for s(x̃,b̃)(x, b) is

v′
(
b− s(x̃,b̃)(x, b)

)
u′
(
s(x̃,b̃)(x, b)

) = λ+ µL(x̃,b̃)(x, b|a).

Therefore, s(x̃,b̃)(x, b) depends exclusively on L(x̃,b̃)(x, b|a) and b̃. That is, given L(x̃,b̃)(x, b|a)

and b, there is nothing to be gained by observing x. Because L(x̃,b̃)(x, b|a) ≡
f(x̃,b̃)a
f(x̃,b̃)

(x, b|a) =

fb̃a
fb̃

(b|a) + fx̃a

fx̃
(x|b, a) ≡ Lb̃(b|a) + Lx̃(x|b, a), and because b̃ is the common observable in the

two information systems for comparison, the ranking criterion is imposed on Lx̃(x|b, a).

Finally, when the principal is strictly risk averse and the outcome is noncontractible, the

first-order condition with respect to sx̃(x) is

∫
v′ (b− sx̃(x)) fb̃(b|x, a)db

u′ (sx̃(x))
= λ+ µLx̃(x|a).

This condition implies that sx̃(x) not only depends on Lx̃(x|a), but is also affected by

fb̃(b|x, a), which is indexed by x. Since sx̃(x) cannot be expressed as a function of Lx̃(x|a)

alone, the mean-preserving spread condition (which is imposed on Lx̃(x|a)) is not sufficient

for ranking information systems. Certain conditions on fb̃(b|x, a) are needed as well. Indeed,

6This is Formula (1) in Kim (1995). See also Holmström (1979); Shavell (1979); and Bolton and Dewa-
tripont (2005).
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Proposition 7 and Lemma 1 show that the combination of the sufficient statistic condition

(20) and the martingale condition (21) is sufficient.

4.1.2 Ranking Inclusive Information Systems

We show that being more informative of the noncontractible outcome is a necessary condition

for ranking inclusive information systems where one information system generates more

random variables than the other, so that the latter is a proper subset of the former. For

example, (x̃, ỹ) and x̃ are inclusive information systems. Apparently, (x̃, ỹ) is always weakly

more valuable than x̃ because the former provides more information. An interesting question

is therefore, under what conditions is (x̃, ỹ) strictly more valuable than x̃ for certain strictly

risk-averse principals? This question is answered by the following proposition, extended from

Holmström’s (1979) informativeness criterion.

Proposition 8. Under the first-order approach, there exists a strictly risk-averse principal,

for whom (x̃, ỹ) is strictly more valuable at a than x̃, if and only if x̃ is not sufficient for

(x̃, ỹ) when estimating both a and b̃, or equivalently,

(22) fỹ(y|x, a, b) 6= fỹ(y|x), for certain (x,y, b) with a positive measure.

We prove Proposition 8 in two steps. We first prove the sufficiency of (22) by showing

that if (22) holds, then there exists a strictly risk-averse principal, for whom a small deviation

∆s(x̃,ỹ)(x̃, ỹ) to the optimal contract s˜̃x(x̃) is Pareto improving. We then prove the necessity

of (22) by showing that if (22) does not hold, then for an arbitrary contract s(x̃,ỹ), there

exists a contract sx̃ that weakly Pareto dominates s(x̃,ỹ).

Proposition 8 states that ỹ is valuable in (x̃, ỹ) if and only if ỹ provides additional

information about either the agent’s action or the outcome beyond that conveyed by x̃.

Given x̃, being noninformative about the agent’s action is not sufficient for ỹ to be valueless

to the principal, because it is still unclear how well ỹ performs for the risk-sharing purpose.
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If ỹ is also noninformative about the outcome, then it is safe to say that ỹ has no value in

(x̃, ỹ).

4.1.3 Examples

The purpose of this subsection is to show, by means of two numerical examples, that being

more informative of the outcome is a necessary condition for ranking information systems

when the principal is risk averse and the outcome is noncontractible. In addition, we show

how the comparison results depend on the principal’s risk aversion relative to the agent’s.

In both examples, we assume two one-dimensional information systems, x̃ and ỹ. In

Example 1, x̃ is more informative of the agent’s action, while ỹ is more informative of the

outcome. We show that x̃ is preferred to ỹ by risk-neutral principals, but they are not

uniformly comparable for risk-averse principals: a barely risk-averse principal prefers x̃, but

starts to prefer ỹ as she becomes more risk-averse.

In Example 2, ỹ is more informative of the outcome than x̃, but is as informative of

the agent’s action as x̃. We show that x̃ and ỹ generate the same welfare for a risk-neutral

principal. A risk-averse principal, however, always prefers ỹ to x̃.

Example 1

Suppose the agent is risk averse, with utility given by u(s) = 1−e−s, and can take action

a ∈ {0, 1}, where action 0 is costless and action 1 costs the agent c = 0.05. Action a stochas-

tically affects a noncontractible outcome b̃, which has two possible values, s and f , worth

2 and 1, respectively, to the principal. Action a also stochastically affects two information

systems x̃ and ỹ, both of which have two possible values: n and y. The probability mass

functions f(b|a), f(x|b, a) and f(y|b, a) are shown in Table 1.

It is clear from Table 1 that, given a, x̃ is independent of b̃, while ỹ is not, suggesting that

given a, ỹ is more informative of b̃ than x̃ is. On the other hand, x̃ is more informative of a

than ỹ is. This fact is easier to see from Table 2, which shows the probability mass functions
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Table 1: The Probability Mass Functions in Example 1

a b f(b|a) x f(x|b, a) y f(y|b, a)

0
f 4/5

n 4/5 n 3/5
y 1/5 y 2/5

s 1/5 n 4/5 n 3/5
y 1/5 y 2/5

1
f 1/2 n 1/5 n 4/5

y 4/5 y 1/5

s 1/2
n 1/5 n 1/5
y 4/5 y 4/5

of x̃ and ỹ, given a: apparently, an increase in a has an larger impact on the probability

mass of x̃ than on ỹ.

Table 2: The Probability Mass Functions in Example 1

a x f(x|a) y f(y|a)

0
n 4/5 n 3/5
y 1/5 y 2/5

1
n 1/5 n 1/2
y 4/5 y 1/2

In sum, x̃ is more informative of the action a, while ỹ is more informative of the outcome

b̃. Given an information system z̃ = x̃ or ỹ, in order to induce positive effort (i.e., a=1), the

principal solves the following problem:

V (z̃) = max
s(·)

∑
b={s,f}

∑
z={n, y}

v(b− s(z))f(z|b, a = 1)f(b|a = 1)

s.t.
∑

z={n, y}

(
1− e−s(z)

)
f(z|a = 1)− c ≥ 0, and

∑
z={n, y}

(
1− e−s(z)

)
f(z|a = 1)− c ≥

∑
z={n, y}

(
1− e−s(z)

)
f(z|a = 0).

We consider two cases: (i) the principal is risk neutral, with v(b− s) = b− s, and (ii) the

principal is risk averse, with v(b− s) = 1− e−r(b−s), where r is the principal’s absolute risk

aversion. The numerical solutions of the principal’s expected utilities in different cases are

listed in Table 3.
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Table 3: The Principal’s Expected Utilities Under x̃ and ỹ, Respectively, in Example 1

(i) Risk-Neutral (ii) Risk-Averse Principal
Principal r = 0.01 r = 0.1 r = 0.5 r = 1 r = 2 r = 3

V (z̃)
z̃ = x̃ 1.4481 0.0144 0.1337 0.4999 0.7348 0.9146 0.9693
z̃ = ỹ 1.4128 0.0140 0.1311 0.4966 0.7362 0.9186 0.9709

Table 3 shows that x̃ and ỹ are not uniformly comparable for risk-averse principals. More

specifically, a barely risk-averse principal prefers x̃ to ỹ, but starts to prefer ỹ over x̃ as her

risk aversion r increases above 1. This numerical finding is intuitive: as the principal becomes

more risk averse, risk sharing becomes relatively more important and eventually dominates

incentives. Therefore, the information system that is more informative of the outcome ỹ is

preferred.

On the other hand, a risk-neutral principal gets higher welfare from x̃, which is more

informative of the agent’s action.

Example 2

Example 2 is the same as Example 1, except that we assume a different distribution for

ỹ, as shown in Table 4.

Table 4: The Probability Mass Functions in Example 2

a b f(b|a) x f(x|b, a) y f(y|b, a)

0
f 4/5

n 4/5 n 4/5
y 1/5 y 1/5

s 1/5 n 4/5 n 4/5
y 1/5 y 1/5

1
f 1/2 n 1/5 n 7/20

y 4/5 y 13/20

s 1/2
n 1/5 n 1/20
y 4/5 y 19/20

Table 4 shows that, given a, x̃ is independent of b̃, while ỹ is not. This condition implies

that given a, ỹ is more informative of b̃ than x̃ is. On the other hand, the distribution of

ỹ given a is the same as that of x̃. This fact is easier to see from Table 5, which shows the
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probability mass functions of x̃ and ỹ, given a.

Table 5: The Probability Mass Functions in Example 2

a x f(x|a) y f(y|a)

0
n 4/5 n 4/5
y 1/5 y 1/5

1
n 1/5 n 1/5
y 4/5 y 4/5

Again, we consider two cases: (i) the principal is risk neutral with v(b− s) = b− s; and

(ii) the principal is risk averse with v(b−s) = 1−e−r(b−s), where r is the principal’s absolute

risk aversion. The numerical solutions of the principal’s expected utilities in different cases

are listed in Table 6.

Table 6: The Principal’s Expected Utilities Under x̃ and ỹ, Respectively, in Example 2

(i) Risk-Neutral (ii) Risk-Averse Principal
Principal r = 0.01 r = 0.1 r = 0.5 r = 1 r = 2 r = 3

V (z̃)
z̃ = x̃ 1.4481 0.0144 0.1337 0.4999 0.7348 0.9146 0.9693
z̃ = ỹ 1.4481 0.0145 0.1338 0.5008 0.7369 0.9168 0.9706

As we have expected, x̃ and ỹ are indifferent for a risk-neutral principal, as they are

informative of the agent’s action to the same extent. Risk-averse principals, on the other

hand, always prefer ỹ to x̃, as ỹ is more informative of the outcome.

5 Justifying the First-Order Approach

5.1 Background

In the previous sections, we learned that ranking criteria can be relaxed under the first-order

approach. Therefore, justification of the first-order approach is important, but it is also

nontrivial. The technical difficulty has been well studied by Rogerson (1985), Jewitt (1988),

Sinclair-Desgagne (1994), and Conlon (2009) for cases where the principal is risk neutral

and/or the outcome is contractible. In this section, we justify the first-order approach for
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the other case where the principal is risk averse and the outcome is noncontractible.

In this section, we focus on the information system x̃. Therefore, without creating con-

fusion, we can omit the subscript of the contracts and density and distribution functions.

For instance, s(x) ≡ sx̃(x) and f(x|a) ≡ fx̃(x|a). Following the literature, we justify the

first-order approach for the optimal action only. That is, instead of solving for s for a given

action a, the principal solves for both s and a in the following program

max
s∈[s,s̄],a

∫∫
v(b− s(x))f(x, b|a)db dx(23)

subject to Constraints (1) and (2).

The first-order approach replaces (2) with its first-order necessary condition (3). Note

that (3) is a necessary condition of (2) only if the optimal action a is finite. To avoid the

extreme case of a =∞, we make the following two assumptions: (i) the distribution function

Fb̃(b|a) is convex in a for all b, and (ii) lima→∞ c
′(a) =∞. The first assumption is equivalent

to the CISP condition in Conlon (2009) for a random variable (instead of a random vector).

According to Lemma 1 of Conlon (2009), this assumption implies that the principal’s gross

benefit
∫
v(b)fb̃(b|a)db is concave in a, i.e., the marginal benefit of a decreases with a. The

second assumption means that the marginal cost of a increases with a to infinity. Therefore,

the optimal action a will be finite, even in the counterfactual case where the principal puts

in her own effort and reaps all the benefit of the outcome.

We will provide two sets of conditions, which are extended from Conlon’s generalization

of Rogerson’s and Jewitt’s conditions. In particular, we follow the same approach as adopted

by the previous studies: to ensure that (3) implies (2), it suffices to prove that the agent’s

expected utility
∫
u(s∗(x))f(x|a)dx is a concave function of his action a. To that end, they

first find conditions which imply that the function u(s∗(x)) is in some restricted class, and

then find conditions on the density f(x|a) such that the mapping,
∫
u(s∗(x))f(x|a)dx, maps

this restricted class into concave functions. The difference is that Rogerson chooses u(s∗(x))
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to be nondecreasing, while Jewitt chooses u(s∗(x)) to be nondecreasing and concave.

Following Rogerson (1985), I refer to the program consisting of (23), (1), and (2) as

the unrelaxed program, and the program (23), (1), (3) as the relaxed program. Let s∗(·),

a∗, λ∗, and µ∗ be the solution to the relaxed program, where λ∗ and µ∗ are the Lagrange

multipliers for the participation and relaxed incentive comparability constraints, (1) and (3),

respectively. As in Conlon (2009), our extensions rely on the result that µ∗ ≥ 0.

5.2 Ensuring that µ∗ ≥ 0

The result of µ∗ ≥ 0 has been proven by both Rogerson (1985) and Jewitt (1988) for the stan-

dard case where the principal is risk neutral or the outcome is contractible. Jewitt’s (1988)

proof cannot be easily extended to the current context. In particular, Jewitt shows that the

relaxed incentive compatibility constraint (3) is equivalent to COV
(
u(s∗(x)), 1

u′(s∗(x))

)
=

µ∗ca(a), where COV stands for covariance (see Lemma 1 in Jewitt, 1988). Since u and 1/u′

are both monotone in the same direction, they have a nonnegative covariance, and thereby

µ∗ ≥ 0. In the current context, the same calculation as in Jewitt (1988) shows that (3) is

equivalent to COV
(
u(s∗(x)),

∫
v′(b−s∗(x))f(b|x,a)db

u′(s∗(x))

)
= µ∗c′(a). Unfortunately the covariance

on the left-hand side is not necessarily positive.

We instead follow Rogerson’s (1985) strategy of proof. In particular, we replace (3) with

the following doubly relaxed constraint :

(24)

∫
u(s(x))fa(x|a)dx− c′(a) ≥ 0.

We refer to the program (23), (1), and (24) as the doubly relaxed program. Let s∗∗(·),

a∗∗, λ∗∗, and µ∗∗ be the solution to the doubly relaxed program, where λ∗∗ and µ∗∗ are

the Lagrange multipliers for the participation and doubly relaxed incentive comparability

constraints, (1) and (24), respectively. Since µ∗∗ ≥ 0 by default, µ∗ ≥ 0 as well if one

can prove that any solution to the doubly relaxed program is also a solution to the relaxed
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program. Some definitions used in the proof need to be introduced.

Definition 5. The first-order stochastic dominance (FOSD) condition of F (b|x, a) in x is

satisfied, if
∫
U(b)dF (b|x̂, a) ≥

∫
U(b)dF (b|x, a) for all nondecreasing function U whenever

x̂ ≥ x (i.e., x̂i ≥ xi, i = 1, 2, ..., n).

Definition 5 involves an FOSD condition of b̃ in x, taking a as given. It states that, for

a given a, a larger value of x implies a larger value of b. Therefore, a risk-sharing contract

s∗∗x̃ (x) should be nondecreasing in x. This condition is based on a fixed a because when the

principal chooses information systems and designs contracts for the risk-sharing purpose, she

takes the agent’s action as given. This condition suggests the existence of some “common

shocks” that impact both b̃ and x̃ in the same direction. For instance, in the principal-agent

relationship between a firm’s board and its CEO, the firm’s value is the noncontractible

outcome the board cares about, and the stock price is an information system on which

the CEO’s pay is based. Both the firm’s value and the stock price are affected by market

conditions and macroeconomic factors.

Definition 6. The second-order stochastic dominance (SOSD) condition of F (b|x, a) in a is

satisfied, if
∫
U(b)dF (b|x, â) ≥

∫
U(b)dF (b|x, a) for all nondecreasing and concave functions

U whenever â > a.

Definition 6 involves an SOSD condition of b̃ in a, taking x as fixed. It states that, for a

given value of x, a higher action is associated with a “better” distribution of b̃, in the sense

that any individual with a nondecreasing and concave utility in b prefers a higher action

value.

We say that the set E ⊆ Rn is an increasing set (Milgrom and Weber, 1982; Conlon,

2009) if x ∈ E and y ≥ x imply y ∈ E.

Definition 7. f(x|a) satisfies the nondecreasing increasing set probability (NISP) condition

for x in a, if for every increasing set E, the probability Prob(x̃ ∈ E|a) is nondecreasing in a.
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Note that Definition 5 defines FOSD in b̃ relative to x taking a as given, while Definition

6 defines SOSD in b̃ relative to a taking x as given, and Definition 7 defines NISP in x

relative to a.

The following lemma related to the NISP condition is introduced by Conlon (2009).

Lemma 2. The density f(x|a) satisfies NISP if and only if, for the transformation

ϕT (a) =

∫
ϕ(x)f(x|a)dx = E[ϕ(x̃)|a],

ϕT (a) is nondecreasing in a for any nondecreasing function ϕ(x).

The lemma is proven by showing that any nondecreasing function ϕ(x) can be approx-

imated uniformly by the sum
∑

i IEi
(x), where the Ei are increasing sets and IEi

(x) is an

indicator function, which equals 1 if x ∈ Ei and zero otherwise. This suggests that E[ϕ(x̃)|a]

can be approximated by
∑

iE[IEi
(x)] =

∑
i Prob(x̃ ∈ E|a), which is nondecreasing in a by

the definition of NISP.

Denote the principal’s absolute risk aversion by rP (s) ≡ −v′′(s)
v′(s)

, and similarly for the agent

rA(s) ≡ −u′′(s)
u′(s)

. In addition, define L ≡ min(s, b − s̄) and U ≡ max(s̄, b̄ − s). Apparently,

[L,U ] = [s, s̄]∪ [b− s̄, b̄− s]. Recall that [s, s̄] is the range of the payment to the agent, and

[b− s̄, b̄− s] is the range of the remaining outcome left for the principal after the payment.

Therefore, both the principal’s and the agent’s income fall in the range of [L,U ]. With these

conditions and notations in hand, we are ready to give conditions for µ∗ ≥ 0.

Proposition 9. Suppose that the FOSD, SOSD, and NISP conditions hold. If there exist

positive constants β and K, such that for each s ∈ [L,U ],

rA(s) ≥ K

β
, and(25) (

1− 1

β

)
K ≤ rP (s) ≤ K,(26)

then any solution to the doubly relaxed program is also a solution to the relaxed program, and
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therefore µ∗ ≥ 0. In particular, µ∗ ≥ 0 if the principal has constant absolute risk aversion,

or if the range of the absolute risk aversion of the principal is not higher than that of the

agent, i.e., rP (s) ≤ K ≤ rA(s),∀s ∈ [L,U ].

The proposition is proven by showing that in the doubly relaxed program, the principal’s

welfare is nondecreasing in a at a = a∗∗. Then the agent’s welfare cannot be increasing in a,

because otherwise an increase of a would be Pareto improving and a∗∗ cannot be a solution.

Therefore, the doubly relaxed incentive compatibility constraint (24) is binding, and any

solution to the doubly relaxed program is also a solution to the relaxed program.

The key, therefore, is to prove that in the doubly relaxed program, the principal’s welfare

is nondecreasing in the agent’s action. This is also the place where the current proof (of

µ∗ ≥ 0) departs from the standard proof, so it is worthwhile to investigate how the standard

proof and the current proof differ in this part.

In the standard moral hazard model where x̃ = b̃, the principal’s first-order condition,

for the case µ∗∗ = 0, is

v′(b− s∗∗(b))
u′(s∗∗(b))

= λ∗∗.

The above equality is Formula (7) in Holmström (1979). Implicit differentiation with respect

to b then gives

(27) s∗∗b (b) =
v′′(b− s∗∗(b))

v′′(b− s∗∗(b))− rA(s∗∗(b))v′(b− s∗∗(b))
.

Because v′′(·) is in both the numerator and the denominator, s∗∗b (b) is bounded from above

by one, implying that b− s∗∗(b) is increasing in b, and so is v(b− s∗∗(b)). Then, by the NISP

condition of b̃ in a, the principal’s payoff is increasing in a.

In the current model, (27) is replaced by

(28) s∗∗xi (x) =

∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)∫

v′′(b− s∗∗(x))dF (b|x, a∗∗)− rA(s∗∗(x))
∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

.
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In addition, we need to prove that s∗∗xi (x) is bounded from above as

(29) s∗∗xi (x) ≤
∫
v(b− s∗∗(x))dFxi(b|x, a∗∗)∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

.

To see why we have to impose an upper bound on s∗∗xi (x), we need to understand the two

opposing effects on the principal’s welfare of an increase in the agent’s action, a. On the one

hand, a increases the outcome b, and this is a marginal gain to the principal. On the other

hand, a increases x and thereby increases the expectation of the payment, s∗∗(x), to the

agent, and this is a marginal loss to the principal. If s∗∗xi (x) is very large so that the marginal

loss from the increased payment exceeds the marginal gain from the increased outcome, the

principal’s welfare will decrease with the agent’s effort at the optimum. Therefore, to make

sure the principal’s payoff is nondecreasing in the agent’s action, we have to impose an upper

bound on s∗∗xi (x).

However, (28) is hard to handle because it has
∫
v′(b − s∗∗(x))dFxi(b|x, a∗∗) in the nu-

merator, but a different term
∫
v′′(b− s∗∗(x))dF (b|x, a∗∗) in the denominator. Therefore, we

deviate from the standard approach here. The intuition of the new approach is easier to see

by looking at the two particular cases assumed at the end of Proposition 9: (i) the principal

has constant risk aversion, and (ii) the range of the absolute risk aversion of the principal is

not higher than that of the agent. First, if we ignore the second term in the denominator of

(28), (28) implies

(30) s∗∗xi (x) ≤
∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)∫
v′′(b− s∗∗(x))dF (b|x, a∗∗)

.

Then, if the principal has a constant risk aversion, i.e., v′′ = −rPv′ = r2
Pv, (30) is equivalent

to (29) as we desired.

Note that the numerator and the denominator in (30) are closely related, and reduce to

the same term v′′(b− s∗∗(b)) in the standard case where b̃ is contractible.7

7In the standard case where b̃ is contractible, the formula corresponding to (30) is (27). Note that

29



On the other hand, if we ignore the first term in the denominator of (28), it yields

(31) s∗∗xi (x) ≤
∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)

−rA(s∗∗(x))
∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

.

We need to replace rA(s∗∗(x)) in the denominator of (31). According to the assump-

tions that rP (s) ≤ K ≤ rA(s), ∀s ∈ [L,U ], and the fact that s∗∗(x) ∈ [L,U ] and b −

s∗∗(x) ∈ [L,U ], we have rA
(
s∗∗(x)

)
≥ rP

(
b − s∗∗(x)

)
≡ −v′′(b−s∗∗(x))

v′(b−s∗∗(x))
. By rearranging the

above inequality, we have rA
(
s∗∗(x)

)
v′(b − s∗∗(x)) + v′′(b − s∗∗(x)) ≥ 0, or equivalently

∂rA(s∗∗(x))v(b−s∗∗(x))+v′(b−s∗∗(x))
∂b

≥ 0. This inequality, together with the FOSD condition of

Fb̃(b|x, a∗∗) in x, implies that

∫ [
rA
(
s∗∗(x)

)
v(b− s∗∗(x)) + v′(b− s∗∗(x))

]
dFxi(b|x, a∗∗) ≥ 0.

By rearranging the above inequality, we have

rA(s∗∗(x)) ≥ −
∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)∫
v(b− s∗∗(x))dFxi(b|x, a∗∗)

.

Finally by substituting the above inequality in (31), we get (29), as desired.

The two particular cases correspond to two extreme values of β in Conditions (25) and

(26). When β = ∞, Conditions (25) and (26) are equivalent to the case that the principal

has a constant risk aversion. When β = 1, Conditions (25) and (26) are equivalent to the

case that the range of the absolute risk aversion of the principal is not higher than that of

the agent. The combination of (25) and (26) with β ∈ (1,∞) covers all the intermediate

cases between the two particular cases.

Lastly, note that both (27) and (28) are decreasing with rA. That is, the optimal contract

becomes less responsive to the signal as the agent becomes more risk averse relative to the

principal. This result is intuitive. A less-responsive contract provides less incentive but is

if we ignore the second term in the denominator of (27), the numerator and the denominator are both
v′′(b− s∗∗(b)).
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also less risky to the agent. As the agent becomes more risk averse relative to the principal,

a less-responsive—therefore less-risky—contract is Pareto improving.

5.3 An Extension of the Mirrlees-Rogerson Conditions

Definition 8. f(x|a) satisfies the monotone likelihood ratio (MLR) condition if fa
f

(x|a) is

nondecreasing in x.

Definition 9. f(x|a) satisfies the concave increasing-set probability (CISP) condition for x

in a if, for every increasing set E, the probability Prob(x̃ ∈ E|a) is concave in a.

Lemma 3. The density f(·|a) satisfies CISP if and only if the transformation

ϕT (a) =

∫
ϕ(x)f(x|a)dx = E[ϕ(x̃)|a]

is concave in a for any nondecreasing function ϕ(x).

Proof. This is Lemma 1 in Conlon (2009).

Proposition 10. Suppose that the FOSD, SOSD, NISP, MLR and CISP conditions hold,

as well as the two conditions in Proposition 9. Then any solution to the relaxed program also

solves the unrelaxed program, and the first-order approach is valid.

5.4 An Extension of Jewitt’s Conditions

Definition 10. f(x|a) satisfies the monotone concave likelihood ratio (MCLR) condition, if

fa
f

(x|a) is nondecreasing and concave in x.

Definition 11. f(x|a) satisfies the concave increasing convex set probability (CICSP) con-

dition for x in a if, for every increasing and convex set E, the probability Prob(x̃ ∈ E|a) is

concave in a.
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Lemma 4. If f(x|a) satisfies the CICSP condition, then the transformation

ϕT (a) =

∫
ϕ(x)f(x|a)dx = E[ϕ(x̃)|a]

is concave in a for any nondecreasing and quasi-concave function ϕ(x).

Proof. The proof is similar to the “only if” part of the proof of Lemma 2.

Let K(s; x, a) ≡
∫
v′(b−s)f(b|x,a)db

u′(s)
, and define ω(· ; x, a) ≡ K−1(· ; x, a) as the inverse

function of K(s; x, a) in s. Because

Ks(s; x, a) = −
∫
v′′(b− s)f(b|x, a)db · u′(s) +

∫
v′(b− s)f(b|x, a)db · u′′(s)

u′(s)2
> 0,

ω is well defined and increasing in z.

Proposition 11. Suppose that the FOSD, SOSD, NISP, MCLR and CICSP conditions hold,

that the two conditions in Proposition 9 hold, and that u(ω(z; x, a)) is concave in z and x, ∀a,

then any solution to the relaxed program also solves the original program, i.e., the first-order

approach is valid.

It is clear from the proof that the condition on the ω-function in the current paper is

used in the same way as the condition on ω in Jewitt (1988) and Conlon (2009): to extend

the nondecreasing and concave property from the likelihood ratio to the optimal contract.

6 Conclusion

This paper has studied the use of information for incentives and risk sharing in agency prob-

lems. We distinguish among three cases: (i) when the principal is risk neutral; (ii) when the

principal is strictly risk averse and the outcome is contractible; and (iii) when the principal is

strictly risk averse and the outcome is noncontractible. We show that in the first two cases,

risk sharing does not impose a challenge: while risk sharing is unnecessary for a risk-neutral
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principal, for a strictly risk-averse principal, risk sharing can be completely taken care of by

a contract solely on the outcome. Information systems are then ranked by how addition-

ally informative the other observables are of the agent’s action. In the third case, since the

outcome is noncontractible, the strictly risk-averse principal has to rely on imperfect infor-

mation for both incentives and risk sharing. Accordingly, a problem-independent ranking

of information systems necessarily involves two conditions: (i) an incentive condition com-

paring information systems by how informative they are about the agent’s action, and (ii)

a risk-sharing condition comparing information systems by how informative they are about

the outcome. Under the first-order approach, we develop a criterion, in which the incentive

condition is relaxed from that in Gjesdal’s (1982) sufficient statistic criterion. Both criteria

feature the same risk-sharing condition. We then provide sufficient conditions justifying the

first-order approach.

There are a number of caveats regarding our findings and areas for future research. First,

we justify the first-order approach by finding conditions under which the agent’s utility is

globally concave in his action. However, as shown in Jewitt (2007) and Conlon (2009), the

conditions ensuring the global concavity are very restrictive, especially when the information

system is multi-dimensional. Therefore, it is interesting to seek new conditions to validate

the first-order approach without ensuring the global concavity.

Second, it also remains an open question how one can relax Gjesdal’s (1982) sufficient

statistic criterion without relying on the first-order approach. More generally, what is the

necessary and sufficient condition for ranking information systems in agency problems when

the first-order approach is invalid? Gjesdal’s (1982) criterion is an extension of Blackwell’s

(1953) sufficient statistic condition, which is known to be both necessary and sufficient for

ranking information systems in decision problems. So one may conjecture that Gjesdal’s

(1982) criterion, or equivalently, Blackwell’s (1953) sufficient statistic condition, is a neces-

sary condition for ranking information systems in agency problems as well. Gjesdal (1982),

however, has provided evidence rejecting this conjecture, because the agency problem is dif-
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ferent from the decision problem: the agency problem is a game, and actions are chosen by

the agent, instead of given by nature. In addition, the agency problem contains restrictions

on utility functions not encountered in the decision problem.
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Appendix

Proof of Proposition 1

Proof. The proof has two parts. In the first part, we prove the sufficiency of (7), and in the

second part, we prove the equivalence between (7) and (8).

Part I: We show that if (7) holds, then for any given contract sỹ, we can construct a

contract sx̃ which generates the same welfare for the agent as sỹ does, but weakly improves

the principal’s welfare.

Let

(32) u(sx̃(x)) =

∫
u(sỹ(y))φ(y|x)dy.

Then we have

E[u(sx̃(x))|a] =

∫
u(sx̃(x))fx̃(x|a)dx

=

∫∫
u(sỹ(y))φ(y|x)dyfx̃(x|a) dx

=

∫
u(sỹ(y))

∫
φ(y|x)fx̃(x|a)dx dy

=

∫
u(sỹ(y))fỹ(y|a)dy

=E[u(sỹ(y))|a], ∀a,

where the second equality follows from (32), and the second-last equality follows from (7).

Since sx̃ and sỹ result in the same welfare for the agent at all values of a, they are identical

from the agent’s perspective.

On the other hand, applying Jensen’s inequality to (32) gets sx̃(x) ≤
∫
sỹ(y)φ(y|x)dy,
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or equivalently,

E[sx̃(x)|a] =

∫
sx̃(x)fx̃(x|a)dx ≤

∫∫
sỹ(y)φ(y|x)dyfx̃(x|a)dx

=

∫
sỹ(y)

∫
φ(y|x)fx̃(x|a)dxdy

=

∫
sỹ(y)fỹ(y|a)dy

= E[sỹ(y)|a],

where the second-last equality follows from (7). That is, the contract sx̃(x) is less costly to

the principal than sỹ(y) is. Therefore, sx̃(x) weakly Pareto dominates sỹ(y).

Part II. The equivalence between (7) and (8) can be proven as follows. If (7) holds, we define

z̃ in such a way that fz̃(z|x, a) = φ(z|x). According to Definition 2, x̃ is sufficient for (x̃, z̃)

when estimating a. In addition, we have

(33) fz̃(z|a) =

∫
fz̃(z|x, a)fx̃(x|a)dx =

∫
φ(z|x)fx̃(x|a)dx = fỹ(z|a), ∀z,

where the last equality follows from (7). Condition (33) is exactly z̃
d
=a ỹ.

On the other hand, assume that (8) holds. By defining φ(z|x) = fz̃(z|x), we have

(34)

fỹ(y|a) = fz̃(y|a) =

∫
fz̃(y|x, a)f(x|a)dx =

∫
fz̃(y|x)f(x|a)dx =

∫
φ(y|x)f(x|a)dx,

where the first equality follows from the first part of (8) and the second-last equality follows

from the second part of (8). (34) is exactly (7). This completes the proof.

Proof of Proposition 2

Proof. The proof follows from Jewitt (2007), in which the principal’s cost function (6) is

transformed to a concave function of the likelihood ratio of the information system. Since

all likelihood ratios have zero means, a mean-preserving spread condition on the likelihood
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ratio is both necessary and sufficient for ranking information systems.

If the first-order approach is valid, (2) can be replaced by the relaxed incentive compat-

ibility constraint

(35)

∫
u(sx̃(x))fx̃a(x|a)dx− c′(a) = 0.

We can further relax (35) to

(36)

∫
u(sx̃(x))fx̃a(x|a)dx− c′(a) ≥ 0.

This relaxation will be justified at the end of the proof. The resulting doubly relaxed program

is (6) subject to (1) and (36). Following Grossman and Hart (1983), we define nx̃(x) =

u(sx̃(x)) and m(·) = u−1(·). Therefore m(·) is increasing and convex, and m(nx̃(x)) = sx̃(x).

By changing the argument variable from sx̃ to nx̃, the doubly relaxed program can be

rewritten as

Cx̃(a) ≡ min
nx̃

∫
m(nx̃(x))fx̃(x|a)dx

s.t.

∫
nx̃(x)fx̃(x|a)dx− c(a) ≥ 0∫
nx̃(x)fx̃a(x|a)dx− c′(a) ≥ 0.

The lagrangian of the above program is

Lx̃(nx̃, λ, µ, a) ≡
∫
m(nx̃(x))fx̃(x|a)dx + λ

[
c(a)−

∫
nx̃(x)fx̃(x|a)dx

]
+ µ

[
c′(a)−

∫
nx̃(x)fx̃a(x|a)dx

]
=λc(a) + µc′(a)−

∫
{[λ+ µLx̃(x|a)]nx̃(x)−m(nx̃(x))} fx̃(x|a)dx,

where λ ≥ 0 and µ ≥ 0 are lagrangian multipliers. According to Theorem 1 on page 224 of
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Luenberger (1969), the solution to the program is at the saddle point of the lagrangian. In

particular, Cx̃(a) = maxλ≥0,µ≥0 infnx̃
Lx̃(nx̃, λ, µ, a). By substituting Lx̃ in, we have

Cx̃(a) = max
λ≥0,µ≥0

inf
nx̃

{
λc(a) + µc′(a)−

∫
{[λ+ µLx̃(x|a)]nx̃(x)−m(nx̃(x))} fx̃(x|a)dx

}
= max

λ≥0,µ≥0
λc(a) + µc′(a)−

∫
sup
nx̃

{[λ+ µLx̃(x|a)]nx̃(x)−m(nx̃(x))} fx̃(x|a)dx.

The term in the integral on the right-hand side of the last equality can be taken as a profit-

maximization problem. More specifically, for each value of x, λ + µLx̃(x|a) can be taken

as the price, nx̃(x) the adjustable quantity of production, and m(nx̃(x)) the increasing and

convex cost function of nx̃(x). By conjugate duality, the maximum value function is an

increasing and convex profit function π (λ+ µLx̃(x|a)). Therefore, we have

Cx̃(a) = max
λ≥0,µ≥0

λc(a) + µc′(a)−
∫
π (λ+ µLx̃(x|a)) fx̃(x|a)dx.

By properly choosing the cost function c(·) we can support any values of λ ≥ 0 and µ ≥ 0,

holding a constant. Therefore, x̃ is preferred to ỹ, i.e., Cx̃(a) ≤ Cỹ(a), if and only if for all

values of λ ≥ 0 and µ ≥ 0,

(37)

∫
π (λ+ µLx̃(x|a)) fx̃(x|a)dx ≥

∫
π (λ+ µLỹ(y|a)) fỹ(y|a)dy.

Note that π could be any increasing and convex function. This is because its conjugate

function m(·) spans all the increasing and convex functions, and there is a one-to-one cor-

respondence between conjugate functions. Since π spans all the increasing and convex func-

tions, then according to Definition 4, (37) holds if and only if the distribution of Lx̃(x̃|a) is

a mean-preserving spread of that of Lỹ(ỹ|a), or equivalently, if and only if (9) holds.

To justify the replacement of (35) by (36), it suffices to prove that µ > 0, or equivalently,
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µ 6= 0. The first-order condition of the lagrangian in nx̃ is

m′(nx̃(x)) = λ+ µLx̃(x|a).

If µ = 0 as assumed for contradiction, then the above equality becomes m′(nx̃(x)) = λ,

suggesting that the optimal contract nx̃ is constant, which fails to induce any positive effort.

Therefore, we must have µ > 0, and (35) can be replaced by (36).

The equivalence between (9) and (10) follows directly from the discussion after Definition

4.

Proof of Proposition 3

Proof. We prove the proposition by showing that for the optimal contract sx̃(x), there exists

a small additional variation ∆s(x̃,b̃)(x, b) that is Pareto improving.

Without loss of generality, we assume discrete actions, i.e., (a1, a2, ..., aI). The principal’s

problem based on the information system x̃ can be written as

max
sx̃,ak∈{a1,...aI}

∫∫
v(b− sx̃(x))f(x̃,b̃)(x, b|ak)db dx

s.t.

∫
u(sx̃(x))fx̃(x|ak)dx− c(ak) ≥ 0,(38) ∫
u(sx̃(x))fx̃(x|ak)dx− c(ak) ≥

∫
u(sx̃(x))fx̃(x|ai)dx− c(ai), ∀i 6= k.(39)

Let (sx̃, ak) be a solution to the above agency problem, and let λ and {µi}i 6=k be the

multipliers for the agent’s participation and incentive compatibility constraints (38) and

(39), respectively. λ > 0 and µi ≥ 0, ∀i. Fix x for a moment. If fb̃(b|x, a) exists and is not

a point mass, as assumed in the proposition, then the principal’s and the agent’s marginal

returns ∆V and ∆U—conditional on x, from a small additional variation ∆s(x̃,b̃)(x, b) in the

compensation rule—can be written as8

8For the mathematical technique used for deriving these formula, refer to proposition 9.6.1 in Luenberger
(1969). See also Holmström (1979).
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∆V =−
∫
v′(b− sx̃(x))∆s(x̃,b̃)(x, b)fb̃(b|x, ak)db

+ λu′(sx̃(x))

∫
∆s(x̃,b̃)(x, b)fb̃(b|x, ak)db

+
∑
i 6=k

µiu
′(sx̃(x))

∫
∆s(x̃,b̃)(x, b) [fb̃(b|x, ak)− fb̃(b|x, ai)] db

=−
∫
v′(b− sx̃(x))∆s(x̃,b̃)(x, b)fb̃(b|x, ak)db

+

(
λ+

∑
i 6=k

µi

)
u′(sx̃(x))

∫
∆s(x̃,b̃)(x, b)fb̃(b|x, ak)db

− u′(sx̃(x))
∑
i 6=k

µi

∫
∆s(x̃,b̃)(x, b)fb̃(b|x, ai)db

∆U =u′(sx̃(x))

∫
∆s(x̃,b̃)(x, b)fb̃(b|x, ak)db.

Let ∆s(x̃,b̃)(x, b) take only J values. In particular, assume that for a set Bj in the range

of b̃, ∆s(x̃,b̃)(x, b) = ∆s(x̃,b̃)(x, Bj) for all b ∈ Bj. Then

∆V =−
J∑
j=1

∆s(x̃,b̃)(x, Bj)

∫
Bj

v′(b− sx̃(x))fb̃(b|x, ak)db(40)

+

(
λ+

∑
i 6=k

µi

)
u′(sx̃(x))

J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ak)

− u′(sx̃(x))
∑
i 6=k

µi

J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ai),

∆U =u′(sx̃(x))
J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ak),(41)

where fb̃(Bj|x, ai) =
∫
Bj
fb̃(b|x, ai)db, ∀i, j. If there exists a variation {∆s(x̃,b̃)(x, Bj)}j=1...J
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such that

J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ak) = 0,(42)

J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ai) ≤ 0, ∀i 6= k and(43)

J∑
j=1

∆s(x̃,b̃)(x, Bj)

∫
Bj

v′(b− sx̃(x))fb̃(b|x, ak)db < 0,(44)

then by substituting (42) - (44) into (40) and (41), we have ∆V > 0 and ∆U = 0. That is,

the variation {∆s(x̃,b̃)(x, Bj)}j=1...J makes the principal better off and the agent no worse off.

Therefore, we are left to prove that a solution {∆s(x̃,b̃)(x, Bj)}j=1...J exists for the system

of linear inequalities, (42) - (44). A solution exists if two conditions hold. First, the number

of variables is no less than the number of inequalities. Second, there is no contradiction

among inequalities. The first condition is satisfied if J ≥ I + 1. As to the second condition,

the only potential contradiction is between (42) and (44). In particular, if there is a constant

K such that

(45)



∫
B1
v′(b− sx̃(x))fb̃(b|x, ak)db∫

B2
v′(b− sx̃(x))fb̃(b|x, ak)db

...∫
BJ
v′(b− sx̃(x))fb̃(b|x, ak)db


= K ∗



fb̃(B1|x, ak)

fb̃(B2|x, ak)
...

fb̃(BJ |x, ak)


,

then we have

J∑
j=1

∆s(x̃,b̃)(x, Bj)

∫
Bj

v′(b− sx̃(x))fb̃(b|x, ak)db = K ∗
J∑
j=1

∆s(x̃,b̃)(x, Bj)fb̃(Bj|x, ak) = 0,

where the first equality follows from (45) and the the last equality follows from (42). Clearly,

the above equality contradicts (44). However, we can prove that if the principal is strictly
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risk averse as assumed in the proposition, (45) does not hold: substituting fb̃(Bj|x, ak) =∫
Bj
fb̃(b|x, ak)db into (45) gives



∫
B1
v′(b− sx̃(x))fb̃(b|x, ak)db∫

B2
v′(b− sx̃(x))fb̃(b|x, ak)db

...∫
BJ
v′(b− sx̃(x))fb̃(b|x, ak)db


=



∫
B1
Kfb̃(b|x, ak)db∫

B2
Kfb̃(b|x, ak)db

...∫
BJ
Kfb̃(b|x, ak)db


.

If the principal is strictly risk averse, then v′(b−sx̃(x)) is monotonic decreasing in b, whereas

K is constant. Therefore, (45) does not hold. In sum, we have proven that there is no

contradiction among (42) - (44) if the principal is strictly risk averse. Therefore, a solution

{∆s(x̃,b̃)(x, Bj)}j=1...J where J ≥ I + 1 always exists for (42) - (44), or equivalently, there

exists a variation {∆s(x̃,b̃)(x, Bj)}j=1...J that makes the principal better off and the agent no

worse off at x.

The procedure can be repeated for a set of x values with positive measures, making the

principal strictly better off and the agent no worse off at almost all values of x. Therefore,

if the principal is risk averse, (x̃, b̃) is strictly preferred to x̃.

Proof of Proposition 5

Proof. The proof is similar to that of Proposition 2. In particular, following the same

procedure (which we omit here), we can show that (x̃, b) is preferred to (ỹ, b) regardless of

the distribution of b̃, if and only if for all values of λ ≥ 0 and µ ≥ 0,

(46)∫∫
π
(
λ+ µL(x̃,b̃)(x, b|a)

)
f(x̃,b̃)(x, b|a)dxdb ≥

∫∫
π
(
λ+ µL(ỹ,b̃)(y, b|a)

)
f(ỹ,b̃)(y, b|a)dydb.

It is straightforward to derive that L(x̃,b̃)(x, b|a) ≡
f(x̃,b̃)a

(x,b|a)

f(x̃,b̃)(x,b|a)
=

fb̃a(b|a)

fb̃(b|a)
+ fx̃a(x|b,a)

fx̃(x|b,a)
≡ Lb̃(b|a)+
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Lx̃(x|b, a). Substituting the last equality into (46) gives

∫
π (λ+ µLb̃(b|a) + µLx̃(x|b, a)) fx̃(x|b, a)dx ≥

∫
π (λ+ µLb̃(b|a) + µLỹ(y|b, a)) fỹ(y|b, a)dy.

Note that π spans all the increasing and convex functions. Therefore, the above inequality

holds if and only if the distribution of Lx̃(x|b, a) is a mean-preserving spread of that of

Lỹ(y|b, a), given a and b. Or equivalently, if and only if (13) holds.

Proof of Proposition 6

Proof. The propensity follows directly from (14).

Proof of Proposition 7

Proof. We first prove that if Condition (18) holds, then (17) is equivalent to

(47)

∫
φ(y|x, a)fx̃a(x|a)dx = fỹa(y|a).

Integrating both sides of (18) with respect to Fb̃(b|a) gives

∫
φ(y|x, a)fx̃(x|a)dx = fỹ(y|a).

Taking derivative with respect to a on both sides of the above equality gives

∫
φa(y|x, a)fx̃(x|a)dx +

∫
φ(y|x, a)fx̃a(x|a)dx = fỹa(y|a).

By substituting (17) into the above equation, we get (47).

Therefore, it suffices to prove that if (47) and (18) hold, then x̃ is weakly more valuable at

a than ỹ. The strategy of proof is as follows. Let sỹ be the optimal compensation schedule

for a given action a. We show that there exists a compensation schedule sx̃ contingent
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on x, such that sx̃ satisfies both the participation and the relaxed incentive compatibility

constraints at a, and the principal gets higher expected utility from sx̃ than from sỹ.

We construct sx̃ as follows

(48) u(sx̃(x)) =

∫
u(sỹ(y))φ(y|x, a)dy.

To show that sx̃ satisfies the participation constraint (1), we have

E[u(sx̃)|a] =

∫
u(sx̃(x))fx̃(x|a)dx =

∫ [∫
u(sỹ(y))φ(y|x, a)dy

]
fx̃(x|a)dx

=

∫
u(sỹ(y))

[∫
φ(y|x, a)fx̃(x|a)dx

]
dy

=

∫
u(sỹ(y))fỹ(y|a)dy

= E[u(sỹ)|a] ≥ c(aỹ),

where the first equality follows from (48), the third equality follows from (18), and the

inequality is the participation constraint (1) for ỹ.

To show that sx̃ satisfies the relaxed incentive compatibility constraint (3), we have

∫
u(sx̃(x))fx̃a(x|aỹ)dx =

∫ [∫
u(sỹ(y))φ(y|x, aỹ)dy

]
fx̃a(x|aỹ)dx

=

∫
u(sỹ(y))

[∫
φ(y|x, aỹ)fx̃a(x|aỹ)dx

]
dy

=

∫
u(sỹ(y))fỹa(y|aỹ)dy

=c′(aỹ),

where the first equality follows from (48), the third equality from (47), and the last equality

is the first-order necessary condition for the incentive compatibility constraint (2) for ỹ.

We have proven that sx̃ satisfies the participation and relaxed incentive compatibility

constraints at a. Then we are left to prove that the principal prefers sx̃ to sỹ.
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By Jensen’s inequality and the concavity of u(·), (48) implies that

(49) sx̃(x) ≤
∫
sỹ(y)φ(y|x, a)dy.

Then we have

V (x̃) =

∫∫
v(b− sx̃(x))f(x̃,b̃)(x, b|a)dx db

≥
∫∫

v
(
b−

∫
sỹ(y)φ(y|x, a)dy

)
f(x̃,b̃)(x, b|a)dx db

≥
∫∫ [∫

v(b− sỹ(y))φ(y|x, a)dy

]
fx̃(x|b, a)fb̃(b|a)dx db

=

∫∫
v(b− sỹ(y))

[∫
φ(y|x, a)fx̃(x|b, a)dx

]
fb̃(b|a)dy db

=

∫∫
v(b− sỹ(y))fỹ(y|b, a)fb̃(b|a)db dy

=

∫∫
v(b− sỹ(y))f(ỹ,b̃)(y, b|a)dy db = V (ỹ),

where the first inequality follows from (49), the second inequality follows from Jensen’s

inequality and the concavity of v(·), and the third equality follows from Condition (18).

The equivalence between the two sets of conditions can be easily proven as follows. If

there exists an artificial conditional density function φ(y|x, a) such that (17) and (18) hold,

we can define z̃ in such a way that fz̃(z|x, a, b) = φ(z|x, a). Then (19) and (20) are satisfied.

On the other hand, if (19) and (20) hold, we define φ(y|x, a) = fz̃(y|x, a). Then (17) and

(18) hold.This completes the proof.

Proof of Lemma 1

Proof. We first prove that (19) is equivalent to

(50) fz̃a(z|a) =

∫
fz̃(z|x, a)fx̃a(x|a)dx,

and then prove that (50) is equivalent to (21).
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First, taking a derivative with respect to a on both sides of the formula fz̃(z|a) =∫
fz̃(z|x, a)fx̃(x|a)dx gives

fz̃a(z|a) =

∫
fz̃a(z|x, a)fx̃(x|a)dx +

∫
fz̃(z|x, a)fx̃a(x|a)dx.

Substituting (19) into the above equation gives (21). We have thereby proven that (19) is

equivalent to (50).

It then suffices to prove that (50) is equivalent to (21). Note that

E [Lx̃ (x̃|a) |z, a] =

∫
fx̃a(x̃|a)

fx̃(x̃|a)
fx̃(x|z, a)dx

=

∫
fx̃a(x̃|a)

fx̃(x̃|a)

f(x̃,z̃)(x, z|a)

fz̃(z̃|a)
dx

=

∫
fx̃a(x̃|a)fz̃(z|x, a)dx

fz̃(z̃|a)
.

Therefore, (21) holds if and only if

∫
fx̃a(x̃|a)fz̃(z|x, a)dx

fz̃(z̃|a)
= Lz̃ (z|a) ≡ fz̃a(z̃|a)

fz̃(z̃|a)
,

or equivalently,
∫
fx̃a(x̃|a)fz̃(z|x, a)dx = fz̃a(z̃|a), which is exactly (50). This completes the

proof.

Proof of Proposition 8

Proof. The proof is composed of two parts. We first prove the sufficiency of (22) by showing

that if (22) holds, then there exists a strictly risk-averse principal, for whom a small variation

∆s(x̃,ỹ)(x,y) to the optimal contract sx̃(x) is strictly Pareto improving. We then prove the

necessity of (22) by showing that if (22) does not hold, then for an arbitrary contract s(x̃,ỹ),

there exists a contract sx̃ that weakly Pareto dominates s(x̃,ỹ).
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Proof of the sufficiency of (22): Let sx̃ be the optimal contract contingent on x̃. Condi-

tion (22) holds if and only if at least one of the equations in the following formula does not

hold,

(51) fỹ(y|x) = fỹ(y|x, a) = fỹ(y|x, a, b).

The first equation in (51) is equivalent to fỹa(y|x, a) = 0. By substituting this result

into the following equation,

L(x̃,ỹ)(x,y|a) ≡
f(x̃,ỹ)a

(x,y|a)

f(x̃,ỹ)(x,y|a)
=
fỹa(y|x, a)

fỹ(y|x, a)
+
fx̃a(x|a)

fx̃(x|a)
,

we have

(52) L(x̃,ỹ)(x,y|a) =
fx̃a(x|a)

fx̃(x|a)
≡ Lx̃(x|a).

The second equation in (51) says that given x and a, ỹ and b̃ are independent, or equiv-

alently

(53) fb̃(b|x,y, a) = fb̃(b|x, a).

In sum, (22) holds if and only if (52) or (53) does not hold.

Next we derive the principal’s and the agent’s marginal return from a small additional

variation ∆s(x̃,ỹ) to the optimal contract sx̃ at a given x. Let λ and µ be the multipliers

for the agent’s participation constraint and incentive compatibility constraint, respectively.
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The principal’s and the agent’s marginal returns ∆V and ∆U at a given x are9

∆V =−
∫∫

v′(b− sx̃(x))∆s(x̃,ỹ)(x,y)f(b̃,x̃,ỹ)(b,x,y|a)dbdy(54)

+ λu′(sx̃(x))

∫
∆s(x̃,ỹ)(x,y)f(x̃,ỹ)(x,y|a)dy

+ µu′(sx̃(x))

∫
∆s(x̃,ỹ)(x,y)f(x̃,ỹ)a

(x,y|a)dy.

∆U =u′(sx̃(x))

∫
∆s(x̃,ỹ)(x,y)f(x̃,ỹ)(x,y|a)dy.(55)

Let ∆s(x̃,ỹ)(x,y) take only two values. In particular, assume that for a set Y in the range

of ỹ, ∆s(x̃,ỹ)(x,y) = ∆s(x̃,ỹ)(x,Y) > 0 for all y ∈ Y and ∆s(x̃,ỹ)(x,y) = ∆s(x̃,ỹ)(x,Y
c) for

all y ∈ Yc, and

(56) ∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a) + ∆s(x̃,ỹ)(x,Y
c)f(x̃,ỹ)(x,Y

c|a) = 0,

where f(x̃,ỹ)(x,Y|a) =
∫
Y
f(x̃,ỹ)(x,y|a)dy and correspondingly for f(x̃,ỹ)(x,Y

c|a). Therefore,

the first term on the right-hand side of (54) can be written as

9For the mathematical technique used for deriving these formulas, refer to proposition 9.6.1 in Luenberger
(1969). See also Holmström (1979).
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∫∫
v′(b− sx̃(x))∆s(x̃,ỹ)(x,y)f(b̃,x̃,ỹ)(b,x,y|a)dbdy

(57)

=

∫
v′(b− sx̃(x))

[∫
∆s(x̃,ỹ)(x,y)f(b̃,x̃,ỹ)(b,x,y|a)dy

]
db

=

∫
v′(b− sx̃(x))

[
∆s(x̃,ỹ)(x,Y)

∫
Y

f(b̃,x̃,ỹ)(b,x,y|a)dy + ∆s(x̃,ỹ)(x,Y
c)

∫
Yc

f(b̃,x̃,ỹ)(b,x,y|a)dy

]
db

=

∫
v′(b− sx̃(x))

[
∆s(x̃,ỹ)(x,Y)f(b̃,x̃,ỹ)(b,x,Y|a) + ∆s(x̃,ỹ)(x,Y

c)f(b̃,x̃,ỹ)(b,x,Y
c|a)
]
db,

=

∫
v′(b− sx̃(x))

[
∆s(x̃,ỹ)(x,Y)f(b̃,x̃,ỹ)(b,x,Y|a)−

∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

f(x̃,ỹ)(x,Y
c|a)

f(b̃,x̃,ỹ)(b,x,Y
c|a)

]
db

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

∫
v′(b− sx̃(x))

[
f(b̃,x̃,ỹ)(b,x,Y|a)

f(x̃,ỹ)(x,Y|a)
−
f(b̃,x̃,ỹ)(b,x,Y

c|a)

f(x̃,ỹ)(x,Y
c|a)

]
db

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

∫
v′(b− sx̃(x)) [fb̃(b|x,Y, a)− fb̃(b|x,Y

c, a)] db,

where f(b̃,x̃,ỹ)(b,x,Y|a) =
∫
Y
f(b̃,x̃,ỹ)(b,x,y|a)dy and correspondingly for f(b̃,x̃,ỹ)(b,x,Y

c|a).

The fourth equality follows from (56). Similarly, the integral in the second term on the

right-hand side of (54) can be written as

∫
∆s(x̃,ỹ)(x,y)f(x̃,ỹ)(x,y|a)dy(58)

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a) + ∆s(x̃,ỹ)(x,Y
c)f(x̃,ỹ)(x,Y

c|a)

=0,

where the last equality follows from (56). Let f(x̃,ỹ)a
(x,Y|a) =

∫
Y
f(x̃,ỹ)a

(x,y|a)dy, and

correspondingly for f(x̃,ỹ)a
(x,Yc|a). The integral in the third term on the right-hand side of
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(54) can be written as

∫
∆s(x̃,ỹ)(x,y)f(x̃,ỹ)a

(x,y|a)dy(59)

=∆s(x̃,ỹ)(x,Y)

∫
Y

f(x̃,ỹ)a
(x,y|a)dy + ∆s(x̃,ỹ)(x,Y

c)

∫
Yc

f(x̃,ỹ)a
(x,y|a)dy

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)a
(x,Y|a) + ∆s(x̃,ỹ)(x,Y

c)f(x̃,ỹ)a
(x,Yc|a)

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)a
(x,Y|a)−

∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

f(x̃,ỹ)(x,Y
c|a)

f(x̃,ỹ)a
(x,Yc|a)

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

[
f(x̃,ỹ)a

(x,Y|a)

f(x̃,ỹ)(x,Y|a)
−
f(x̃,ỹ)a

(x,Yc|a)

f(x̃,ỹ)(x,Y
c|a)

]
,

=∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)
[
L(x̃,ỹ)(x,Y|a)− L(x̃,ỹ)(x,Y

c|a)
]
,

where the third equality follows from (56).

By substituting (57), (58), and (59) into (54) and (55), one gets

∆V = ∆s(x̃,ỹ)(x,Y)f(x̃,ỹ)(x,Y|a)

 µu′(sx̃(x))
(
L(x̃,ỹ)(x,Y|a)− L(x̃,ỹ)(x,Y

c|a)
)
−∫

v′(b− sx̃(x))
(
fb̃(b|x,Y, a)− fb̃(b|x,Y

c, a)
)
db

 .
∆U = 0.

Therefore, the sufficiency of (22) can be proven by showing that if (52) or (53) does not

hold, then there exists a set Y and a strictly concave v such that ∆V is strictly positive.

First, if (52) does not hold, then L(x̃,ỹ)(x,y|a) varies with y. Therefore, we can choose

the set Y such that

L(x̃,ỹ)(x,Y|a)− L(x̃,ỹ)(x,Y
c|a) > 0.

There also exists a strictly concave v(·) such that µ > 0. This is because µ > 0 when

v′′(·) = 0, i.e., µ is positive when the principal is risk neutral (see Jewitt, 1988). Then

according to the envelope theorem in Milgrom and Segal (2002), there exists a strictly concave

v(·), which is close enough to risk neutrality (for instance, if v(c) = 1 − e−αc with α → 0,)
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so that µ > 0 as well. In sum, there exists a set Y and a strictly concave v, such that

(60) µu′(sx̃(x))
[
L(x̃,ỹ)(x,Y|a)− L(x̃,ỹ)(x,Y

c|a)
]
> 0.

Second, assume that (53) does not hold. For any set Y in the range of ỹ, and for any set

B in the range of b̃, we always have

∫
fb̃(b|x,Y, a)db =

∫
B

fb̃(b|x,Y, a)db+

∫
Bc

fb̃(b|x,Y, a)db = 1,∫
fb̃(b|x,Y

c, a)db =

∫
B

fb̃(b|x,Y
c, a)db+

∫
Bc

fb̃(b|x,Y
c, a)db = 1.

Therefore, there exists a set Y in the range of ỹ and a set B in the range of b̃ with B < Bc,

i.e., b1 ∈ B and b2 ∈ Bc imply b1 < b2, such that

∫
B

[fb̃(b|x,Y, a)− fb̃(b|x,Y
c, a)] db = −ε < 0.∫

Bc

[fb̃(b|x,Y, a)− fb̃(b|x,Y
c, a)] db = ε > 0.

Then we can choose a concave v such that v′(b−sx̃(x)) = v1 if b ∈ B and v′(b−sx̃(x)) = v2

if b ∈ Bc. Because v′ is non-increasing and B < Bc, then v1 > v2. Therefore,

∫
v′(b− sx̃(x))

[
fb̃(b|x,Y, a)− fb̃(b|x,Y

c, a)
]
db(61)

=v1

∫
B

[fb̃(b|x,Y, a)− fb̃(b|x,Y
c, a)] db+ v2

∫
Bc

[fb̃(b|x,Y, a)− fb̃(b|x,Y
c, a)] db

=(v2 − v1)ε < 0.

Substituting (60) and (61) into ∆V , we get ∆V > 0. The procedure can be repeated for

a set of x values with positive measures. Therefore, we have shown that if (22) holds, then

by properly choosing a strictly concave utility v and a set Y in the range of ỹ, the principal

is strictly better off with the additive variation ∆s(x̃,ỹ)(x,y), without hurting the agent.
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Proof of the necessity of (22): Assume that (22) does not hold, i.e,

(62) fỹ(y|x, a, b) = fỹ(y|x), for almost all (x,y, b).

We prove that for any s(x̃,ỹ), there exists an sx̃ that is weakly more valuable than s(x̃,ỹ).

Define sx̃ as follows

(63) u(sx̃(x)) =

∫
u(s(x̃,ỹ)(x,y))fỹ(y|x)dy.

Then, by (62) and (63), we get

E[u(sx̃(x̃)|a)] ≡
∫
u(sx̃(x))fx̃(x|a)dx

=

∫∫
u(s(x̃,ỹ)(x,y))f(x̃,ỹ)(x,y|a)dxdy ≡ E[u(s(x̃,ỹ)(x̃, ỹ)|a)], ∀a.

Thus sx̃ results in the same action and welfare for the agent as s(x̃,ỹ) does.

By Jensen’s inequality, (63) also implies
∫
s(x̃,ỹ)(x,y)f(y|x)dy ≥ s(x), or equivalently

v

(
b−

∫
s(x̃,ỹ)(x,y)fỹ(y|x)dy

)
≤ v(b− sx̃(x)).

Applying Jensen’s inequality again on the above inequality gives

∫
v(b− s(x̃,ỹ)(x,y))fỹ(y|x)dy ≤ v(b− sx̃(x)).

Substituting for fỹ(y|x) = fỹ(y|x, a, b) and then taking the integral with respect to F(x̃,b̃)(x, b|a)

gives

V ((x̃, ỹ), a) ≡
∫∫∫

v(b− s(x̃,ỹ)(x,y))f(b̃,x̃,ỹ)(b,x,y|a)dbdxdy

≤
∫∫

v(b− sx̃(x))f(x̃,b̃)(x, b|a)dx db ≡ V (x̃, a).
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That is, the principal is at least as well off with sx̃ as with s(x̃,ỹ). Thus sx̃ is weakly more

valuable than s(x̃,ỹ). This completes the proof.

Proof of Lemma 2

Proof. First define

h(x; E) =

 0 if x /∈ E,

1 if x ∈ E.

Then h(x; E) is nondecreasing in x when E is an increasing set. If the transformation ϕT (a)

is nondecreasing in a for any nondecreasing function ϕ(x), Prob(x̃ ∈ E|a) = hT (a; E) is

nondecreasing in a. This proves the “if” part.

To prove the “only if” part, assume NISP and let ϕ(·) be nondecreasing. For α < β,

define

ϕ[α,β](x) = max (α,min(β, ϕ(x))) .

Therefore, ϕ[α,β](x) equals ϕ(x) when α ≤ ϕ(x) ≤ β, but equals α when ϕ(x) < α and

equals β when ϕ(x) > β. Note that ϕ[α,β](·) can be approximated uniformly by the sum

(64) ϕN[α,β](x) = α +
N∑
i=1

[(β − α)/N ]h(x; Ei),

where the sets Ei = {x : ϕ(x) ≥ α + (β − α)(i/N)} are increasing sets. In addition, the

transformation ϕT (a) = E[ϕ(x̃)|a] is linear and continuous under the uniform norm. Thus,

applying this transformation to (64) indicates that ϕT[α,β](a) is approximated uniformly by

(
ϕN[α,β]

)T
(a) = α +

N∑
i=1

[(β − α)/N ]hT (a; Ei),

where hT (a; Ei) =
∫
h(x; Ei)f(x|a)dx = Prob(x̃ ∈ Ei|a) is nondecreasing in a by NISP.

Therefore,
(
ϕN[α,β]

)T
(a) is nondecreasing in a for all N , so is ϕT[α,β](a). Finally, letting α →
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−∞ and β → ∞, and using the monotone convergence theorem shows that ϕT[−∞,∞](a) =

ϕT (a) is nondecreasing in a.

Proof of Proposition 9

Proof. The Kuhn-Tucker conditions for the doubly relaxed program are:10

∫
v′(b− s∗∗(x))f(b|x, a∗∗)db

u′(s∗∗(x))
= λ∗∗ + µ∗∗

fa
f

(x|a∗∗).

(65)

∫∫
v(b− s∗∗(x))fa(b,x|a∗∗)dbdx + λ∗∗

[ ∫
u(s∗∗(x))fa(x|a∗∗)dx− c′(a∗∗)

]
+ µ∗∗

[ ∫
u(s∗∗(x))faa(x|a∗∗)dx− c′′(a∗∗)

]
= 0.∫

u(s∗∗(x))f(x|a∗∗)dx− c(a∗∗) ≥ 0, λ∗∗ ≥ 0, λ∗∗
[ ∫

u(s∗∗(x))f(x|a∗∗)dx− c(a∗∗)
]

= 0.

∫
u(s∗∗(x))fa(x|a∗∗)dx− c′(a∗∗) ≥ 0, µ∗∗ ≥ 0, µ∗∗

[ ∫
u(s∗∗(x))fa(x|a∗∗)dx− c′(a∗∗)

]
= 0.

(66)

To prove µ∗ ≥ 0, it suffices to prove that µ∗ = µ∗∗, which follows directly from proving

that the first inequality in (66) takes strict equality, i.e.,
∫
u(s∗∗(x))fa(x|a∗∗)dx−c′(a∗∗) = 0.

We prove
∫
u(s∗∗(x))fa(x|a∗∗)dx − c′(a∗∗) = 0 by the method of contradiction. If∫

u(s∗∗(x))fa(x|a∗∗)dx − ca(a∗∗) > 0, as we assumed for contradiction, then we must have∫∫
v(b − s∗∗(x))fa(b,x|a∗∗)db dx < 0. Otherwise an increase of a would be Pareto improv-

ing and a∗∗ would not be optimal. We can, however, prove the opposite result, namely∫∫
v(b− s∗∗(x))fa(b,x|a∗∗)db dx ≥ 0. This yields our contradiction.

10The derivation of the Kuhn-Tucker conditions follows the standard procedure and is available from the
author upon request.
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First, using fA(b,x|a∗∗) = fa(b|x, a∗∗)f(x|a∗∗) + f(b|x, a∗∗)fa(x|a∗∗) gives

∫∫
v(b− s∗∗(x))fa(b,x|a∗∗)db dx

(67)

=

∫∫
v(b− s∗∗(x)) [fa(b|x, a∗∗)f(x|a∗∗) + f(b|x, a∗∗)fa(x|a∗∗)] db dx

=

∫ [∫
v(b− s∗∗(x))fa(b|x, a∗∗)db

]
f(x|a∗∗)dx +

∫ [∫
v(b− s∗∗(x))f(b|x, a∗∗)db

]
fa(x|a∗∗)dx

=

∫ [∫
v(b− s∗∗(x))dFa(b|x, a∗∗)

]
f(x|a∗∗)dx +

∫ [∫
v(b− s∗∗(x))dF (b|x, a∗∗)

]
fa(x|a∗∗)dx.

It suffices to prove that both terms after the last equality of (67) are nonnegative.

Concavity of v and the SOSD condition of F (b|x, a) in a imply
∫
v(b−s∗∗(x)) dFa(b|x, a∗∗) ≥

0. Therefore, the first term after the last equality of (67) is nonnegative.

As to the second term, the NISP condition on f(x|a) implies that the second term is

nonnegative if
∫
v(b− s∗∗(x))dF (b|x, a∗∗) is nondecreasing in x, that is, if

∂
∫
v(b− s∗∗(x))dF (b|x, a∗∗)

∂xi

=− s∗∗xi (x)

∫
v′(b− s∗∗(x))dF (b|x, a∗∗) +

∫
v(b− s∗∗(x))dFxi(b|x, a∗∗) ≥ 0, ∀i = 1, 2, ..., n,

which is equivalent to

(68) s∗∗xi (x) ≤
∫
v(b− s∗∗(x))dFxi(b|x, a∗∗)∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

, ∀i = 1, 2, ..., n.

To prove (68), let’s look at (65), which characterizes s∗∗(x). If
∫
u(s∗∗(x))fa(x|a∗∗)dx−

ca(a
∗∗) > 0 as assumed for contradiction, then µ∗∗ = 0, and (65) can be rewritten as

(69)

∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

u′(s∗∗(x))
= λ∗∗.
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Multiplying both sides by u′′(s∗∗(x)) gives

(70) λ∗∗u′′(s∗∗(x)) = −rA(s∗∗(x))

∫
v′(b− s∗∗(x))dF (b|x, a∗∗).

Implicit differentiation of (69) in xi gives

s∗∗xi (x) =

∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)∫

v′′(b− s∗∗(x))dF (b|x, a∗∗) + λ∗∗u′′(s∗∗(x))
.

Then substituting (70) into the above formula gives

(71) s∗∗xi (x) =

∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)∫

v′′(b− s∗∗(x))dF (b|x, a∗∗)− rA(s∗∗(x))
∫
v′(b− s∗∗(x))dF (b|x, a∗∗)

.

Next, (25) and (26) imply that rA(s∗∗(x)) ≥ K
β
≥ rP (b−s∗∗(x))

β
, or equivalently βrA(s∗∗(x)) ≥

−v′′(b−s∗∗(x))
v′(b−s∗∗(x))

. Rearranging this inequality gives

v′′(b− s∗∗(x)) + βrA
(
s∗∗(x)

)
v′(b− s∗∗(x)) ≥ 0,

or equivalently, v′(b − s∗∗(x)) + βrA
(
s∗∗(x)

)
v(b − s∗∗(x)) is nondecreasing in b. This result

together with the FOSD condition of F (b|x, a∗∗) in x implies that

∫ [
v′(b− s∗∗(x)) + βrA(s∗∗(x))v(b− s∗∗(x))

]
dFxi(b|x, a∗∗) ≥ 0,

or equivalently

rA(s∗∗(x)) ≥
−
∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)

β
∫
v(b− s∗∗(x))dFxi(b|x, a∗∗)

.

Note that the right-hand side of the above inequality is positive, as it is a negative number

over another negative number. By substituting the above inequality in (71) we get

s∗∗xi (x) ≤ 1∫
v′′(b−s∗∗(x))dF (b|x,a∗∗)∫
v′(b−s∗∗(x))dFxi (b|x,a∗∗)

+
∫
v′(b−s∗∗(x))dF (b|x,a∗∗)

β
∫
v(b−s∗∗(x))dFxi (b|x,a∗∗)

.
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Thus the central inequality (68) will follow if

(72)

∫
v′′(b− s∗∗(x))dF (b|x, a∗∗)∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗)

≥
(

1− 1

β

) ∫
v′(b− s∗∗(x))dF (b|x, a∗∗)∫
v(b− s∗∗(x))dFxi(b|x, a∗∗)

.

Now we are left to prove that (26) implies (72).

On one hand, the first part of (26) implies that −v′′(b−s∗∗(x))
v′(b−s∗∗(x))

≥
(

1− 1
β

)
K. By mul-

tiplying both sides by v′(b − s∗∗(x)) and then integrating with respect to F (b|x, a∗∗), one

gets

(73) −
∫
v′′(b− s∗∗(x))dF (b|x, a∗∗) ≥

(
1− 1

β

)
K

∫
v′(b− s∗∗(x))dF (b|x, a∗∗).

On the other hand, the second part of (26) implies that v′′(b−s∗∗(x))+Kv′(b−s∗∗(x)) ≥ 0,

which together with the FOSD condition of F (b|x, a∗∗) in x implies that

∫
[v′(b− s∗∗(x)) +Kv(b− s∗∗(x))] dFxi(b|x, a∗∗) ≥ 0

or equivalently

(74) −
∫
v′(b− s∗∗(x))dFxi(b|x, a∗∗) ≤ K

∫
v(b− s∗∗(x))dFxi(b|x, a∗∗).

Due to the concavity of v in b and due to the FOSD condition of F (b|x, a∗∗) in x, the

left-hand side of (74) is positive. Clearly, (72) follows from (73) and (74). We thereby arrive

at a contradiction by assuming
∫
u(s∗∗(x))fa(x|a∗∗)dx− ca(a∗∗) > 0, so it must be true that∫

u(s∗∗(x))fa(x|a∗∗)dx− ca(a∗∗) = 0, and the relaxed and doubly relaxed programs coincide.

Therefore, µ∗ = µ∗∗ ≥ 0.

Finally, the condition that the principal has constant absolute risk aversion corresponds

to the extreme case with β = ∞ and K = rP , and the condition that the range of the

absolute risk aversion of the principal is not higher than that of the agent corresponds to
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another extreme case with β = 1 and K =∞.

Proof of Proposition 10

Proof. First, we need to prove that s(x) is nondecreasing in x. Differentiation with respect

to xi on both sides of (65) gives

∫
v′(b− s∗(x))dFxi(b|x, a∗)u′(s∗(x))−

∫
v′′(b− s∗(x))dF (b|x, a∗)u′(s∗(x)) s∗xi(x)

−
∫
v′(b− s∗(x))dF (b|x, a∗)u′′(s∗(x)) s∗xi(x) = µ∗

∂ fa
f

(x|a∗)
∂xi

[u′(s∗(x))]2, ∀x.

The RHS is always nonnegative by the result that µ∗ ≥ 0 (Proposition 9) and by the MLR

condition.

As to the LHS, the first term on the LHS is nonpositive, due to the concavity of v and

the FOSD condition of F (b|x, a∗∗) in x. Suppose for contradiction that s∗xi
(x) < 0, then

both the second and the third terms on the LHS would be negative. Therefore the LHS is

negative, which is a contradiction to the positive RHS. Thus it must be true that s∗xi(x) ≥ 0.

Since s∗(x) is nondecreasing in x, so is u(s∗(x)). Then according to Lemma 3, the CISP

condition implies that
∫
u(s∗(x))f(x|a)dx is concave in a, and this completes the proof.

Proof of Proposition 11

Proof. According to Proposition 9, the FOSD, SOSD, and NISP conditions combined with

Condition (i) or (ii) imply that µ∗ ≥ 0. Then by the MCLR condition, the right-hand side

of (65) is nondecreasing and concave in x.

Taking a nondecreasing and concave transformation u(ω(· ; x, a∗)) on both sides of (65),

we get

u(s∗(x)) = u
(
ω(λ∗ + µ∗

fa
f

(x|a∗); x, a∗)
)
,

which is nondecreasing and concave in x by properties of composition of nondecreasing

and concave functions. Then according to Lemma 4, the CICSP condition implies that
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∫
u(s∗(x))f(x|a)dx is concave in a, and this completes the proof.
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