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Abstract 

This paper considers the adaptability of estimation methods for binary response panel 
data models to multiple fixed effects. It is motivated by the gravity equation used in 
international trade, where important papers such as Helpman, Melitz and Rubinstein 
(2008) use binary response models with fixed effects for both importing and exporting 
countries. Econometric theory has mostly focused on the estimation of single fixed 
effects models. This paper investigates whether existing methods can be modified to 
eliminate multiple fixed effects for two specific models in which the incidental parameter 
problem has already been solved in the presence of a single fixed effect. We find that it is 
possible to generalize the conditional maximum likelihood approach of Rasch (1960, 
1961) to include two fixed effects for the logit. Surprisingly, despite many similarities 
with the logit, Manski’s (1987) maximum score estimator for binary response models 
cannot be adapted to the presence of two fixed effects. Monte Carlo simulations show 
that the conditional logit estimator presented in this paper is less biased than other logit 
estimators without sacrificing on precision. This superiority is emphasized in small 
samples. An application to trade data using the logit estimator further highlights the 
importance of properly accounting for two fixed effects. 

JEL classification: C23, C25, F14 
Bank classification: Econometric and statistical methods 

Résumé 

L’auteure évalue l’adaptabilité des méthodes d’estimation utilisées pour les modèles de  
données de panel à réponse binaire à l’introduction d’effets fixes multiples. Ce travail 
s’inspire de l’usage des modèles de gravité dans l’analyse du commerce international, 
domaine dans lequel des travaux importants, comme ceux de Helpman, Melitz et 
Rubinstein (2008), s’appuient sur des modèles binaires à effets fixes pour les pays 
importateurs et exportateurs. En économétrie, les théoriciens se sont surtout attachés à 
estimer des modèles en présence d’un seul effet fixe. L’auteure se demande s’il est 
possible de modifier les méthodes d’estimation existantes afin d’éliminer les effets fixes 
multiples sur deux modèles spécifiques où une solution a été apportée au problème des 
paramètres incidents dans un cadre avec un seul effet fixe. Il s’avère qu’il est possible de 
généraliser l’approche du maximum de vraisemblance conditionnelle proposée par Rasch 
(1960 et 1961) de manière à inclure deux effets fixes dans le modèle logit considéré. Fait 
étonnant, malgré ses nombreuses similitudes avec le modèle logit, l’estimateur du score 
maximum de Manski (1987), qui est appliqué aux modèles binaires, ne peut être adapté si 
deux effets fixes sont introduits. Les simulations de Monte-Carlo montrent que 
l’estimateur conditionnel logit présenté par l’auteure permet d’obtenir des estimations 
moins biaisées que celles d’autres estimateurs logit sans pour autant sacrifier la précision. 
Cette supériorité est davantage accusée dans le cas des petits échantillons. Appliqué aux 
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données relatives aux échanges commerciaux, l’estimateur logit étudié montre encore 
plus qu’il convient de bien tenir compte des doubles effets fixes. 

Classification JEL : C23, C25, F14 
Classification de la Banque : Méthodes économétriques et statistiques 

 

 



1 Introduction

Fixed effects have long been recognized as a key element of econometric modelling of panel

data, and a significant literature now exists in econometric theory on the inclusion of fixed

effects in both linear and nonlinear panel data models. Although econometric theory has

largely focused on single fixed effects estimators, empirical studies often include multiple

fixed effects. The present paper attempts to bridge part of this gap by looking at the very

popular logit model as well as Manski’s (1987) more general maximum score estimator. The

empirical relevance is demonstrated using Monte Carlo simulations and an application to

international trade data.

This paper was motivated by the fixed effects gravity equation models used in inter-

national trade. This area of economics is concerned with the estimation of the factors

conducive to trade between countries. The importance of using fixed effects to control for

country-specific characteristics has been emphasized in an influential paper by Anderson and

Van Wincoop (2003). They called these characteristics multilateral resistance factors, and

they were meant to capture the fact that some countries simply trade more, or less. Many

subsequent papers contributing to the gravity equation literature have included fixed effects

in their estimation strategies. For example, Helpman, Melitz and Rubinstein (2008) (HMR)

and Santos Silva and Tenreyro (2006) estimate nonlinear panel data models with fixed ef-

fects for both importing and exporting countries. The first paper is a prominent study in

the particular strand of the gravity equation literature that uses binary response panel data

models to estimate the probability of positive trade.

This paper investigates whether existing methods for eliminating a single fixed effect can

be modified to eliminate multiple fixed effects. This is not only relevant for data consisting of

country pairs, but also in a number of other areas of empirical microeconomics. For example,

in an influential paper, Abowd, Kramarz and Margolis (1999) used matched firm-employee

data to study wage determinants of French workers. For such data sets, one might want to
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allow for both firm and worker fixed effects.1 In a similar fashion, Aaronson, Barrow and

Sander (2007) and Rivkin, Hanushek and Kain (2005) used matched data between students

and teachers to study academic achievement. In both of those papers, multiple fixed effects

were also used. In a more recent paper, Kirabo Jackson (2013) combines these two ideas to

study the effect of match quality between employee and employer on productivity by using

matched student-teacher-school data. Part of his methodology relies on a logit with both

teacher and school fixed effects.

Fixed effects do not generally cause any problem in “static” linear models, since they

can easily be differenced out to allow consistent estimation of the relevant parameters. How-

ever, when considering nonlinear panel data models, we encounter the well-known incidental

parameter problem identified by Neyman and Scott (1948).2 This has motivated a rich lit-

erature on the estimation of single fixed effects nonlinear panel data models. The first

model considered in the literature is the logit model studied in Rasch (1960, 1961). Manski

(1987) generalized this to develop a conditional maximum score estimator for binary response

models that remains consistent under weak assumptions on the distribution of the errors.

These solutions to the incidental parameter problem, like those introduced in this paper, are

model specific.

With a more general approach to the problem, Hahn and Newey (2004) show that when

n and T grow at the same rate, the fixed effects estimator is asymptotically biased and

the asymptotic confidence intervals are wrong. They suggest two bias correction methods

(the panel jackknife and the analytic bias correction) for the case of a single fixed effect.

Also working on a general method, Arellano and Bonhomme (2009) suggest bias-reducing

weighting schemes that can produce asymptotically valid confidence intervals when N and

T grow at the same rate. In addition, Bonhomme (2012) proposes a systematic approach

encompassing all nonlinear panel data models. He constructs moment restrictions on the

1Other authors contributing to that literature, for example, Postel-Vinay and Robin (2002), have raised
questions concerning the validity of the fixed effects estimation with these types of data and found alternative
ways to allow for worker and employer heterogeneity.

2The incidental parameter problem refers to the fact that in nonlinear models with a fixed number of
observations for each individual, the bias in the estimation of the fixed effects contaminates the estimates of
the parameters of interest.
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parameters of interest that are free of the individual effects (once again, only one effect).

This method applies to models with continuous dependent variables and is consistent for

fixed T . The first restriction would exclude logit models in general and the example studied

in section 4 of the present paper in particular, for obvious reasons. Moreover, the second

restriction would be problematic for the gravity literature since it generally does not have a

fixed T .

Very little work has been done in econometric theory for nonlinear panel data models

involving multiple fixed effects. One exception is Fernandez-Val and Weidner (2011), who

adapt the analytical and jackknife bias correction methods introduced in Hahn and Newey

(2004) to nonlinear models with additive or interactive individual and time effects. Their

approach allows them to cover a broad class of popular models but does not completely

eliminate the asymptotic bias and is limited to large-T panels.

The paper will proceed as follows: for the two models mentioned above, we describe the

estimation approach developed in the literature for one fixed effect and then try to generalize

it to two. We find that we can adapt the conditional maximum likelihood to estimate a logit

with two fixed effects. In general, this conditioning method is analogous to the difference-in-

differences estimator used in linear models. However, despite many similarities with the logit,

we find that the maximum score estimator cannot be adapted for multiple fixed effects. We

then proceed to show the relevance of appropriately dealing with two fixed effects in binary

response models using the logit estimator presented in this paper. To accomplish that, we

first carry out Monte Carlo simulations, after which we use data on trade flows between

countries to test the logit estimator on the gravity equation.

Given the large number of empirical applications using multiple fixed effects and the

general popularity of binary response models, this method has broad applicability. Further-

more, we find that appropriately controlling for multiple fixed effects has a substantial effect

on the estimated parameters of interest relative to models without fixed effects or models

inappropriately controlling for fixed effects.
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2 Multiple Fixed Effects in Binary Response

Panel Data Models

2.1 Fixed effects in a logit model

The first binary response model we shall consider is the simple and well-documented logit

model. There is a well-known application of the conditional maximum likelihood “trick” that

allows us to solve the incidental parameter problem in a logit in the presence of one fixed

effect. As we will see, it is possible to generalize this method to include two fixed effects.

We begin by presenting the original solution, following somewhat closely the exposition of

Arellano and Honoré (2001), before moving on to two fixed effects.

For T = 2, suppose that we have observations generated by:

yit = 1{x′itβ + αi + εit ≥ 0} i = 1, ..., n,

where for all i and t the εit are independent and have a logistic distribution conditional on

the x’s and the individual fixed effect α. This implies that we can express the following

probability:

Pr(yi1 = 1 | xi1, xi2, αi) =
exp(x′i1β + αi)

1 + exp(x′i1β + αi)
. (1)

It is then easy to show that the conditional likelihood will eliminate the fixed effect such

that:

Pr(yi1 = 1 | yi1+yi2 = 1, xi1, xi2, αi)

=
Pr(yi1 = 1 | xi1, xi2, αi)Pr(yi2 = 0 | xi1, xi2, αi)

Pr(yi1 = 1, yi2 = 0 | xi1, xi2, αi) + Pr(yi1 = 0, yi2 = 1 | xi1, xi2, αi)

=
exp(xi1 − xi2)′β

1 + exp(xi1 − xi2)′β
. (2)

We can then find an estimator for the parameter β by applying this function to all pairs

of observations for a given individual, and for all individuals. This can be generalized to

the case where T > 2, and is easy enough to calculate. Note that we are conditioning on
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yi1+yi2 = 1, which means that we are using the information contained in pairs of observations

where the binary indicator changed. This approach to eliminate the fixed effects is also the

one used in Manski’s (1987) maximum score estimator, which we will analyze in the next

subsection. It is possible to obtain a likelihood function when T > 2, by conditioning on∑T
t=1 yit to obtain the conditional distribution:

P
(
yi1, . . . , yit |

T∑
t=1

yit, xi1, . . . , xit, αi

)
=

exp(
∑T

t=1 yitx
′
itβ)∑

(d1,...,dt)∈B exp(
∑T

t=1 dtx
′
itβ)

, (3)

withB being the set of all sequences of zeros and ones that have
∑T

t=1 dit =
∑T

t=1 yit (Arellano

and Honoré 2001). Note that this implies that
∑T

t=1 yit is a sufficient statistic for αi.

We now show that a similar approach can be used in the case of two fixed effects in a

logit model and provide an analogous result. Suppose that the observations are now given

by

yij = 1{x′ijβ + µi + αj + εij ≥ 0} i = 1, . . . , n, j = 1, . . . , n, (4)

where µi and αj are the fixed effects and εij follows a logistic distribution.3 Then, by applying

the method used above to eliminate one fixed effect, we can write the following probabilities:4

Pr(ylj = 1 | x, µ, α, ylj + ylk = 1) =
exp

[
(xlj − xlk)′β + αj − αk

]
1 + exp

[
(xlj − xlk)′β + αj − αk

] (5)

and

Pr(yij = 1 | x, µ, α, yij + yik = 1) =
exp

[
(xij − xik)′β + αj − αk

]
1 + exp

[
(xij − xik)′β + αj − αk

] . (6)

As can be seen, the two previous equations no longer depend on the µ fixed effects. However,

they are still expressed in terms of the α’s. We now try to find a conditional probability that

does not depend on the latter. First, we notice that equations (5) and (6) are like a logit

with (xij − xik) as an explanatory variable and (αj − αk) as a fixed effect. We can therefore

3To remain consistent with the gravity model that motivated this paper and is used in the section 4
application, we illustrate our approach for the case where n = T . Note, however, that the method does not
rely on this equality nor does it require a large-T panel.

4Throughout the paper, x will refer to the vector of all x’s.
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apply the trick a second time; hence we compare it to another pair of observations with the

same “fixed effect.” Using both equations (5) and (6), and defining

c ≡ {ylj + ylk = 1, yij + yik = 1},

we can now write the following conditional probability:

Pr(ylj = 1 | x, µ, α, ylj + ylk = 1, yij + yik = 1, yij + ylj = 1)

=
Pr(ylj = 1, yij + ylj = 1 | x, µ, α, c)

Pr(yij + ylj = 1 | x, µ, α, c)

=
Pr(ylj = 1 | x, µ, α, c)Pr(yij = 0 | x, µ, α, c)

Pr(ylj = 1, yij = 0 | x, µ, α, c) + Pr(ylj = 0, yij = 1 | x, µ, α, c)

=
exp

[
(xlj − xlk)′β + αj − αk

]
exp

[
(xlj − xlk)′β + αj − αk

]
+ exp

[
(xij − xik)′β + αj − αk

]
=

exp
[
((xlj − xlk)− (xij − xik))′β

]
1 + exp

[
((xlj − xlk)− (xij − xik)′β

] . (7)

The probability no longer depends on the fixed effects, hence allowing us to solve the inci-

dental parameter problem in the presence of two fixed effects. Indeed, we could now write

a conditional maximum likelihood function or apply the last expression to all quadruples of

observations, as with one fixed effect. Since the latter is easier to implement, the function

to maximize is given by

n∑
i=1

n∑
j=1

∑
l,k∈Zij

log

(
exp

[
((xlj − xlk)− (xij − xik))′β

]
1 + exp

[
((xlj − xlk)− (xij − xik))′β

]), (8)

where Zij is the set of all the potential k and l that satisfy ylj+ylk = 1, yij+yik = 1, yij+ylj =

1 for the pair ij.

In the context of epidemiological studies, Hirji, Mehta, and Patel (1987) show that a

similar recursive conditioning can be used to eliminate what they call nuisance parameters

and speed up computations. The nuisance parameters that they consider are not fixed effects

and do not relate to the incidental parameters problem; they are simply normal covariates
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(like the x variables in our model) that one needs to control for but for which the effect on

the dependent variable is not of interest (for example, the constant).

To assess the accuracy of this two fixed effects logit estimator and compare it with other

logit estimators, we ran Monte Carlo simulations. The results are presented in section 3.

We now move on to a related model where we achieve a different outcome, thereby showing

that solving the incidental parameter problem for one fixed effect does not guarantee that it

can be done for two or more.

2.2 Manski’s maximum score estimator

Manski (1987) developed a consistent maximum score estimator for binary response models

allowing for individual fixed or random effects in panel data. This estimator, unlike its

predecessors (e.g., Andersen 1970), remains consistent under very weak assumptions on

the disturbances. This characteristic could make a multiple fixed effects maximum score

estimator very useful. Therefore, we want to investigate the possibility of generalizing this

estimator to the case where there are two fixed effects. The conditional maximum score

estimator is similar to the estimator of the logit model. Indeed, it is also applied to a binary

response model and uses pairs of observations for the same individual where the value of the

indicator variable differs. However, unlike the logit conditional maximum likelihood, this

estimator does not generalize to the case with two fixed effects, even under a stronger set of

assumptions. As will be detailed later, this is due to the lack of recursive structure in this

particular model.

In Manski’s original paper, the model has the form:

P (yit = 1 | xi1, xi2, αi) = Fi(x
′
itβ + αi) t = 1, 2,

where αi once again represents the individual effect. Manski’s (1987) first assumption is that

the distribution F depends on i. It requires the disturbance to be stationary conditional on

the identity of the panel member but does not restrict it to be the same across individuals.

7



Manski’s key result resides in his first lemma:

Lemma M 1.

x′i2β > x′i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) > P (yi1 = 1 | xi1, xi2, αi)

x′i2β = x′i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) = P (yi1 = 1 | xi1, xi2, αi) (9)

x′i2β < x′i1β ⇐⇒ P (yi2 = 1 | xi1, xi2, αi) < P (yi1 = 1 | xi1, xi2, αi).

If we condition on yi1 + yi2 = 1, we obtain:

P (yi2 = 1 | yi1 + yi2 = 1, xi1, xi2, αi)


> 1/2 if (xi2 − xi1)′β > 0

= 1/2 if (xi2 − xi1)′β = 0

< 1/2 if (xi2 − xi1)′β < 0.

(10)

The probability in (10) takes the same form as in Manski (1975), so it is possible to use the

maximum score estimator. This first Lemma allows him to develop, under some identification

conditions, a consistent estimator by maximizing for b the sample analog of the following

equation:

H(b) ≡ E[sgn((xi2 − xi1)′b)(yi2 − yi1)] (11)

for the observations where yi1 6= yi2.

Unfortunately, this approach cannot be generalized in such a way as to generate an

equivalent to this necessary Lemma for the case of multiple fixed effects panel data models.

Indeed, following a similar line of thought as for the logit case presented earlier, we would

hope to adapt Lemma M 1 by applying the same type of conditioning twice.

Introducing a second fixed effect in the model, we now have

P (yij = 1 | x, µ, α) = F (x′ijβ + µi + αj) i, j = 1, . . . , n.
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Here we restrict F to be the same for all observations. In other words, all the disturbances

are drawn from the same distribution. This is more restrictive than Manski’s assumption,

but still allows for an interesting range of models. We will show that even under this stricter

set of assumptions, we cannot generalize this estimator to the case of two fixed effects. To

do so we first apply an analogous conditioning to that of equation (10) to eliminate µi and

obtain:

P (yij = 1 | yij + yik = 1,x, µ, α)


> 1/2 if (xij − xik)′β + αj − αk > 0

= 1/2 if (xij − xik)′β + αj − αk = 0

< 1/2 if (xij − xik)′β + αj − αk < 0.

This is similar to the first-step equations of the logit model (i.e., equations (5) and (6)):

explanatory variable (xij−xik) and fixed effect αj−αk. However, to apply this conditioning

again we would need P (yij = 1 | yij + yik = 1,x, µ, α) to have the form F
(
(xij − xik)′β +

αj − αk

)
where F is a CDF. Yet, this does not hold: we can’t attest that this probability is

always increasing. Therefore, we cannot apply Manski a second time: Manski’s maximum

score estimator cannot be adapted to the presence of two fixed effects, even under a stronger

set of assumptions.

Fundamentally, the maximum score estimator fails in the presence of multiple fixed effects

because it does not have a recursive structure. The logit can accommodate two fixed effects

because using the known method once to deal with the first fixed effect gives us another logit,

therefore allowing a second application of that method. This does not hold for Manski’s

maximum score estimator. We will now look at the performance of the conditional logit

with two fixed effects using Monte Carlo simulations.

3 Monte Carlo Simulations

In this section, we present Monte Carlo evidence to support the multiple fixed effects esti-

mator developed in this paper: the logit estimator given by the maximization of equation
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(8). For convenience, we will refer to this estimator as Logit 2FE. The simulations will

compare that estimator to a regular logit (simply called Logit in what follows), ignoring the

fixed effects, and a logit estimating all the fixed effects (putting in dummies, hereafter called

Logit FE). Recall that this last estimator is subject to the incidental parameter problem.

To account for different possible features of the data, this comparison will be made for

four different designs. All of these designs are applied to the estimation of the following

model:

yij = 1{x′ijβ + µi + αj + εij ≥ 0} i = 1, . . . , n, j = 1, . . . , n,

where xij is a vector of five explanatory variables5 drawn from a standard normal distribution

and the error term εij is drawn from a logistic distribution. The first design has no fixed

effects (µi = αj = 0 ∀i, j). The second design has fixed effects drawn from a standard

normal distribution uncorrelated with the explanatory variables. In both of these first two

designs, β1 = 1 and β2 = β3 = β4 = β5 = 0. The third design has fixed effects correlated

with the first explanatory variables. More specifically, x1 = rndn + α + η, where rndn

is a standard normal and α and η are the same fixed effects as in the second design. To

illustrate how this affects the coefficient on other explanatory variables uncorrelated with

the fixed effects, we now also have β2 = 1. The first three designs do not have resampling of

the x’s or the fixed effects in each replication. However, since it is more common in Monte

Carlo studies to have resampling, the fourth and last design replicates the second design,

but with resampling of the data. Each design is estimated both for n = 136 and n = 68 (i.e.,

with 18,496 and 4,624 observations, respectively). These are both standard size ranges for

trade studies.6 Whenever fixed effects are estimated, the coefficients are truncated in order to

ensure convergence.7 The results from 1,000 replications are given in Tables 1 through 4. For

each estimator considered, we report the median bias, the median absolute deviation (MAD),

the mean bias and the root mean squared error (RMSE) for all five coefficient estimates.

5The simulation design is chosen to match as closely as possible the empirical application.
6The sample size in Santos Silva and Tenreyro (2006) is 136 countries.
7This is done in order to avoid the fixed effects taking on extremely large values (in absolute terms) to

accommodate individuals with only zeros or only ones.

10



In addition, in order to get a more precise picture of how the relative performance of these

estimators varies with sample size, we simulate the design with correlated fixed effects (i.e.,

design 3) for n = [50, 75, 100, . . . , 200]. These results, for the coefficient β1, are reported in

Figures 1 and 2.

Using the median absolute deviation as the measure of the precision and looking at the

median bias8 we see that for all designs, the Logit 2FE presented in this paper has smaller

bias without sacrificing precision. As expected, sample size matters, both for the bias and

the precision. Indeed, the median absolute deviation is approximately twice as large in the

small sample for all three estimators in all designs. Since the sample size when n = 68 is

four times smaller than when n = 136, a doubling of the MAD is what we would expect.

Moreover, while for the Logit FE, cutting the sample by half almost doubles the median

bias on the positive coefficient in all designs, it has no significant impact on the median

bias for the Logit 2FE. Except in the first design, which has no fixed effects, the regular

logit is severely biased, especially when the fixed effects are correlated with the explanatory

variable. This is not surprising since except for the case without fixed effects, that estimator

is misspecified. Design 1 (see Table 1) shows that wrongly assuming that there are fixed

effects when there are none can lead to biased estimates when using the Logit FE, but

not when using the Logit 2FE presented in this paper. Comparing the second and third

designs (uncorrelated and correlated fixed effects, respectively), we observe that when the

fixed effects are correlated with one of the explanatory variables, not only does it increase

the bias on the coefficient of that variable for the Logit FE, but it also causes bias on the

other positive coefficients. Indeed, we see that β1 has a median bias of 0.0266, compared

to 0.0201 in design 2, and β2 a median bias of 0.0241 (in design 3). This is amplified in

the small sample. Still comparing designs with uncorrelated and correlated fixed effects, we

further observe that the median bias remains similarly small for the Logit 2FE, showing that

this estimator is equally capable of dealing with correlated and uncorrelated fixed effects.

Comparing designs 2 and 4, we see that, as anticipated, resampling the x’s in each replication

has little to no effect on the results.

8We mostly discuss results for the positive coefficient(s).
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Table 1: Design 1 - no fixed effects

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 0.0001 0.0107 0.0002 0.0155

β2 −0.0004 0.0068 −0.0003 0.0103
β3 −0.0002 0.0077 −0.0002 0.0108
β4 −0.0002 0.0074 −0.0001 0.0109
β5 0.0003 0.0072 0.0003 0.0109

Logit FE β1 0.0187 0.0209 0.0186 0.0290
β2 −0.0012 0.0126 −0.0003 0.0186
β3 0.0007 0.0126 0.0005 0.0194
β4 0.0003 0.0122 −0.0001 0.0190
β5 0.0007 0.0130 0.0001 0.0185

Logit 2FE β1 0.0007 0.0159 0.0011 0.0226
β2 −0.0008 0.0128 −0.0002 0.0188
β3 0.0008 0.0129 0.0005 0.0193
β4 0.0002 0.0118 −0.0002 0.0189
β5 0.0006 0.0129 0.0001 0.0184

Small sample: n = 68
Logit β1 0.0027 0.0208 0.0025 0.0306

β2 −0.0006 0.0134 0.0000 0.0212
β3 −0.0007 0.0136 −0.0006 0.0207
β4 −0.0005 0.0148 0.0003 0.0218
β5 −0.0005 0.0148 −0.0003 0.0220

Logit FE β1 0.0392 0.0420 0.0392 0.0604
β2 0.0020 0.0268 0.0006 0.0393
β3 0.0005 0.0254 0.0002 0.0377
β4 0.0004 0.0253 0.0005 0.0392
β5 −0.0021 0.0256 −0.0017 0.0380

Logit 2FE β1 0.0031 0.303 0.0038 0.0459
β2 0.0027 0.0272 0.0005 0.0386
β3 −0.0002 0.0276 0.0005 0.0376
β4 0.0010 0.0251 0.0013 0.0388
β5 −0.0024 0.0252 −0.0016 0.0373

The true coefficients are as follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.
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Table 2: Design 2 - uncorrelated fixed effects

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 −0.2448 0.2448 −0.2455 0.2490

β2 0.0032 0.0222 0.0014 0.0332
β3 0.0018 0.0222 0.0003 0.0321
β4 0.0006 0.0218 0.0003 0.0324
β5 0.0005 0.0217 0.0002 0.0327

Logit FE β1 0.0201 0.0225 0.0207 0.0320
β2 −0.0005 0.0134 −0.0004 0.0204
β3 −0.0009 0.0138 −0.0010 0.0204
β4 0.0003 0.0140 −0.0005 0.0200
β5 0.0003 0.0137 0.0007 0.0208

Logit 2FE β1 0.0019 0.0174 0.0021 0.0252
β2 −0.0001 0.0139 −0.0002 0.0209
β3 −0.0012 0.0139 −0.0011 0.0207
β4 0.0000 0.0138 −0.0006 0.0199
β5 0.0001 0.0142 0.0005 0.0210

Small sample: n = 68
Logit β1 −0.2408 0.2408 −0.2414 0.2492

β2 −0.0007 0.0337 0.0001 0.0495
β3 −0.0024 0.0319 −0.0018 0.0466
β4 0.0005 0.0336 0.0004 0.0492
β5 −0.0024 0.0341 −0.0018 0.0434

Logit FE β1 0.0403 0.0439 0.0402 0.0635
β2 0.0006 0.0287 0.0008 0.0427
β3 −0.0002 0.0284 0.0008 0.0410
β4 0.0003 0.0297 −0.0007 0.0429
β5 −0.0034 0.0283 −0.0018 0.0434

Logit 2FE β1 0.0005 0.0325 0.0019 0.0493
β2 0.0000 0.0302 0.0013 0.0426
β3 0.0006 0.0276 0.0013 0.0401
β4 −0.0022 0.0298 −0.0008 0.0437
β5 −0.0029 0.0279 −0.0020 0.0432

Design 2 has fixed effects drawn from a random normal uncorrelated with the

x’s and the true coefficients are as follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.
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Table 3: Design 3 - correlated fixed effects

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 0.4986 0.4986 0.4987 0.4992

β2 −0.0917 0.0917 −0.0915 0.0929
β3 −0.0112 0.0121 −0.0114 0.0166
β4 0.0016 0.0087 0.0016 0.0127
β5 0.0083 0.0105 0.0083 0.0155

Logit FE β1 0.0266 0.0283 0.0256 0.0384
β2 0.0241 0.0257 0.0244 0.0366
β3 −0.0013 0.0168 −0.0016 0.0243
β4 −0.0007 0.0152 −0.0006 0.0236
β5 −0.0002 0.0159 −0.0001 0.0242

Logit 2FE β1 0.0025 0.0202 0.0014 0.0306
β2 0.0002 0.0196 0.0006 0.0296
β3 −0.0007 0.0172 −0.0012 0.0250
β4 −0.0003 0.0163 0.0000 0.0249
β5 −0.0005 0.0164 0.0005 0.0251

Small sample: n = 68
Logit β1 0.4918 0.4918 0.4951 0.4974

β2 −0.0902 0.0902 −0.0899 0.0972
β3 −0.0102 0.0203 −0.0119 0.0315
β4 0.0008 0.0211 0.0011 0.0294
β5 0.0102 0.0218 0.0108 0.0316

Logit FE β1 0.0491 0.0521 0.0504 0.0769
β2 0.0552 0.0585 0.0538 0.0807
β3 −0.0027 0.0349 −0.0010 0.0512
β4 0.0014 0.0342 0.0005 0.0503
β5 −0.0023 0.0346 −0.0007 0.0513

Logit 2FE β1 −0.0011 0.0416 0.0011 0.0613
β2 0.0042 0.0434 0.0045 0.0632
β3 −0.0024 0.0358 0.0000 0.0523
β4 0.0020 0.0367 0.0004 0.0522
β5 −0.0041 0.0334 −0.0017 0.0517

Design 3 has fixed effects correlated with x1 but not with the other explanatory

variables and the true coefficients are as follows: β1 = β2 = 1 and

β3 = β4 = β5 = 0.
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Table 4: Design 4 - uncorrelated fixed effects and resampling

Median bias MAD Mean bias RMSE

Full sample: n = 136
Logit β1 −0.2455 0.2455 −0.2447 0.2479

β2 −0.0009 0.0221 −0.0008 0.0323
β3 0.0010 0.0218 0.0003 0.0328
β4 −0.0003 0.0229 −0.0003 0.0323
β5 0.0011 0.0221 0.0009 0.0326

Logit FE β1 0.0200 0.0221 0.0199 0.0309
β2 −0.0003 0.0128 −0.0003 0.0198
β3 0.0006 0.0137 0.0000 0.0208
β4 0.0021 0.0143 0.0016 0.0207
β5 0.0005 0.0126 0.0008 0.0204

Logit 2FE β1 0.0015 0.0163 0.0008 0.0242
β2 0.0008 0.0134 −0.0001 0.0202
β3 0.0004 0.0144 −0.0002 0.0212
β4 0.0016 0.0142 0.0014 0.0207
β5 0.0005 0.0138 0.0006 0.0206

Small sample: n = 68
Logit β1 −0.2447 0.2447 −0.2430 0.2493

β2 −0.0013 0.0327 0.0002 0.0487
β3 0.0011 0.0350 0.0010 0.0501
β4 −0.0015 0.0341 −0.0012 0.0501
β5 0.0045 0.0330 0.0019 0.0469

Logit FE β1 0.0403 0.0449 0.0410 0.0637
β2 0.0021 0.0306 0.0021 0.0438
β3 −0.0012 0.0275 0.0003 0.0404
β4 0.0017 0.0274 0.0005 0.0409
β5 0.0026 0.0288 0.0020 0.0431

Logit 2FE β1 −0.0011 0.0340 0.0016 0.0490
β2 0.0012 0.0304 0.0016 0.0436
β3 0.0009 0.0275 0.0010 0.0402
β4 0.0004 0.0260 0.0007 0.0403
β5 0.0033 0.0283 0.0023 0.0429

Design 4 has fixed effects drawn from a random normal uncorrelated with the

x’s, there is resampling of the x’s and the fixed effects, and the true coefficients

are as follows: β1 = 1 and β2 = β3 = β4 = β5 = 0.
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Finally, we look more closely at the effect that sample size has on the relative performance

of the Logit FE and the Logit 2FE in the presence of correlated fixed effects (design 3). We

chose this design because it is likely to be the most relevant, and because looking at the

previous tables, it is, unsurprisingly, where we observe the largest differences in performance.

We do not report results for the regular logit since it is severely biased9 and less commonly

used when the importance of fixed effects is suspected. Figure 1 shows how the median

bias on the coefficient of the correlated explanatory variable (on β1) of both estimators

evolves as we increase sample size. The top line represents the Logit FE and the bottom

line the Logit 2FE. For small samples, the median bias of the Logit 2FE is much smaller

than that of the Logit FE. This difference decreases as sample size increases, but does not

completely disappear for values of n as large as 200. This is of particular interest to the

international trade literature, where the number of countries is close to 200. We therefore

see that appropriately dealing with the two fixed effects will always be important for those

concerned with unbiased estimation of this type of model with data sets involving countries.

Further evidence with international trade data will be provided in the next section. Moreover,

Figure 2 shows that the MAD, our measure of precision, is very similar for both estimators

in all sample sizes. In short, these Monte Carlo simulations confirm that the Logit 2FE

presented in this paper is less biased than, as precise as, and more robust to different fixed

effects than other logit estimators. We now move on to applying this estimator to trade

data.

9Results are available on demand.
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Figure 1: Median bias of the Logit 2FE and Logit FE for different sample sizes
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Figure 2: MAD of the Logit 2FE and Logit FE for different sample sizes
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4 Application: The Gravity Equation and the

Extensive Margins of Trade

Understanding how different trade barriers influence trade flows is key when one wants

to study the impact of distance, trade agreements and other trade frictions. To do that,

economists have been using the gravity equation for over 50 years. As Bernard et al.

(2007) state, “the gravity equation for bilateral trade flows is one of the most successful

empirical relationships in international economics.” The gravity equation was first applied

to aggregate trade. As its name suggests, it was initially motivated by the Newtonian the-

ory of gravitation (bilateral trade should be positively related to the size of countries, as

measured by their GDP, and negatively related to their distance from one another). It now

has a plethora of microeconomic foundations. More recent work has emphasized the role

of extensive margin adjustments in understanding the variations of aggregate trade flows10

and has derived gravity equations for these extensive margin adjustments (see, for example,

Bernard, Redding and Schott 2011, and Mayer, Melitz and Ottaviano 2012). For the purpose

of this application, we will refer to the model where the dependent variable is binary (trade

or not) as the binary gravity equation.

4.1 Data

The application of the Logit 2FE estimator on the binary gravity equation is done on two

different data sets. First, we use the CEPII data (both the BACI and gravity data sets) for

2005. This trade database is widely used in the literature, as in Head and Mayer (2013),

because it is not only from a reputable source, but also contains information on trade between

most countries of the world. We illustrate the estimation of two-way fixed effects using data

on bilateral trade and including importer and exporter fixed effects for a single year. The

year 2005 was chosen based on data availability, but results are similar for other years.

10Trade frictions have an impact on aggregate trade flows both through the amount that each firm or
country exports (the intensive margins) and the number of firms or countries exporting (the extensive
margin). Note that the extensive margin can also refer to the number of products exported.
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After merging the bilateral trade data with data on country characteristics such as distance,

common border or colonial status, we obtain a balanced panel of 211 countries that account

for the majority of world trade.

Second, to allow direct comparison with results found in the literature, we use the data

from Helpman, Melitz and Rubinstein (2008). Similar to the CEPII data, this data set

consists of information on trade flows and country characteristics for 158 countries in 1986.

Applying their specific gravity model to their data gives added weight to the comparison

of the estimates produced by the Logit 2FE with those produced by other commonly used

estimators.

Table 5: Summary statistics

Panel A
Trade Trade1 Trade3 Trade5

% zeros 44.1729 51.2999 58.0749 61.7513

Panel B
Range Mean Median Std. Dev.

pn if Trade = 1 [1,4941] 273.738 20 647.315
dni [6,208] 117.237 120 50.5608
dnj [8,208] 117.237 114 55.9579

pn is the number of products (defined at the HS 6-digit level)
traded.

Trade = 1 if pn > 0, otherwise 0.
Trade1 = 1 if pn > 1, otherwise 0.
Trade3 = 1 if pn > 3, otherwise 0.
Trade5 = 1 if pn > 5, otherwise 0.

dni(j): number of countries the importer (exporter) imports

from (exports to).

Table 5 gives summary statistics for the CEPII data. More detailed information about

the data used by Helpman, Melitz and Rubinstein (2008) can be found in their paper. Among

the 211 countries of the CEPII database, about 44 per cent of unilateral trade flows are zeros.

Note that this is in line with what Helpman, Melitz and Rubinstein find for a sample of 158

countries. If we restrict the definition of positive trade to flows of more than one product, we
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see that the number of zeros exceeds 50 per cent (and more for three or five products). This

restriction is used as a robustness check in the logit estimation. The prominence of zeros in

international trade further motivates the use of econometric methodologies that account for

those zero trade flows.

Among countries that do trade, we see that the product number ranges from 1 to 4,941,11

with a mean of 274 products, but a median of 20. Approximately 12 per cent of positive

trade flows are only composed of 1 product, while only 26 per cent of trade flows have more

than 150 products. Finally, countries import from and export to 117 other countries on

average.

4.2 Logit estimation

There are many “zeros and one” relationships in trade and the logit is very widely used. In

the context of the gravity equation literature, the logit is most commonly used to study the

extensive margins of trade in heterogeneous firm models. In an influential paper, Helpman,

Melitz and Rubinstein (2008) try to improve on traditional estimates of the gravity equation

by accounting for both firm heterogeneity (in a Melitz (2003) framework) and the frequently

forgotten zero trade flows. To do this, they use a two-stage procedure, where the first stage

consists in estimating the probability that a country trades with another. Although they use

a probit with importer and exporter fixed effects, one could also similarly use a logit. In a

paper estimating the Chaney (2008)12 model with French firm-level data, Crozet and Koenig

(2010) also use the probability of exporting as a first stage in their empirical strategy. More

specifically, they run a logit with firm and import country-year fixed effects to disentangle

the elasticity of trade barriers on the intensive and extensive margins.

The following applications show that papers like Helpman, Melitz and Rubinstein (2008)

and Crozet and Koenig (2010), as well as any other that uses a similar framework, would find

11There are 5,017 HS 6-digit products. Note also that, not surprisingly, the two countries that trade the
largest number of products (4,941) are the United States and Canada.

12This paper introduces firm heterogeneity in a model of international trade to look at the effect the
elasticity of substitution between goods has on the intensive and extensive margins of trade. It is essentially
a Melitz model with a Pareto productivity distribution.
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significantly different estimates if they applied the conditional logit to properly account for

the multiple fixed effects. Indeed, estimates can differ significantly. As mentioned before, we

will demonstrate this using two different models and data sets: first, comparing estimates for

a somewhat traditional gravity model applied to the popular CEPII data, then by performing

the estimation using the same model and data as Helpman, Melitz and Rubinstein (2008).

For our first step, using the CEPII data, we write the probability of country j exporting

to country i as:

Prob[Tradeij ] = β0+β1 ln(Dij) + β2Borderij + β3Legalij + β4Languageij (12)

+ β5Colonyij + β6Currencyij + β7RTAij + µi + αj + εij ,

where Dij is the simple distance between country i’s and country j’s most populated cities,

Borderij is a dummy that takes the value 1 if i and j share a border, Legalij is a dummy that

takes the value 1 if the two countries have the same legal system, Languageij is a dummy

that takes the value 1 if i and j have the same official language, Colonyij is a dummy that

takes the value 1 if i and j were ever in a colonial relationship, Currencyij is a dummy

that takes the value 1 if the two countries use the same currency, RTAij is a dummy that

takes the value 1 if i and j are in a regional trade agreement, and, finally, µi and αj are

respectively importer and exporter fixed effects. The results are presented in Table 6.

The results for β1
13 differ greatly between estimators, more than what is expected when

looking at the Monte Carlo simulations. Both estimators being relatively precise, this dif-

ference is puzzling and could indicate model misspecification. We will return to this issue

at the end of the section. However, it also suggests that distance might have a smaller

impact on the probability of exporting than what traditional estimates indicate. Of course,

caution should be exercised when comparing the results from this application with those of

the Monte Carlo simulations since it is not clear how the data relate to the distributional

assumptions made in the latter. Note that the Logit 2FE estimated effect of distance on the

13In what follows we mostly discuss results for the coefficient on distance, because it is generally the most
talked-about trade barrier. Border is also commonly discussed, but as it is not significant in our estimations,
it is of lesser interest.
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Table 6: Logit results (benchmark)

Variables OLS FE Logit Logit FE Logit 2FE

Distance −0.1116 −0.6491 −1.2146 −0.2282
(0.0028) (0.0169) (0.0329) (0.0461)

Border −0.0765 0.0620 −0.4194 1.4751
(0.0159) (0.1606) (0.2424) (0.2743)

Legal 0.0314 0.4098 0.2662 0.2989
(0.0044) (0.0247) (0.0422) (0.0650)

Language 0.0756 −0.4588 0.7870 0.9452
(0.0056) (0.0283) (0.0597) (0.0824)

Colonial ties 0.0377 3.5425 0.8699 1.9481
(0.0149) (0.3251) (0.4086) (0.5377)

Currency 0.0540 −0.5732 0.5458 0.0331
(0.0198) (0.1386) (0.2055) (0.0066)

RTA −0.0959 2.2365 1.3113 1.4140
(0.0082) (0.1120) (0.1529) (0.1788)

These results are for Prob[Trade = 1] where Trade = 1 when the number of
products traded is greater than 0.

OLS FE refers to a simple linear probability model with fixed effects. The
results in the second column are for the regular logit ignoring the fixed effects,
the results in the third column are for the logit estimating all the fixed effects
and finally, the results in the fourth column are for the estimator presented in

this paper.

Standard errors clustered at ij level (allowing for importer and exporter

correlation).

probability of exporting is closer to that produced by the linear probability model than that

of the logit estimating the fixed effects.

Generally, the estimated effects of the other variables on the probability of exporting

differ for the Logit 2FE and the Logit FE, but this difference, unlike that for distance, is

much closer to what the Monte Carlo simulations suggested. One notable exception is the

effect of a common border. Indeed, like the probit in Helpman, Melitz and Rubinstein (2008),

the Logit FE produces a surprising negative effect of sharing a border on the probability of

trading. However, the Logit 2FE’s positive estimate suggests that this result might be due

to the inconsistency of the estimator. Note that the Logit 2FE is the only one of the four

estimators where all estimated coefficients match their expected sign.
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As a robustness check and to make sure that none of these estimators were strongly

influenced by one outlier country, they were each calculated dropping each country in suc-

cession. The results are all very similar. Defining the dependent variable as “0” or “1” can

give a heavy weight to relatively small trade flows: a country pair trading one product gets

the same dependent variable value as a country pair trading 1,000 products. To test the

robustness of the estimators to that issue, we recalculate all of them using three different

definitions of positive trade (more than one product, more than three, and more than five).

The results are presented in Table 7.

As predicted, considering trade as positive only when the number of products exported is

greater than one increases the impact of distance on the probability of exporting. Accounting

for a rough measure of trade flow size suggests that to trade many products, countries do

have to be closer. The effect of distance becomes more and more negative as we increase the

number of zeros by changing the Trade variable, which is true for all estimators except the

regular logit. This could be because, as the Monte Carlo simulations illustrate, the bigger the

coefficient (in absolute value), the bigger the bias. Though respective coefficients for both the

Logit 2FE and the Logit FE move in the same direction, they are moving farther apart, thus

emphasizing our original concern about their large difference. As a final robustness check, we

have done the same calculations with different measures of distance (i.e., distance between

capital cities, distance weighted by population). It does not affect the results significantly.

We now turn to the Helpman, Melitz and Rubinstein data and estimate their gravity

model:

Prob[Tradeij ] = β0 + β1 ln(Dij) + β2Borderij + β3Islandij

+ β4Landlockij + β5Legalij + β6Languageij + β7Colonyij (13)

+ β8Currencyij + β9RTAij + β10Religionij + µi + αj + εij ,

where common variables are defined as in equation (12), Islandij is a dummy that takes the

value 1 if either one or both countries are islands, and Landlockij is a dummy that takes the

value 1 if either one or both countries do not have access to an ocean. The religion variable
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Table 7: Logit results (robustness check)

Variables OLS FE Logit Logit FE Logit 2FE

Panel A: Trade1 Distance −0.1185 −0.6389 −1.4553 −0.2502
(0.0028) (0.0163) (0.0371) (0.0492)

Border −0.0517 0.3069 −0.1719 1.6626
(0.0170) (0.1542) (0.2532) (0.3545)

Legal 0.0225 0.3283 0.2721 0.3055
(0.0043) (0.0242) (0.0440) (0.0731)

Language 0.0945 −0.4194 0.9819 1.1447
(0.0054) (0.0284) (0.0638) (0.0942)

Colonial ties 0.0491 3.5133 1.1530 2.2784
(0.0155) (0.2759) (0.3703) (0.5831)

Currency 0.0334 −0.6519 0.6564 0.0372
(0.0205) (0.1315) (0.2062) (0.0086)

RTA −0.0524 2.1052 1.2354 1.6153
(0.0084) (0.0931) (0.1402) (0.1675)

Panel B: Trade3 Distance −0.1207 −0.6184 −1.7427 −0.2751
(0.0028) (0.0159) (0.0428) (0.0505)

Border −0.0142 0.5755 0.2205 1.7963
(0.0178) (0.1512) (0.2772) (0.4537)

Legal 0.0196 0.2644 0.3879 0.3772
(0.0042) (0.0243) (0.0472) (0.0833)

Language 0.1027 −0.3710 1.0679 1.2772
(0.0052) (0.0290) (0.0683) (0.0989)

Colonial ties 0.0517 3.1438 1.1043 2.1905
(0.0160) (0.3251) (0.3315) (0.5520)

Currency 0.0235 −0.5948 1.0211 0.0407
(0.0208) (0.1271) (0.2249) (0.0085)

RTA 0.0065 2.0604 1.2449 1.8341
(0.0086) (0.0812) (0.1389) (0.1673)

Panel C: Trade5 Distance −0.1165 −0.5965 −1.8686 −0.2788
(0.0028) (0.0158) (0.0463) (0.0535)

Border 0.0100 0.6822 0.4508 1.9881
(0.0179) (0.1460) (0.2817) (0.4265)

Legal 0.0151 0.2328 0.4026 0.3838
(0.0041) (0.0246) (0.0495) (0.0928)

Language 0.1104 1.2253 0.7870 1.4356
(0.0051) (0.0296) (0.0728) (0.0898)

Colonial ties 0.0538 3.0461 1.0601 1.9623
(0.0165) (0.1843) (0.3205) (0.7479)

Currency 0.0166 −0.5604 1.2330 0.0372
(0.0208) (0.1260) (0.2449) (0.0092)

RTA 0.0448 2.0147 1.2473 1.9366
(0.0086) (0.0747) (0.1405) (0.1840)
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is defined as follows:

Religionij =(%Protestants in country i ·%Protestants in country j)

+ (%Catholics in country i ·%Catholics in country j)

+ (%Muslims in country i ·%Muslims in country j).

The results are reported in Table 8. In addition to the OLS with fixed effects, the Logit, the

Logit FE and the Logit 2FE, we present results for the Probit with fixed effects used in the

original paper (Helpman, Melitz and Rubinstein 2008). This is done to allow a more direct

comparison of our results with theirs.

Table 8: Logit results (HMR model and data)

Variables Probit FE OLS FE Logit Logit FE Logit 2FE

Distance −0.6597 −0.1086 −0.2939 −1.2526 −0.5184
(0.0239) (0.0041) (0.0192) (0.0424) (0.0788)

Border −0.3825 −0.0810 0.2834 −0.7624 0.2503
(0.0993) (0.0218) (0.1184) (0.1761) (0.2156)

Island −0.3447 −0.0648 −0.3355 −0.6030 0.0298
(0.0743) (0.0135) (0.0287) (0.1359) (0.2221)

Landlock −0.1806 −0.0316 −0.6225 −0.3607 0.1395
(0.0973) (0.0156) (0.0308) (0.1808) (0.1667)

Legal 0.0964 −0.0039 −0.4939 0.1867 0.1494
(0.0298) (0.0053) (0.0289) (0.0539) (0.0718)

Language 0.2838 0.0783 0.1208 0.5037 0.5938
(0.0378) (0.0068) (0.0313) (0.0696) (0.1219)

Colonial ties 0.3252 0.0408 4.0701 0.5392 2.4803
(0.2444) (0.0196) (0.4165) (0.4647) (0.8262)

Currency 0.4917 0.0772 −0.7229 0.8973 1.3338
(0.1227) (0.0243) (0.1497) (0.2249) (0.4543)

RTA 1.9851 −0.0526 2.9708 3.4708 4.5319
(0.2651) (0.0413) (0.4193) (0.4928) (0.4460)

Religion 0.2605 0.0739 0.3289 0.4155 0.9521
(0.0583) (0.0108) (0.0478) (0.1056) (0.2045)

Standard errors clustered at ij level (allowing for importer and exporter
correlation).
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The results for the Logit FE closely match those of the Probit FE, which in turn are a

successful replication of the estimates presented in Helpman, Melitz and Rubinstein (2008).

As an illustration of that, Figure 3 shows how the probability of trading, estimated at the

sample averages, changes with the measure of distance: the two bottom lines represent the

Logit FE and Probit FE and we observe that they trace each other almost exactly. Therefore,

what is implied by the comparison of the Logit FE with the Logit 2FE also applies to the

results of Table 1 in Helpman, Melitz and Rubinstein (2008). When comparing Tables 6

and 8, the first thing we notice is that the difference between the distance coefficients of

the Logit FE and 2FE is much smaller in the latter. Indeed, when using the HMR model

and data, the estimate for the Logit 2FE has almost doubled, while that of the Logit FE is

not statistically significantly different. Moreover, the effect of sharing a border still has its

puzzling negative (and statistically significant) effect when looking at the Logit FE, but is

now no longer significant for the Logit 2FE. In general, the change in model and data seems

to have had a slightly larger effect on the estimates produced by the Logit 2FE and some of

those coefficients are now much closer to those of the Logit FE. Of the three new variables,

only religion is significant for the logit 2FE, while Island and Landlock are negative and

statistically significant for the other estimators.

Since the Logit 2FE does not provide estimates of the fixed effects, it is not possible

to compute the marginal effect of each variable. However, we can still compute the effect

implied by the difference in the distance coefficients of the various fixed effects estimators

on the probability of trading by looking at how this probability, estimated at the sample

averages (and therefore setting all fixed effects to zero), varies with the measure of distance.

This is illustrated in Figure 3 for the Probit FE, Logit FE and Logit 2FE (top line). As

expected, the Logit 2FE predicts a much higher probability of trading for all values of

distance, particularly in the middle ranges. Note that Figure 3 represents all distance values

in the sample, but that most observations have a log of distance in the range [3,5], with a

mean of 4.1.
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Figure 3: Probability of trading relative to distance
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Finally, in order to identify the source (i.e., data or model) of the difference in estimates

between Table 6 and Table 8, we estimated our benchmark model given by equation (12)

on the HMR data. Results are reported in Table 9. It appears that, as expected, the

data, rather than the addition of the three variables, are responsible for the change in

coefficients. Interestingly, both the Logit FE and the Logit 2FE suggest that distance might

have had a larger impact on the probability of trading in 1986 than in 2005. This difference

is particularly obvious, and statistically significant, for the Logit 2FE, which could imply

that, as many have conjectured, the effect of distance is decreasing over the years.

Overall, the large difference between estimators, especially between the Logit 2FE and the

logit estimating the fixed effects, shows the importance of properly accounting for multiple

fixed effects. On the one hand, all the results suggest that the impact of distance on the

probability of exporting could be smaller than what we thought, especially in more recent

years. On the other hand, however, this large difference can be cause for concern. Indeed, its

magnitude is not in line with the Monte Carlo simulations. Therefore, it might indicate that

the model is misspecified. If, for example, different countries had different β1 or if distance
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Table 9: Logit results (HMR data, benchmark model)

Variables OLS FE Logit Logit FE Logit 2FE

Distance −0.1141 −0.3111 −1.2924 −0.5601
(0.0041) (0.0184) (0.0412) (0.0792)

Border −0.0744 0.3312 −0.7355 0.3477
(0.0219) (0.1165) (0.1759) (0.2046)

Legal −0.0025 −0.4311 0.1994 0.1692
(0.0053) (0.0283) (0.0539) (0.0690)

Language 0.0875 0.1386 0.5695 0.7088
(0.0068) (0.0304) (0.0679) (0.1187)

Colonial ties 4.0476 3.5425 0.5609 2.6637
(0.0196) (0.4174) (0.4670) (0.8239)

Currency 0.0676 −0.8877 0.8141 1.2023
(0.0242) (0.1512) (0.2243) (0.4560)

RTA −0.0500 3.0358 3.4869 4.5281
(0.0415) (0.4177) (0.5224) (0.4182)

Standard errors clustered at ij level (allowing for importer and exporter

correlation).

was in fact interacted with something else, then both estimators would give an average

β1. Since each gives different weights to the same observations, this could explain why the

estimates differ so much. It could then imply that the true β1 is quite different from all the

estimates. As a preliminary check, we relaxed the functional form assumptions on distance

by using non-parametric dummies for quartiles of the distance distribution. The results

did not suggest any problem and were very much in line with the original results presented

in Tables 6 and 8. Be that as it may, and whether or not the model is misspecified, this

application illustrates the pertinence of computing the conditional logit estimator for two

fixed effects.

5 Conclusion

This paper examined estimators of binary response panel data models with multiple fixed

effects. There are an abundance of empirical methods applying two fixed effects in binary
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response models in general, and in the logit in particular. However, current estimators are

subject to the incidental parameters problem. Although many methods have been developed

to address this problem in models with a single fixed effect, very little has been done for the

cases with two or more fixed effects. Attempting to fill this important gap, we developed

a method to appropriately deal with two fixed effects for the logit model, and showed that

Manski’s maximum score estimator cannot be adapted for multiple fixed effects.

Our method is based on the conditional maximum likelihood of Rasch (1960, 1961). If

with one fixed effect it suffices to condition on the sum of the observations in one dimension

(typically, for one individual, the sum of yit over time), with two fixed effects we condition

on the sums in both dimensions (for one importer i, the sum of yij for all exporters j; for

one exporter j, the sum of yij over all importers i). This approach allows us to consistently

estimate the parameters of interest. However, we found that if the same conditioning can be

used on Manski’s maximum score estimator with a single fixed effect, the method fails when

there are two. That estimator cannot be generalized to the case of two fixed effects. If, in

principle, the recursive structure of the logit model could be used to apply the conditioning

exercise more than twice, hence dealing with more than two fixed effects, it is the lack of

recursive structure in Manski’s maximum score estimator that explains its inability to adapt

to multiple fixed effects.

We showed that the conditioning method that is the core of this paper performs well in

recovering the true parameters in Monte Carlo studies. Indeed, we found that the conditional

logit presented in this paper is less biased than, as precise as, and more robust to different

fixed effects than other logit estimators. Importantly, if this superiority is emphasized in

small samples, it does not disappear for large samples, for example, the size that one can

get when studying trade between countries. We also showed that this same procedure yields

quite different estimated coefficients from methods subjected to the incidental parameters

problem in applications with actual trade data. To demonstrate this, we applied the logit

to a gravity model with importer and exporter fixed effects.The coefficients estimated with

our procedure may explain some of the “puzzles” this literature has encountered. Indeed,
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we find that distance has a smaller impact on the probability of trading, especially in recent

years, and that border has a positive effect rather than the suspicious negative effect found

with usual estimators.

The method developed in this paper has broad applicability, and our Monte Carlo studies

and applications highlight the importance of appropriately controlling for multiple fixed

effects in binary response panel data models for recovering the parameters of the underlying

relationships of interest.

This project opens two areas for future work. First, there are many other widely used

nonlinear panel data models suffering from the incidental parameter problem. For example,

estimators such as the Poisson and Negative Binomial maximum likelihood of Hausman, Hall

and Griliches (1984) are commonly applied with multiple fixed effects. It would therefore

be important to determine whether the conditional maximum likelihood used in the present

paper for the logit can be similarly adapted for those estimators. We are currently working

on this project. Finally, the asymptotic properties of the estimator developed in this paper

need to be explored.
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