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Abstract 

The substantial variation in the real price of oil since 2003 has renewed interest in the 
question of how to forecast monthly and quarterly oil prices. There also has been 
increased interest in the link between financial markets and oil markets, including the 
question of whether financial market information helps forecast the real price of oil in 
physical markets. An obvious advantage of financial and energy market data in 
forecasting oil prices is their availability in real time on a daily or weekly basis. We 
investigate whether mixed-frequency models can be used to take advantage of these rich 
data sets. We show that, among a range of alternative high-frequency predictors, changes 
in U.S. crude oil inventories produce substantial and statistically significant real-time 
improvements in forecast accuracy. The preferred mixed-data sampling (MIDAS) model 
reduces the mean-squared prediction error by as much as 16 percent compared with the 
no-change forecast and has statistically significant directional accuracy as high as          
80 percent. This MIDAS forecast also is more accurate than a mixed-frequency real-time 
vector autoregressive forecast, but not systematically more accurate than the 
corresponding forecast based on monthly inventories. We conclude that typically not 
much is lost by ignoring high-frequency financial data in forecasting the monthly real 
price of oil. 

JEL classification: C53, G14, Q43 
Bank classification: Econometric and statistical methods; International topics 

Résumé 

La variation considérable des prix réels du pétrole depuis 2003 a ravivé l’intérêt porté aux 
méthodes de prévision des cours mensuels et trimestriels de ce produit. On a aussi 
observé un regain d’intérêt pour l’étude du lien entre les marchés financiers et pétroliers : 
à ce titre, les chercheurs se sont demandé si l’information en provenance des marchés 
financiers aide à prédire les prix réels du pétrole sur les marchés au comptant. Les 
données des marchés financiers et énergétiques présentent un avantage évident pour 
prévoir les cours du pétrole : elles sont accessibles en temps réel selon une fréquence 
quotidienne ou hebdomadaire. Nous cherchons donc à déterminer le pouvoir de prévision 
de ces riches ensembles de données en utilisant des modèles avec données à fréquence 
mixte. Nous montrons que, parmi toute une gamme de prédicteurs de haute fréquence, les 
variations des stocks de pétrole brut aux États-Unis améliorent de manière appréciable et 
statistiquement significative, en temps réel, l’exactitude des prévisions. Le modèle 
d’échantillonnage de données de fréquence mixte (MIDAS) privilégié peut réduire 
l’erreur quadratique moyenne de prévision dans une proportion allant jusqu’à 16 %, si 
l’on compare avec la prévision du modèle de marche aléatoire. Il permet également de 
prévoir avec exactitude le sens des variations dans 80 % des cas, et cela de manière 
statistiquement significative. Les prévisions établies grâce à ce modèle MIDAS sont 
également plus justes que celles issues d’un modèle vectoriel autorégressif basé sur des 



 iv 

données de fréquence mixte en temps réel, mais elles ne sont pas systématiquement plus 
exactes que les projections correspondantes fondées sur les stocks mensuels. Nous 
concluons que, généralement, le fait de ne pas tenir compte des données financières de 
haute fréquence dans la prévision des prix mensuels réels du pétrole a une incidence 
négligeable. 

Classification JEL : C53, G14, Q43 
Classification de la Banque : Méthodes économétriques et statistiques; Questions 
internationales 

 

 



1 Introduction

The substantial variation in the real price of oil since 2003 has renewed interest in the

question of how to forecast monthly and quarterly oil prices.1 The links between financial

markets and the price of oil have received particular attention, including the question of

whether financial market information can help forecast the price of oil in physical markets

(e.g., Fattouh, Kilian and Mahadeva 2013). An obvious advantage of financial data is

their availability in real time on a daily basis. Financial data are not subject to revisions

and are available on a daily or weekly basis. Existing forecasting models for the monthly

real price of oil do not take advantage of these rich data sets. Our objective is to assess

whether there is useful predictive information for the real price of oil in high-frequency

data from financial and energy markets, and to identify which predictors are most useful.

Incorporating daily or weekly financial data into monthly oil price forecasts requires the

use of models for mixed-frequency data.

The development of models for variables sampled at different frequencies has attracted

substantial interest in recent years. A comprehensive review can be found in Foroni,

Ghysels and Marcellino (2013). A large and growing literature has documented the benefits

of combining data of different frequencies in forecasting macroeconomic variables such as

real GDP growth and inflation. One approach has been to construct mixed-frequency

vector autoregressive (MF-VAR) forecasting models (e.g., Schorfheide and Song 2012).

An alternative approach is the use of univariate mixed-data sampling (MIDAS) models

(e.g., Andreou, Ghysels and Kourtellos 2011). The MIDAS model employs distributed

lag polynomials to ensure a parsimonious model specification, while allowing for the use

of data sampled at different frequencies. The original MIDAS model requires non-linear

least-squares estimation (see Andreou, Ghysels and Kourtellos 2010). Foroni, Marcellino

and Schuhmacher (2012) proposed a simplified version of the MIDAS model (referred to

as unrestricted MIDAS or U-MIDAS) that can be estimated by ordinary least squares and

in many applications has been shown to produce highly accurate out-of-sample forecasts,

1A comprehensive review of this literature is provided in Alquist, Kilian and Vigfusson (2013). More recent

contributions include Chen (2013), Baumeister and Kilian (2013a,b), Baumeister, Kilian and Zhou (2013), and

Bernard, Khalaf, Kichian and Yelou (2013).
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provided the data frequencies to be combined are not too different.

Numerous studies have documented the ability of MIDAS regressions to improve the

accuracy of (1) quarterly macroeconomic forecasts based on monthly predictors and (2)

monthly forecasts based on daily or weekly predictors (e.g., Andreou, Ghysels and Kourtel-

los 2013; Clements and Galvao 2008, 2009; Ghysels and Wright 2009; Hamilton 2008). Of

particular interest are high-frequency financial data. One reason is that financial asset

prices embody forward-looking information. Another reason is that financial data are ac-

curately measured and available in real time, while lower-frequency macroeconomic data

tend to be subject to revisions and become available only with a delay.

These differences in informational structure are particularly evident when forecasting

oil prices. Commonly used predictors of the real price of oil, such as global oil production,

global oil inventories, global real activity, or the U.S. refiners’acquisition cost for crude

oil, only become available with considerable delays and are subject to potentially large but

unpredictable revisions that can persist for up to two years (see Baumeister and Kilian

2012). Despite these drawbacks, several recent studies have shown that it is possible to

systematically beat the no-change forecast of the monthly real price of oil in real time

(e.g., Baumeister and Kilian 2012, 2013a,b).

The current paper investigates whether the accuracy of oil price forecasts can be im-

proved by utilizing high-frequency information from financial markets and from U.S. en-

ergy markets. The set of high-frequency predictors includes (1) the spread between the

spot prices of gasoline and crude oil; (2) the spread between the oil futures price and the

spot price of crude oil; (3) cumulative percent changes in the Commodity Research Bureau

(CRB) index of the price of industrial raw materials, (4) U.S. crude oil inventories, and

(5) the Baltic Dry Index (BDI); (6) returns and excess returns on oil company stocks; (7)

cumulative changes in U.S. nominal interest rates (LIBOR, federal funds rate), and (8)

cumulative percent changes in the U.S. trade-weighted nominal exchange rate.

Our starting point is a MIDAS model for the monthly real price of oil. For reasons

discussed in section 2, we focus on predictors measured at weekly intervals constructed

from daily observations. As is standard in the oil price forecasting literature, we assess all

forecasts based on their mean-squared prediction errors (MSPEs) and directional accuracy.
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We consider forecast horizons, h, ranging from 1 month to 24 months. Our MIDAS models

nest the no-change forecast of the real price of oil, allowing us to compare the accuracy of

MIDAS regressions with that of competing models evaluated against the same benchmark.

We also compare the MIDAS model forecasts to real-time forecasts from the corresponding

model based on the same predictors measured at monthly frequency.

Our results reinforce and strengthen recent evidence that the monthly real price of oil

is forecastable in real time. We find that the most accurate h-month-ahead forecasts are

obtained by including the percent change in U.S. crude oil inventories over the preceding

h months. The preferred MIDAS forecast has statistically significant directional accuracy

as high as 71% at the 12-month horizon, for example, and as high as 77% at the 24-month

horizon. It also produces statistically significant MSPE reductions relative to the no-

change forecast of 8% at the 12-month horizon and 16% at the 24-month horizon. These

improvements in forecast accuracy are very large by the standard of previous work on

forecasting oil prices. At horizons below 12 months, however, the MSPE reductions of this

MIDAS model are quite modest.

How the MIDAS model is implemented matters to some extent. While there is typically

little difference in accuracy between the MIDAS model with equal weights and the MIDAS

model with estimated weights, the unrestricted MIDAS model tends to be slightly less

accurate than the other specifications. The success of these MIDAS forecasts based on

U.S. crude oil inventories prompted us to also investigate the accuracy of the MF-VAR

model obtained by including the same weekly inventory data in a monthly oil market

VAR forecasting model of the type examined in Baumeister and Kilian (2012). We found

that the latter specification did not perform systematically better than the original VAR

model and clearly worse than the MIDAS model. The MIDAS model for U.S. crude oil

inventories does not have systematically lower MSPE than the corresponding forecasting

model based on monthly U.S. inventory data, however, and has comparable directional

accuracy.

While the improvements in forecast accuracy are less substantial for other weekly

financial predictors, the pattern of results is similar. Although MIDAS models often

significantly outperform the no-change forecast, so do the corresponding forecasts from
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models based on monthly financial predictors, and there is little to choose between these

models. Examples include models based on oil futures prices, returns on oil stocks and

gasoline price spreads. In some cases, the MIDAS model forecasts actually are inferior

to the forecasts from the corresponding monthly model or they fail to improve on the

no-change forecast.

Even when MIDAS models work well, therefore, not much is lost by ignoring high-

frequency financial data in forecasting the monthly real price of oil. This finding is not

only important for applied oil price forecasters, but also interesting from a methodological

point of view. It reminds us that, despite the intuitive appeal of MIDAS models, it is by

no means a foregone conclusion that the use of weekly predictors will improve the accuracy

of monthly forecasts. The determining factor is whether the additional signal contained

in the weekly data compensates for the additional noise. Different empirical applications

can produce different results.

The remainder of the paper is organized as follows. In section 2 we review our data

sources and the conventions used in transforming the daily data to weekly frequency.

Section 3 provides a brief summary of the mixed-frequency forecasting models. Section 4

motivates the choice of the high-frequency predictors and contains the empirical results.

Concluding remarks are provided in section 5.

2 Data

Our objective is to compare the real-time out-of-sample forecast accuracy for the monthly

real price of oil of a set of models that include high-frequency financial market data. We

focus on forecasts of the real U.S. refiners’acquisition cost of crude oil imports, which

is a widely used proxy for the global price of oil (see Alquist et al. 2013). The refiners’

acquisition cost measures what refiners actually pay for the crude oil they purchase. We

deflate this price by the U.S. consumer price index for all urban consumers.
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2.1 Data Construction

Throughout the paper, we focus on data measured at the weekly frequency, even if daily

data are available, for three reasons. First, there is a potential trade-off between obtaining

additional information and encountering noise in the high-frequency data. The use of

weekly data strikes a balance in this regard. Second, in the early part of the sample

there are gaps in the daily data for some of the time series that we consider. By relying

on weekly data, we are able to construct internally consistent time series for longer time

spans. Third, some of our data are available only at weekly frequency, and the choice of

weekly data facilitates comparisons across forecasting models.

A complication that arises with weekly data is that some months consist of five instead

of four weeks. We follow the approach proposed by Hamilton and Wu (2013) to generate a

balanced weekly data set where each month consists of four weeks.2 We use the observation

of the last (trading) day of the week to convert daily data to weekly frequency. For the

models estimated at monthly frequency, we take averages of daily data over the month,

consistent with the construction of the U.S. Energy Information Administration (EIA) oil

price data.

2.2 Data Sources

The daily West Texas Intermediate (WTI) spot oil price is obtained from the Wall Street

Journal and the corresponding daily NYMEX oil futures prices for maturities of 1 to 18

months are obtained from Bloomberg.3 Daily data for the spot price of regular gasoline

for delivery in New York Harbor are available from the EIA for the period June 1986

2For a Bayesian approach to modelling irregularly spaced data, see Chiu et al. (2012). It is unlikely that

there would be gains from having one more weekly observation at irregular intervals in our models, because

several alternative timing conventions that we considered generated very similar results.
3The spot price data start in January 1985, the oil futures price data for maturities 1 through 9 months start

in June 1984, those for the 12-month maturity start in December 1988, those for the 15-month maturity start

in June 1989 and those for the 18-month maturity start in October 1989.
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to March 2013.4 The daily spot price index for non-oil industrial raw materials from the

Commodity Research Bureau is available from June 1981 onwards. Daily data for the BDI

are obtained from Bloomberg starting in January 1985. Data for U.S. crude oil inventories

are reported from August 1982 onwards in the Weekly Petroleum Status Report issued by

the EIA, but consistent weekly time series could be constructed only back to January 1984

due to gaps in the earlier data. Our analysis takes account of the fact that this report is

issued every Wednesday and contains data extending to the preceding Friday. The closing

price of the price-weighted NYSE Arca Oil Index is available from Yahoo! Finance from

September 1983 onwards. This index is designed to measure the performance of the oil

industry through changes in the stock prices of a cross-section of widely held corporations

involved in the exploration, production and development of petroleum.5 Daily data for the

closing price of the NYSE composite index, which measures the performance of all common

stocks listed on the New York Stock Exchange, are obtained from Yahoo! Finance for the

period January 1966 to March 2013. Weekly data for the federal funds rate, the 3-month

LIBOR rate and the nominal trade-weighted U.S.-dollar index for major currencies are

available from the Federal Reserve Economic Data (FRED) database from, respectively,

July 1954 onwards, January 1986 onwards and January 1973 onwards.

The monthly real-time data for world oil production, the Kilian (2009) index of global

real economic activity, the nominal refiners’acquisition cost of imported crude oil, the U.S.

consumer price index for all urban consumers and the proxy for global crude oil inventories

are taken from the real-time database developed by Baumeister and Kilian (2012), which

contains vintages from January 1991 to March 2013.

4The gasoline spot price is reported in U.S. dollars per gallon and is converted to U.S. dollars per barrel by

multiplying the price by 42 gallons/barrel to make it compatible with the crude oil price (see Baumeister et al.

2013).
5The index is composed of the following companies: Anadarko Petroleum, BP plc, ConocoPhillips, Chevron,

Hess, Marathon Oil, Occidental Petroleum, Petr, Phillips 66, Total SA, Valero Energy, and Exxon Mobil.
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3 Mixed-Frequency Real-Time Forecasting Mod-

els

In this section we review the forecasting models that will be considered in section 4. The

objective is to forecast the monthly real price of oil using weekly predictors. For expository

purposes, it is useful to focus on mixed-frequency VAR (MF-VAR) models first, before

discussing MIDAS models.

3.1 MF-VAR Forecasts

There are two approaches to estimating the MF-VAR model. One is to estimate the model

in state-space representation (see, e.g., Schorfheide and Song 2012). The other approach

is to stack the weekly predictors in a vector depending on the timing of their release (see

Ghysels 2012). The main difference compared with the state-space representation is that

there are no missing observations, since the model is estimated at monthly frequency, and

standard estimation methods can be used. We focus on the latter approach.

3.1.1 MF-VAR Model Represented as a Stacked-Vector System

Denote by x1t , x
2
t , x

3
t and x

4
t the releases of the weekly variables in the first, second, third

and fourth week of each month t. Define zt = [xwt
′, xmt

′]′ where xwt = [x1t
′, x2t

′, x3t
′, x4t

′]′ and

xmt is the vector of monthly variables including the log of the real price of oil. Then the

variables in the system evolve according to the monthly VAR model

A(L)zt = ut, (1)

where ut is white noise and A(L) denotes the autoregressive lag order polynomial. The

model in equation (1) can be estimated by least-squares methods, as in the case of a single-

frequency VAR model. Forecasts of the real price of oil at monthly horizons h = 1, ..., 24

can be generated by iterating the recursively estimated VAR model forward conditional

on the date t information set and converting the forecast of the monthly real price of oil

from log-levels to levels.
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3.2 Univariate Mixed-Frequency Forecasts

A more parsimonious approach to dealing with mixed-frequency data involves specifying a

univariate MIDAS regression. There are three alternative MIDAS representations. LetXw
t

denote a predictor observed in week w ∈ {1, 2, 3, 4} of month t. The weekly predictor can

depend on the horizon h of the forecast, in which case we add an additional superscript h.

For example, we can define Xh,w
t as the cumulative change in Xw

t between the last day of

the current week and the last day of the same week h months ago. If the weekly predictor

does not depend on h, the superscript h is dropped.

3.2.1 MIDAS Regression with Estimated Weights

The MIDAS model for combining weekly financial predictors with monthly oil price ob-

servations is defined as

Rt+h = Rt

(
1 + βB(L1/w; θ)Xw

t

)
+ εt+h , (2)

where Rt is the current level of the monthly real price of oil. The MIDAS lag polynomial

B(L1/w; θ) is an exponential Almon lag weight function

B(L1/w, θ) =
4∑
j=1

b(j; θ)L(j−1)/w,

where the lag operator is defined as

L(j−1)/w(Xw
t ) = Xw

t−(j−1)/w,

and θ ≡ {θ1, θ2} such that

b(j; θ) =
exp(θ1j + θ2j

2)∑4
j=1 exp(θ1j + θ2j2)

.

Our results are not sensitive to the choice of the exponential Almon lag polynomial.

Similar results would be obtained with a beta lag polynomial. The model parameters β

and θ are recursively estimated by the method of non-linear least squares, and forecasts

are generated as

Rt+h|t = Rt

(
1 + β̂B(L1/w; θ̂)Xw

t

)
.
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In some cases, there will be a priori reasons to restrict β to unity, in which case only

θ has to be estimated.6

3.2.2 Equal-Weighted MIDAS Regressions

An even more parsimonious representation imposes equal weights on the weekly data,

resulting in the MIDAS model:

Rt+h = Rt

(
1 + β

3∑
i=0

1

4
Xw
t−i/4

)
+ εt+h. (3)

In this case, no estimation is required except for the parameter β. The model is linear

in β and can be estimated by ordinary least squares. If β is known, no regression is

required and the MSPE of this model can be evaluated using the Diebold and Mariano

(1995) test (the DM test).

3.2.3 Unrestricted MIDAS Regressions

Whether the added parsimony of the equal-weighted MIDAS model reduces the MSPE is

an empirical question. An alternative approach is to relax the restrictions implied by the

original MIDAS model. This yields the unrestricted MIDAS (or U-MIDAS) model:

Rt+h = Rt

(
1 +

3∑
i=0

αiX
w
t−i/4

)
+ εt+h. (4)

Model (4) is linear in αi and can be estimated by ordinary least squares.

4 Empirical Results

All forecasts are constructed subject to real-time data constraints. Unknown model pa-

rameters are estimated recursively. The forecast evaluation period starts in January 1992

and ends in September 2012. The use of such a long evaluation period minimizes the

6Note that the MIDAS model does not include an intercept. This fact allows us to nest the random walk

forecast without drift. It can be shown that the inclusion of an intercept would systematically lower the forecast

accuracy of our MIDAS models.
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dangers of spurious forecast successes. The real oil price forecasts are evaluated in levels

against the value of the real price of oil realized in the March 2013 vintage of the real-time

data set. We discard the last six observations of the oil price data, which are still subject

to revisions.

All forecasts are evaluated based on their MSPE relative to the MSPE of the monthly

no-change forecast of the level of the real price of oil. MSPE ratios below 1 indicate

that the model in question is more accurate than the no-change forecast. We also report

the directional accuracy of the forecasts in the form of the success ratio, defined as the

proportion of times that the model in question correctly predicts whether the real price of

oil rises or falls. Under the null hypothesis of no directional accuracy one would expect a

success ratio of 0.5. Higher ratios indicate an improvement on the no-change forecast.

While there is no valid test for the statistical significance of the real-time MSPE reduc-

tions from models based on estimated MIDAS or U-MIDAS weights, the equal-weighted

MIDAS specification with β = 1 imposed does not suffer from parameter estimation un-

certainty, allowing the use of conventional DM tests of equal MSPEs (see Diebold and

Mariano 1995).7 The statistical significance of gains in directional accuracy is evaluated

using the test of Pesaran and Timmermann (2009).

7The reason that we can assess the statistical significance of only the directional accuracy statistics and not

the MSPE reductions is twofold. One problem is that all standard tests of equal MSPEs are based on the

population MSPE, not the actual out-of-sample MSPE. This means that these tests are inappropriate for our

purpose. This point was first made in Inoue and Kilian (2004) and has become widely accepted in recent years.

If one uses these tests anyway, one will reject the null of equal MSPEs too often. This point has been illustrated,

for example, in Alquist et al. (2013). Ongoing work by Clark and McCracken (2012) is addressing this issue,

but their solutions do not apply in our context. The second problem is that standard tests for equal predictive

accuracy do not apply when using real-time data. Clark and McCracken (2009) show how this problem can

be overcome in the context of standard tests of no predictability in population. They focus on special cases

under additional assumptions, but their analysis does not cover our forecast settings, nor does it address the

first problem above.
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4.1 MIDAS Results

The set of high-frequency predictors includes (1) the spread between the spot prices of

gasoline and crude oil; (2) the spread between the oil futures price and the spot price of

crude oil; (3) cumulative percent changes in the CRB index of the price of industrial raw

materials, (4) U.S. crude oil inventories, and (5) the BDI; (6) returns and excess returns

on oil stocks; (7) cumulative changes in U.S. nominal interest rates (LIBOR, federal funds

rate); and (8) cumulative percent changes in the U.S. trade-weighted nominal exchange

rate.

4.1.1 Oil Futures Prices

A good starting point are forecasting models based on oil futures prices. In the absence of

a risk premium, arbitrage implies that the oil futures price is the conditional expectation

of the spot price of oil (see Alquist and Kilian 2010). Equivalently, in logs this means that

Et(∆st+h) = fht − st, (5)

where h denotes the forecast horizon and the maturity of the futures contract in months.

For our sample period, the maximum maturity for which continuous time series of WTI

oil futures and spot prices are available is 18 months. Expression (5) suggests that we

define the MIDAS forecasting model for horizon h as a polynomial in Xh,w
t = fh,wt − swt ,

where the spread is measured on the last day of week w = 1, 2, 3, 4 of a given month t.

We also make an adjustment for expected inflation, which is approximated by the average

inflation rate since July 1986, following Baumeister et al. (2013). As shown in Baumeister

and Kilian (2012), this approximation is good enough in practice, given that the variation

in the nominal price of crude oil far exceeds that in the inflation rate.

Table 1 shows that the equal-weighted MIDAS forecast has a lower MSPE than the no-

change forecast at every horizon between 1 month and 18 months. The gains in accuracy

are negligible at horizons under 12 months, but more substantial at longer horizons. The

largest reduction in the MSPE is 17% at horizon 15. The MSPE reductions at horizons

12, 15 and 18 are statistically significant based on the DM test. There are no statistically

significant gains in directional accuracy at short horizons. In fact, some of the success

11



ratios are well below 0.5. Significant improvements in directional accuracy are observed

at horizons 9, 12, 15 and 18. The largest success ratio is 63%. Similar results are obtained

for the model based on estimated MIDAS weights, and only slightly less accurate results

for the unrestricted MIDAS model.

Although the MIDAS model compares favorably with the no-change forecast, so do

traditional models based on the most recent monthly oil futures spread. The last two

columns of Table 1 show the corresponding results based on the monthly oil futures model,

as implemented in Baumeister and Kilian (2012). That model generates broadly similar

results in that MSPE reductions are statistically significant at horizons 12 and 15, and

directional accuracy at horizons 9, 12, 15 and 18. While the equal-weighted MIDAS model

has a slightly lower MSPE at all horizons, the monthly forecasting model has a slightly

higher and more statistically significant directional accuracy at longer horizons. Overall,

there is little to choose between these models.

4.1.2 Gasoline Spreads

Petroleum products such as gasoline and heating oil are produced by refining crude oil.

Many oil market analysts and financial analysts believe that the prices for these petroleum

products contain useful information about the future evolution of the price of crude oil.

In particular, changes in the product price spread —defined as the extent to which today’s

price of gasoline or heating oil deviates from today’s price of crude oil —are widely viewed

as a predictor of changes in the spot price of crude oil. For example, in April 2013

Goldman Sachs cut its oil price forecast citing significant downward pressure on product

price spreads, which it interpreted as an indication of reduced final demand for products

and hence an expectation of falling crude oil prices.

This forecasting approach has recently been formalized and evaluated by Baumeister,

Kilian and Zhou (2013) using monthly data. Their analysis demonstrates that models of

the gasoline price spread with an intercept of zero but a freely estimated slope parameter

are reasonably successful at predicting the real price of oil at horizons up to 24 months. In

the analysis below we impose the same restrictions. Preliminary analysis with alternative

models confirmed that all other specifications are inferior.
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Table 2 considers the MIDAS analogue of the model proposed in Baumeister et al.

(2013), with Xh,w
t denoting the spread between the spot price of gasoline and the WTI

spot price of crude oil, measured on the last day of week w = 1, 2, 3, 4 of a given month

t. The parameter β is freely estimated. Table 2 shows that this equal-weighted MIDAS

model has a lower MSPE than the no-change forecast at every horizon from 1 month

to 24 months, but with few exceptions the MSPE reductions are modest. There are no

statistically significant gains in directional accuracy. Similar results hold when estimating

the MIDAS weights. The unrestricted MIDAS model is somewhat less accurate.

Because of the presence of parameter estimation uncertainty, it is not possible to assess

properly the statistical significance of the MSPE reductions in Table 2, but we can compare

these results against those obtained for the corresponding monthly model, building on

Baumeister, Kilian and Zhou (2013). The latter model has slightly lower MSPE at eight

of the nine horizons. Both models’directional accuracy is statistically insignificant and

erratic. There is no reason to favor one of these models. As in the case of the oil futures,

there are no clear advantages to the use of the MIDAS model.

4.1.3 CRB Index of the Spot Price of Industrial Raw Materials

There is a long tradition of modelling oil prices jointly with other industrial commodities

(e.g., Barsky and Kilian 2002; Frankel 2008). The Commodity Research Bureau (CRB)

provides a widely used index of the spot price of industrial raw materials excluding crude

oil. Alquist et al. (2013) first made the case that cumulative percent changes in this CRB

price index in the recent past contain useful predictive information about expected changes

in the price of oil. The rationale for this forecast is that, often, fluctuations in industrial

commodity prices are driven by persistent and hence predictable variations in global real

economic activity. Several studies have elaborated on this insight and demonstrated that

such models have statistically significant directional accuracy and yield statistically signif-

icant MSPE reductions for the real price of oil (see Baumeister and Kilian 2012, 2013a,b).

The CRB index is also available on a daily basis, which allows us to incorporate

weekly observations for the cumulative percent change in this index into a MIDAS model.

The MIDAS model is estimated with β = 1 imposed. Table 3 shows that the equal-
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weighted MIDAS model has directional accuracy at all horizons and statistically significant

directional accuracy at some horizons. This model also reduces the MSPE at short horizons

by as much as 14%, but the reductions are never statistically significant based on the

DM test. At longer horizons there are no reductions in the MSPE. Similar results are

obtained for the MIDAS model with estimated weights. The unrestricted MIDAS model

is somewhat less accurate.

The last entries in Table 3 allow us to compare the performance of the MIDAS model

to that of the corresponding model based on the monthly CRB predictor. The MSPE

results are very similar and again statistically insignificant, but overall the monthly model

has somewhat higher and more statistically significant directional accuracy. We conclude

that in this case there is no gain from switching to MIDAS models and the monthly model

is preferred.

4.1.4 Baltic Dry Index

The central idea behind using the CRB spot price index for industrial raw materials in

forecasting the price of oil is that the real price of oil is predictable to the extent that

the global business cycle is predictable. This is also the motivation for the inclusion of

measures of global real economic activity such as the Kilian (2009) index in VAR oil price

forecasting models. One limitation of the latter index as well as all other measures of

global real economic activity is that it is not available at daily frequency. While there are

daily real-time indices of U.S. real economic activity such as the business cycle conditions

index of Aruoba, Diebold and Scotti (2009), there are no similar indices with the same

global coverage as the monthly Kilian (2009) index.

An alternative business cycle indicator widely used by practitioners is the Baltic Dry

Index (BDI), which is quoted on a daily basis by Bloomberg. This index is available

starting in 1985. The name of this index derives from the fact that it is maintained by

the Baltic Exchange in London. The BDI measures the cost of moving bulk dry cargo

on representative ocean shipping routes in the world. Because dry bulk cargo primarily

consists of materials that serve as industrial raw materials such as coal, steel, cement,

and iron ore, this index is seen in the business world as an indicator of future industrial
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production. In short, the BDI is viewed as a real-time leading economic indicator for the

world economy and is used to predict future economic activity (e.g., Bakshi, Panayotov

and Skoulakis 2011). This fact also makes it a potentially useful predictor of the real price

of oil.

Despite its popularity among practitioners, the BDI differs in several dimensions from

other measures of real economic activity based on dry cargo shipping rates, such as the

Kilian (2009) index. Without further transformations, the BDI is at best a crude proxy

for changes in global real economic activity. For the purpose of exploring its predictive

content within the MIDAS framework, we focus on the percent change in the BDI over

the last h months, rather than transforming the BDI into a business cycle index. The β

parameter is freely estimated.

Table 4 shows that there is little gain in accuracy from including the BDI data. Apart

from a negligible reduction in their MSPEs at the 1-month horizon, the first two MIDAS

models tend have higher MSPEs than the random walk and lack directional accuracy at

all horizons. The unrestricted MIDAS model is even less accurate. We conclude that

there does not appear to be useful predictive information in the BDI data. This result is

confirmed by the corresponding monthly regression models. Our findings underscore the

importance of transforming the raw BDI data into a measure of global real activity prior

to constructing oil price forecasts.

4.1.5 U.S. Crude Oil Inventories

Economic theory suggests that changes in expectations about the real price of oil all else

equal are reflected in changes in crude oil inventories (see Alquist and Kilian 2010). This

line of reasoning has led to the development of structural oil market models that explicitly

model changes in global crude oil inventories (see Kilian and Murphy 2013; Kilian and

Lee 2013; Knittel and Pindyck 2013). Monthly changes in global crude oil inventories also

have been shown to have predictive power for the real price of oil (see Alquist et al. 2013).

Although such data are not available at weekly frequency, U.S. crude oil inventories are.

This fact suggests that we include percent changes in weekly U.S. crude oil inventories

over the most recent h months in a MIDAS forecasting model for the real price of oil.
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Table 5 considers two classes of MIDAS regressions. In the upper panel, we estimate

the β parameter of the MIDAS model, whereas in the lower panel we impose β = 1

in estimation. This restriction improves the directional accuracy of the MIDAS model at

longer horizons, while increasing the MSPE. Broadly speaking, the equal-weighted MIDAS

model with β = 1 imposed is not much more accurate than the no-change forecast at short

horizons, but substantially more accurate at longer horizons. Both the MSPE reductions

and the improvements in directional accuracy are highly statistically significant.

This result is important because it suggests that the even-larger MSPE reductions

for the model with β estimated are also likely to be statistically significant. The MIDAS

model based on equal weights with β freely estimated is essentially tied with the no-change

forecast at horizons 1, 3 and 6, but at higher horizons reduces the MSPE by up to 28%

compared with the no-change forecast. The corresponding MIDAS model with β = 1

generates MSPE reductions only as high as 16%, but has higher and more statistically

significant directional accuracy, making it the preferred model overall. Very similar, but

marginally more accurate, results are obtained when the MIDAS weights are estimated.

The unrestricted MIDAS model also performs well.

All MIDAS models have high and statistically significant directional accuracy, espe-

cially at longer horizons. The directional accuracy can be as high as 80%, which means

that in 4 of 5 cases the model correctly predicts whether the real price of oil will go up

or down. These estimates are higher than in any previous empirical study of oil price

forecasting. We conclude that the equal-weighted MIDAS models based on weekly U.S.

oil inventories are particularly promising tools for applied oil price forecasters.

Compared with the corresponding models based on monthly U.S. inventory data, how-

ever, the conclusion is less clear.8 Table 5 shows that the MIDAS model with β = 1

imposed tends to have a lower MSPE at all horizons, but only slightly so, whereas the

MIDAS model with β estimated has a slightly higher or slightly lower MSPE than the

monthly model, depending on the horizon. Likewise, there is little to choose between the

monthly model and the MIDAS model when it comes to directional accuracy. Both models

8The monthly forecasting models are recursively estimated over the same estimation period as the MIDAS

models.
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perform quite well, especially at longer horizons.

4.1.6 Oil-Company Stock Prices

Chen (2013) recently showed that oil-sensitive stock price indices, particularly stock prices

of oil companies, help forecast the real price of crude oil at short horizons. Such information

is readily available at daily frequency. Building on Chen (2013), we explore this insight

using a MIDAS regression with Xw
t denoting the weekly return on the NYSE Arca Oil

Index, measured on the last day of week w = 1, 2, 3, 4 of a given month t. This index

includes 13 major international oil and natural gas companies. The parameter β is freely

estimated.

The upper panel of Table 6 shows that the MIDAS model with equal weights sys-

tematically reduces the MSPE relative to the no-change forecast for horizons up to 15

months. The largest MSPE reduction is 6% at the 1-month horizon. There also is some

evidence of directional accuracy, but only the 1-month-ahead success ratio is statistically

significant. When estimating the weights and when estimating the MIDAS model in its

unrestricted form, however, the MSPE ratios deteriorate. Although the MIDAS model

with equal weights performs better than the no-change forecast, it is not systematically

more accurate than the monthly real-time forecast.9 There is no reason to prefer one

specification over the other.

The lower panel of Table 6 shows that the same ranking of models applies when defining

Xw
t as the weekly excess return on the NYSE Arca Oil Index relative to the NYSE Com-

posite Index, except that the reductions in the MSPE and the improvements in directional

accuracy are negligible.

9These reductions in the MSPE are considerably lower than those reported in Chen (2013). For example,

Chen reports a 22% MSPE reduction at the 1-month horizon. These results differ for a number of reasons. First

and most importantly, we are forecasting the real U.S. refiners’acquisition cost for crude oil imports, which is

subject to real-time delays and revisions, whereas Chen (2013) focuses on the real WTI price, which for the most

part is not subject to such delays and revisions. This accounts for about two-thirds of the difference in results.

The remainder is largely accounted for by the fact that we focus on the monthly average price, as reported by

the U.S. Energy Information Administration, rather than the end-of-month price that Chen focuses on.
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4.1.7 U.S. Interest Rates

There is a perception among many observers that lower interest rates are associated with

looser economic policies and hence higher demand for crude oil and possibly a lower supply

of crude oil. Either way, this argument suggests a predictive relationship between changes

in interest rates and changes in the price of oil. This perception has been boosted by

studies suggesting that low real interest rates lead to high real commodity prices (see,

e.g., Barsky and Kilian 2002; Frankel 2008).10 We investigate this proposition by fitting

a MIDAS model for the difference between the interest rate on the last day of the current

week and the interest rate h months earlier. We consider two alternative measures of

U.S. interest rates. One is the U.S. federal funds rate, the other is the LIBOR rate. The

parameter β is freely estimated.

Table 7 indicates that the approach yields modest MSPE reductions at horizons of 6 to

18 months for all MIDAS specifications involving the federal funds rate, but typically lacks

directional accuracy. The corresponding results for the LIBOR rate are even less favorable,

regardless of the specification. A comparison with the corresponding monthly forecasting

model shows that very similar or worse results are obtained using monthly data only.

Neither forecasting approach appears superior to the no-change forecast. This evidence

reinforces skepticism regarding the empirical content of models linking oil price fluctuations

to variations in U.S. interest rates. While there is no doubt about the theoretical link in

question, its quantitative importance has yet to be established.

4.1.8 Trade-Weighted U.S. Exchange Rate

Another popular view is that fluctuations in the value of the dollar relative to other

currencies predict changes in the real price of oil, as it becomes more or less expensive

for importers of crude oil abroad to purchase crude oil. Previous studies of this question

have found no evidence in monthly data to support this view (see Alquist et al. 2013).

Here we return to this question using MIDAS regression specifications that allow the use

10This argument is distinct from the implications of the Hotelling (1931) model of exhaustible resources that

the price of oil should grow at the rate of interest. The latter proposition was evaluated and rejected in Alquist

et al. (2013).
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of high-frequency measures of the trade-weighted U.S. nominal exchange rate.

Table 8 shows that none of the MIDAS models produce reductions in the MSPE,

although there is some evidence of directional accuracy at selected horizons. Exactly the

same pattern applies to the corresponding monthly model in Table 8. There is some

evidence of modest statistically significant directional accuracy at intermediate horizons,

but again the MIDAS model has no advantage over the monthly model. We conclude that

these models are indistinguishable.

Moreover, neither model can be recommended for forecasting oil prices, especially

compared with some of the models discussed earlier. This result reinforces the conclusions

in Alquist et al. (2013) about the lack of predictive content of exchange rates for oil prices.

The notion that fluctuations in the trade-weighted U.S. exchange rate lead fluctuations in

the real price of oil lacks empirical support.

4.2 MF-VAR Results

Despite the availability of numerous high-frequency predictors of the real price of oil,

we conclude that only the weekly data on U.S. crude oil inventories stand out as useful

predictors of the real price of oil. The surprisingly good performance of the MIDAS model

based on U.S. crude oil inventories raises the question of whether even more accurate real-

time forecasts could be obtained by incorporating the same weekly inventory data into an

MF-VAR model.

Our baseline VAR model includes the percent change in global crude oil production, a

measure of the global real activity proposed in Kilian (2009), the real price of oil and the

change in global crude oil inventories. This choice of variables is motivated by economic

theory (see Kilian and Murphy 2013; Kilian and Lee 2013). The model specification is

identical to the specification employed in Baumeister and Kilian (2012), except that the

lag order is restricted to 2 lags compared to 12 lags in the original analysis, since the MF-

VAR model becomes computationally intractable for higher lag orders. By construction,

in the MF-VAR(2) model there will be two months’worth of lags of the weekly predictor.

The results reported in Table 9 are based on the stacked vector representation of the

mixed-frequency VAR model. Estimating the state-space representation of the model as
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in Schorfheide and Song (2012) yields similar results (which are not shown, to conserve

space). Table 9 shows that including weekly U.S. crude oil inventory data in the VAR(2)

model does not improve the accuracy of the real-time VAR forecast. In fact, the MF-

VAR(2) forecast is slightly less accurate than the original VAR(2) forecast. Either way,

the MSPE reductions relative to the no-change forecast are small and do not extend beyond

the 1-month horizon.

This evidence may seem to suggest that the information conveyed by the U.S. inventory

data is already contained in the baseline VAR because of the inclusion of monthly global

crude oil inventories. However, the corresponding MIDAS model in Table 5, which does

not contain information about global crude oil inventories, is much more accurate than the

VAR(2) model, especially at longer horizons, which suggests that the more parsimonious

MIDAS model structure is what makes the difference. In fact, regardless of which high-

frequency predictor is included in the MF-VAR(2) model, the MF-VAR(2) forecast rarely

outperforms the random walk even at horizon 1 and never beyond horizon 3.11 Our results

indicate that MF-VAR models are systematically less accurate than MIDAS models in

forecasting the real price of oil in real time.

5 Conclusion

We conclude that the best way to model mixed-frequency data in our context involves

the use of MIDAS models rather than MF-VAR models. In general, the equal-weighted

MIDAS model and the MIDAS model with estimated weights generate the most accurate

real-time forecasts based on mixed-frequency data. We found no evidence that unrestricted

MIDAS model forecasts are as accurate as, or more accurate than, forecasts from other

MIDAS specifications.

Based on these MIDAS models, we reviewed a wide range of potential high-frequency

financial predictors of the real price of oil. The results can be classified as follows:

• In many cases, the equal-weighted MIDAS model forecasts improve on the no-change

forecast, but so does the corresponding forecast from a model including only lagged

11These results are not shown to conserve space.
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monthly data, and there is little to choose between the MIDAS model forecast and the

forecast from the monthly model. Examples include models incorporating weekly oil fu-

tures spreads, weekly gasoline product spreads, weekly returns on oil company stocks and

weekly U.S. crude oil inventories.

• In some cases, the MIDAS forecast improves on the no-change forecast somewhat,

but is in turn inferior to the corresponding monthly real-time forecast. An example is the

model incorporating cumulative percent changes in the weekly CRB spot price index for

non-oil industrial raw materials.

• In yet other cases, the MIDAS forecast is about as accurate as the corresponding

monthly forecast, but neither is systematically more accurate than the no-change forecast.

Examples include models based on cumulative percent changes in the trade-weighted nom-

inal U.S. exchange rate, the U.S. interest rates or the BDI.

Although many MIDAS models improve on the no-change forecast, the only time we

documented large, systematic and statistically significant improvements in forecast accu-

racy occurred when we included weekly data on U.S. crude oil inventories in the MIDAS

model. The latter specification not only yielded impressive reductions in the MSPE at

horizons between 12 and 24 months, but also unusually high directional accuracy. The

largest reduction in the MSPE we observed was 28%, and the largest success ratio was

80%. These gains in real-time forecast accuracy are large compared with those reported

in any previous study on forecasting oil prices.

While our analysis produced strong new evidence that the monthly real price of oil is

predictable at horizons beyond one year, this success cannot be attributed to the use of

the MIDAS model, because the corresponding forecasting model based on monthly U.S.

crude oil inventory data produces similar gains in accuracy. Our analysis suggests that,

in general, unlike in many other studies, not much will be lost by ignoring high-frequency

financial data in forecasting the monthly real price of oil.

Throughout this paper, we focused on MIDAS models for one high-frequency predictor

at a time. An alternative strategy would have been to impose a factor structure on the set

of high-frequency financial predictors, as in Andreou, Ghysels and Kourtellos (2013). The

latter approach is natural in the context of macroeconomic forecasting, but less appealing
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in our context given the much smaller number of potential predictors that can be motivated

on economic grounds. The reason is that the real price of oil is determined in global oil

markets and the set of relevant predictors is much smaller.

There are a number of potential extensions of our analysis. For example, although we

focused on monthly oil price forecasts, it would have been straightforward to extend our

analysis to quarterly horizons. Baumeister and Kilian (2013a,b) show that, usually, the

best way to generate quarterly forecasts is to average monthly forecasts by quarter. One

could also extend the analysis to include other oil price measures such as the WTI price.

Doing so would raise additional complications discussed in Baumeister and Kilian (2013a).

We focused on the real U.S. refiners’acquisition cost for crude oil imports in this paper

because that price is a widely used proxy for the global price of oil.

References

1. Alquist, R., and L. Kilian (2010), “What Do We Learn from the Price of Crude Oil

Futures?”Journal of Applied Econometrics, 25, 539-573.

2. Alquist, R., L. Kilian, and R.J. Vigfusson (2013), “Forecasting the Price of Oil,”

in: G. Elliott and A. Timmermann (eds.), Handbook of Economic Forecasting, 2,

Amsterdam: North-Holland, 427-507.

3. Andreou, E., E. Ghysels, and A. Kourtellos (2010), “Regression Models with Mixed

Sampling Frequencies,”Journal of Econometrics, 158, 2, 246-261.

4. Andreou, E., E. Ghysels, and A. Kourtellos (2011), “Forecasting with Mixed-Frequency

Data,” in: Clements, M.P., and D.F. Hendry (eds.), Oxford Handbook of Economic

Forecasting. 225-245.

5. Andreou, E., E. Ghysels, and A. Kourtellos (2013), ““Should Macroeconomic Fore-

casters Use Daily Financial Data and How?” Journal of Business and Economic

Statistics, 31, 240-251.

6. Aruoba, S.B., F.X. Diebold, and C. Scotti (2009), “Real-Time Measurement of Busi-

ness Conditions,”Journal of Business and Economic Statistics, 27, 417-427.

22



7. Bakshi, G., G. Panayotov, and G. Skoulakis (2011), “The Baltic Dry Index as a

Predictor of Global Stock Returns, Commodity Returns, and Global Economic Ac-

tivity,”mimeo, University of Maryland.

8. Barsky, R.B., and L. Kilian (2002), “Do We Really Know that Oil Caused the Great

Stagflation? A Monetary Alternative,”in: Bernanke, B., and K. Rogoff(eds.), NBER

Macroeconomics Annual 2001, 137-183.

9. Baumeister, C., and L. Kilian (2012), “Real-Time Forecasts of the Real Price of Oil,”

Journal of Business and Economic Statistics, 30, 326-336.

10. Baumeister, C., and L. Kilian (2013a), “What Central Bankers Need to Know about

Forecasting Oil Prices,”forthcoming: International Economic Review.

11. Baumeister, C., and L. Kilian (2013b), “Forecasting the Real Price of Oil in a Chang-

ing World: A Forecast Combination Approach,”mimeo, University of Michigan.

12. Baumeister, C., L. Kilian, and X. Zhou (2013),“Are Product Spreads Useful for Fore-

casting? An Empirical Evaluation of the Verleger Hypothesis,”mimeo, University of

Michigan.

13. Bernard, J.-T., L. Khalaf, M. Kichian, and C. Yelou (2013), “On the Long-Term

Dynamics of Oil Prices: Learning from Combination Forecasts,”mimeo, Carleton

University.

14. Chen, S.S. (2013), “Forecasting Crude Oil Price Movements with Oil-Sensitive Stocks,”

forthcoming: Economic Inquiry.

15. Chiu, C.W., B. Eraker, A.T. Foerster, T.B. Kim, and H.D. Seoane (2012), “Es-

timating VARs Sampled at Mixed or Irregularly Spaced Frequencies: A Bayesian

Approach,”mimeo, Federal Reserve Bank of Kansas City.

16. Clark, T.E., and M.W. McCracken (2009), “Tests of Equal Predictive Ability with

Real-Time Data,”Journal of Business and Economic Statistics, 27, 441-454.

17. Clark, T.E., and M.W. McCracken (2012), “Nested Forecast Model Comparisons:

A New Approach to Testing Equal Accuracy,”mimeo, Federal Reserve Bank of St.

Louis.

23



18. Clements, M.P., and A.B. Galvao (2008), “Macroeconomic Forecasting with Mixed-

Frequency Data: Forecasting US Output Growth,” Journal of Business and Eco-

nomic Statistics, 26, 546-554.

19. Clements, M.P., and A.B. Galvao (2009), “Forecasting US Output Growth Using

Leading Indicators: An Appraisal Using MIDAS Models,”Journal of Applied Econo-

metrics, 24, 1187-1206.

20. Diebold, F.X., and R.S. Mariano (1995), “Comparing Predictive Accuracy,”Journal

of Business and Economic Statistics, 13, 253-263.

21. Fattouh, B., L. Kilian, and L. Mahadeva (2013), “The Role of Speculation in Oil

Markets: What Have We Learned So Far?”Energy Journal, 34, 7-33.

22. Foroni, C., E. Ghysels, and M. Marcellino (2013), “Mixed-Frequency Vector Autore-

gressive Models,”forthcoming: Advances in Econometrics, 32.

23. Foroni, C., M. Marcellino, and C. Schuhmacher (2012), “U-MIDAS: MIDAS Regres-

sions with Unrestricted Lag Polynomials,”mimeo, EUI.

24. Frankel, J. (2008), “The Effect of Monetary Policy on Real Commodity Prices,”in:

Campbell, J. (ed.), Asset Prices and Monetary Policy, University of Chicago Press,

291-327.

25. Ghysels, E. (2012), “Macroeconomics and the Reality of Mixed Frequency Data,”

mimeo, University of North Carolina.

26. Ghysels, E., and J.H. Wright (2009), “Forecasting Professional Forecasters,”Journal

of Business and Economic Statistics, 27, 504-516.

27. Hamilton, J.D. (2008), “Daily Monetary Policy Shocks and New Home Sales,”Jour-

nal of Monetary Economics, 55, 1171-1190.

28. Hamilton, J.D., and J.C. Wu (2013), “Risk Premia in Crude Oil Futures Prices,”

forthcoming: Journal of International Money and Finance.

29. Hotelling, H. (1931), “The Economics of Exhaustible Resources,”Journal of Political

Economy, 39, 137-175.

24



30. Inoue, A., and L. Kilian (2004), “In-Sample or Out-of-Sample Tests of Predictability:

Which One Should We Use?”Econometric Reviews, 23, 371-402.

31. Kilian, L. (2009), “Not All Oil Price Shocks Are Alike: Disentangling Demand and

Supply Shocks in the Crude Oil Market,”American Economic Review, 99, 1053-1069.

32. Kilian, L. and T.K. Lee (2013), “Quantifying the Speculative Component in the

Real Price of Oil: The Role of Global Oil Inventories,” forthcoming: Journal of

International Money and Finance.

33. Kilian, L., and D.P. Murphy (2013), “The Role of Inventories and Speculative Trad-

ing in the Global Market for Crude Oil,” forthcoming: Journal of Applied Econo-

metrics.

34. Knittel, C.R., and R.S. Pindyck (2013), “The Simple Economics of Commodity Price

Speculation,”mimeo, MIT.

35. Pesaran, M.H., and A. Timmermann (2009), “Testing Dependence among Serially

Correlated Multicategory Variables,” Journal of the American Statistical Associa-

tion, 104, 325-337.

36. Schorfheide, F., and D. Song (2012), “Real-Time Forecasting with a Mixed Frequency

VAR,”mimeo, University of Pennsylvania.

25



Table 1: Forecasting the monthly real price of oil with the oil futures spread
Evaluation period: 1992.1-2012.9

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.996 0.478 1.000 0.466 1.014 0.466 0.997 0.462
3 0.965 0.530 0.954 0.563 0.941 0.571 0.974 0.498
6 0.975 0.488 0.964 0.508 0.980 0.488 0.975 0.512
9 0.938 0.568* 0.922 0.564 0.939 0.568 0.944 0.589*
12 0.872* 0.592* 0.857 0.601* 0.878 0.601* 0.886** 0.613*
15 0.829* 0.621* 0.829 0.617* 0.890 0.638* 0.860** 0.634*
18 0.848* 0.629* 0.854 0.625* 0.962 0.625* 0.906 0.621*

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 +
∑3

i=0
1
4 (Xh,w

t−i/4) − Et(π
h
t )), Equal weights

• Rt+h|t = Rt(1 +B(L1/4; θ̂)(Xh,w
t ) − Et(π

h
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4) − Et(π

h
t )), Unrestricted

• Rt+h|t = Rt(1 +Xh
t − Et(π

h
t )), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the difference between the log of the oil futures price for maturity

h and the log of the spot price of oil in week w of month t, Xh
t is the difference between the log of the

oil futures price for maturity h and the log of the spot price of oil in month t, and Et(π
h
t ) denotes the

expected inflation rate over h periods. The benchmark model is the monthly no-change forecast. Boldface
indicates improvements on the no-change forecast. Statistically significant improvements in directional
accuracy according to the Pesaran-Timmermann test are marked using *(5% significance level) and **(10%
significance level). For the equal-weighted MIDAS model and for the monthly model, statistically significant
reductions in the MSPE according to the Diebold-Mariano test are marked using *(5% significance level)
and **(10% significance level).
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Table 2: Forecasting the monthly real price of oil with the
gasoline-crude oil spot price spread
Evaluation period: 1992.1-2012.9

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.993 0.578 0.998 0.590 1.071 0.554 0.989 0.562
3 0.996 0.583 1.004 0.583 1.019 0.534 0.990 0.583
6 0.991 0.574 0.984 0.582 0.997 0.533 0.978 0.545
9 0.984 0.490 0.987 0.494 1.011 0.485 0.963 0.436
12 0.963 0.441 0.961 0.483 0.964 0.555 0.934 0.521
15 0.956 0.532 0.950 0.540 0.945 0.591 0.931 0.516
18 0.973 0.504 0.970 0.543 0.966 0.582** 0.971 0.470
21 0.976 0.541 0.972 0.563 1.003 0.546 0.986 0.454
24 0.935 0.588 0.927 0.566 0.953 0.540 0.934 0.500

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4) − Et(π
h
t )), Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t ) − Et(π

h
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4) − Et(π

h
t )), Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t − Et(π

h
t )), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the difference between the log of the gasoline spot price and the

log of the spot price of oil in week w of month t, Xh
t is the difference between the log of the gasoline spot

price and the log of the spot price of oil in month t, and Et(π
h
t ) denotes the expected inflation rate over

h periods. The benchmark model is the monthly no-change forecast. Boldface indicates improvements
on the no-change forecast. Statistically significant improvements in directional accuracy according to the
Pesaran-Timmermann test are marked using *(5% significance level) and **(10% significance level).
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Table 3: Forecasting the monthly real price of oil with the CRB spot price
index of industrial raw materials
Evaluation period: 1992.1-2012.9

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.929 0.558** 0.927 0.562 0.978 0.546 0.934 0.546**
3 0.862 0.628* 0.831 0.636* 0.861 0.632* 0.863 0.628*
6 1.113 0.611* 1.112 0.623* 1.085 0.570* 1.107 0.598*
9 1.163 0.573 1.158 0.564 1.085 0.469 1.143 0.593*
12 1.132 0.546 1.131 0.546 1.131 0.454 1.100 0.592*
15 1.150 0.574** 1.144 0.574 1.131 0.451 1.118 0.617*
18 1.254 0.539 1.252 0.539 1.154 0.418 1.232 0.578*
21 1.382 0.528 1.382 0.528 1.139 0.445 1.376 0.528
24 1.377 0.513 1.380 0.509 1.172 0.451 1.394 0.443

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 +
∑3

i=0
1
4 (Xh,w

t−i/4) − Et(π
h
t )), Equal weights

• Rt+h|t = Rt(1 +B(L1/4; θ̂)(Xh,w
t ) − Et(π

h
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4) − Et(π

h
t )), Unrestricted

• Rt+h|t = Rt(1 +Xh
t − Etπ

h
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the percent change in the CRB spot price index of industrial raw

materials over the preceding h months in week w of month t, Xh
t is the percent change in the CRB spot

price index of industrial raw materials over the preceding h months in month t, and Et(π
h
t ) denotes the

expected inflation rate over h periods. The benchmark model is the monthly no-change forecast. Boldface
indicates improvements on the no-change forecast. Statistically significant improvements in directional
accuracy according to the Pesaran-Timmermann test are marked using *(5% significance level) and **(10%
significance level). For the equal-weighted MIDAS model and for the monthly model, statistically significant
reductions in the MSPE according to the Diebold-Mariano test are marked using *(5% significance level)
and **(10% significance level).
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Table 4: Forecasting the monthly real price of oil with the Baltic Dry Index
Evaluation period: 1992.1-2012.9

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.950 0.502 0.947 0.498 0.991 0.442 0.952 0.546**
3 1.049 0.470 1.079 0.466 1.078 0.482 1.109 0.462
6 1.015 0.504 1.023 0.512 1.083 0.520 1.056 0.492
9 1.030 0.502 1.025 0.498 1.033 0.490 1.124 0.548
12 1.087 0.445 1.094 0.445 1.166 0.441 1.447 0.500
15 1.123 0.383 1.136 0.387 1.203 0.391 1.544 0.426
18 1.297 0.435 1.308 0.414 1.327 0.397 2.112 0.474
21 1.399 0.341 1.393 0.332 1.397 0.358 2.214 0.411
24 1.391 0.363 1.407 0.363 1.464 0.442 2.185 0.327

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4)), Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4)), Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the percent change in the BDI over the preceding h months

in week w of month t, and Xh
t is the percent change in the BDI over the preceding h months in month

t. The benchmark model is the monthly no-change forecast. Boldface indicates improvements on the no-
change forecast. Statistically significant improvements in directional accuracy according to the Pesaran-
Timmermann test are marked using *(5% significance level) and **(10% significance level).
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Table 5: Forecasting the monthly real price of oil with U.S. crude oil inventories
Evaluation period: 1992.1-2012.9

β = β̂

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 1.000 0.530 0.998 0.550* 1.003 0.478 1.001 0.414
3 1.004 0.599* 1.008 0.587* 1.018 0.579* 0.998 0.575**
6 1.007 0.463 1.010 0.463 1.021 0.451 1.018 0.537
9 0.964 0.506 0.961 0.523 0.985 0.523 0.981 0.519
12 0.922 0.559 0.910 0.584 0.929 0.588 0.926 0.534
15 0.886 0.609** 0.881 0.613** 0.884 0.566 0.886 0.630**
18 0.835 0.621* 0.828 0.625* 0.836 0.599** 0.835 0.629**
21 0.688 0.712* 0.686 0.729* 0.690 0.734* 0.681 0.716*
24 0.720 0.686* 0.706 0.695* 0.714 0.712* 0.695 0.708*

β = 1

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.995 0.542 0.995 0.546** 1.003 0.478 1.001 0.586
3 0.985 0.599* 0.987 0.583* 1.018 0.579* 0.991 0.575**
6 1.013 0.512 1.016 0.500 1.021 0.451 1.025 0.537
9 0.945* 0.622* 0.943 0.622* 0.985 0.523 0.952* 0.610*
12 0.924* 0.710* 0.922 0.731* 0.929 0.588 0.930 0.744*
15 0.912* 0.766* 0.911 0.779* 0.884 0.566 0.916* 0.762*
18 0.899* 0.776* 0.898 0.780* 0.836 0.599** 0.904* 0.797*
21 0.848* 0.803* 0.848 0.830* 0.690 0.734* 0.847* 0.799*
24 0.844* 0.774* 0.842 0.783* 0.714 0.712* 0.844* 0.792*

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4)), Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4)), Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the percent change in U.S. crude oil inventories over the

preceding h months in week w of month t, and Xh
t is the percent change in U.S. crude oil inventories over

the preceding h months in month t. The benchmark model is the monthly no-change forecast. Boldface
indicates improvements on the no-change forecast. Statistically significant improvements in directional
accuracy according to the Pesaran-Timmermann test are marked using *(5% significance level) and **(10%
significance level). For the equal-weighted MIDAS model and for the monthly model in the lower panel,
statistically significant reductions in the MSPE according to the Diebold-Mariano test are marked using
*(5% significance level) and **(10% significance level).
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Table 6: Forecasting the monthly real price of oil with returns on oil stocks
Evaluation period: 1992.1-2012.9

Returns on the NYSE Oil Index

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.943 0.586* 0.987 0.570** 0.999 0.590 0.945 0.518
3 0.952 0.567 0.970 0.575** 0.972 0.567 0.951 0.547
6 0.986 0.529 0.991 0.545 0.998 0.537 0.984 0.504
9 0.986 0.523 1.000 0.531 1.022 0.560 0.989 0.531
12 0.986 0.576 1.004 0.571** 1.032 0.563 0.983 0.588*
15 0.991 0.515 0.999 0.528 1.024 0.536 0.990 0.506
18 1.004 0.496 1.008 0.435 1.026 0.453 1.018 0.483
21 1.003 0.476 1.015 0.463 1.017 0.463 1.007 0.459
24 0.994 0.447 1.007 0.509 0.995 0.496 1.002 0.465

Excess Returns of the NYSE Oil Index relative to the NYSE Composite Index

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.968 0.554* 1.007 0.538** 1.010 0.530** 0.973 0.530
3 0.982 0.518 0.998 0.518 1.001 0.522 0.985 0.526
6 0.993 0.496 0.999 0.537 1.003 0.520 0.996 0.508
9 1.002 0.469 1.023 0.502 1.033 0.535 1.002 0.486
12 1.000 0.500 1.019 0.534 1.046 0.521 0.998 0.517
15 0.999 0.485 1.011 0.532 1.048 0.489 1.001 0.502
18 1.004 0.478 1.015 0.483 1.037 0.427 1.001 0.500
21 1.000 0.502 1.015 0.441 1.026 0.450 0.997 0.520**
24 1.003 0.482 1.019 0.491 1.019 0.434 1.001 0.447

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4)), Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4)), Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the 1-week return (or excess return) on the NYSE oil index

in week w of month t, and Xh
t is the 1-month return (or excess return) on the NYSE oil index in month

t. The benchmark model is the monthly no-change forecast. Boldface indicates improvements on the no-
change forecast. Statistically significant improvements in directional accuracy according to the Pesaran-
Timmermann test are marked using *(5% significance level) and **(10% significance level).
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Table 7: Forecasting the monthly real price of oil with U.S. interest rates
Evaluation period: 1992.1-2012.9

Federal Funds Rate

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 0.998 0.510 0.999 0.534** 1.001 0.502 0.998 0.470
3 1.004 0.530 1.004 0.538 1.005 0.526 1.004 0.530
6 0.969 0.459 0.971 0.504 0.967 0.520 0.966 0.459
9 0.960 0.506 0.963 0.510 0.964 0.515 0.953 0.506
12 0.952 0.504 0.947 0.475 0.946 0.483 0.952 0.496
15 0.961 0.515 0.954 0.502 0.946 0.502 0.963 0.498
18 0.986 0.491 0.982 0.487 0.977 0.487 0.987 0.500
21 1.011 0.480 1.009 0.472 0.997 0.480 1.012 0.489
24 1.032 0.434 1.032 0.442 1.024 0.438 1.032 0.434

LIBOR

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 1.006 0.522 1.010 0.526 1.013 0.530 1.037 0.534**
3 1.017 0.538** 1.018 0.506 1.018 0.571* 1.023 0.547
6 0.996 0.463 0.996 0.475 1.033 0.496 1.014 0.385
9 0.994 0.436 0.992 0.461 0.992 0.461 1.086 0.486
12 0.980 0.458 0.979 0.454 0.986 0.483 1.050 0.382
15 0.995 0.485 0.994 0.481 0.993 0.485 1.033 0.430
18 1.011 0.457 1.011 0.461 1.008 0.470 1.050 0.457
21 1.033 0.459 1.034 0.454 1.034 0.480 1.083 0.389
24 1.058 0.429 1.060 0.434 1.064 0.460 1.088 0.358

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4)), Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t )), Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4)), Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the change in the interest rate over the preceding h months

in week w of month, and Xh
t is the change in the interest rate over the preceding h months in month

t. The benchmark model is the monthly no-change forecast. Boldface indicates improvements on the no-
change forecast. Statistically significant improvements in directional accuracy according to the Pesaran-
Timmermann test are marked using *(5% significance level) and **(10% significance level).
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Table 8: Forecasting the monthly real price of oil with the nominal trade-weighted U.S.
exchange rate

Evaluation period: 1992.1-2012.9

MIDAS

Horizon Equal weights Estimated weights Unrestricted Monthly model
(months)

MSPE Success MSPE Success MSPE Success MSPE Success
ratio ratio ratio ratio ratio ratio ratio ratio

1 1.005 0.466 1.006 0.514 1.018 0.514 1.007 0.466
3 1.081 0.502 1.078 0.486 1.084 0.490 1.068 0.494
6 1.006 0.426 1.016 0.418 1.038 0.434 1.000 0.480
9 1.061 0.622* 1.070 0.548 1.097 0.523 1.069 0.618*
12 1.174 0.618* 1.188 0.613* 1.199 0.592* 1.176 0.626*
15 1.149 0.591* 1.147 0.600* 1.176 0.600* 1.146 0.600**
18 1.157 0.565 1.163 0.547 1.175 0.543 1.153 0.560
21 1.143 0.459 1.146 0.472 1.163 0.472 1.140 0.463
24 1.079 0.482 1.079 0.451 1.078 0.465 1.078 0.478

NOTES: The forecasts are constructed as:

• Rt+h|t = Rt(1 + β̂
∑3

i=0
1
4 (Xh,w

t−i/4)) + εt, Equal weights

• Rt+h|t = Rt(1 + β̂B(L1/4; θ̂)(Xh,w
t )) + εt, Estimated weights

• Rt+h|t = Rt(1 +
∑3

i=0 α̂i(X
h,w
t−i/4)) + εt, Unrestricted

• Rt+h|t = Rt(1 + β̂Xh
t ), Monthly model

where Rt is the real price of oil, Xh,w
t−i/4 is the change in the exchange rate over the preceding h months

in week w of month t, and Xh
t is the change in the exchange rate over the preceding h months in month

t. The benchmark model is the monthly no-change forecast. Boldface indicates improvements on the no-
change forecast. Statistically significant improvements in directional accuracy according to the Pesaran-
Timmermann test are marked using *(5% significance level) and **(10% significance level).
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Table 9: VAR and MF-VAR forecasts of the monthly real price of oil
Evaluation period: 1992.1-2012.9

Horizon VAR(2) MF-VAR(2) with weekly
(months) U.S. crude oil inventories

MSPE Success MSPE Success
ratio ratio ratio ratio

1 0.915 0.566* 0.950 0.530
3 1.007 0.543 1.090 0.522
6 1.108 0.553 1.244 0.459
9 1.224 0.539 1.479 0.436
12 1.309 0.563 1.630 0.458
15 1.362 0.549 1.735 0.447
18 1.426 0.539 1.908 0.427
21 1.487 0.533 2.064 0.450
24 1.482 0.518 2.071 0.465

NOTES: The four variables in the VAR model are the growth rate of world oil production, the log of the
real price of oil, the Kilian (2009) global real economic activity index, and the change in global crude oil
inventories. The weekly U.S crude oil inventories are expressed as the percent change over the preceding h
months. The benchmark model is the monthly no-change forecast. Statistically significant improvements
in directional accuracy according to the Pesaran-Timmermann test are marked using *(5% significance
level) and **(10% significance level).
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