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Abstract 

This paper proposes new measures of the integrated variance, measures which use high-
frequency bid-ask spreads and quoted depths. The traditional approach assumes that the 
mid-quote is a good measure of frictionless price. However, the recent high-frequency 
econometric literature takes the mid-quote as a noisy measure of the frictionless price and 
proposes new and robust estimators of the integrated variance. This paper forgoes the 
common assumption of an additive friction term, and demonstrates how the quoted depth 
may be used in the construction of refined realized volatility measures under the 
assumption that the true frictionless price lies between the bid and the ask. More 
specifically, we make assumptions about the conditional distribution of the frictionless 
price given the available information, including quotes and depths. This distributional 
assumption leads to new measures of the integrated variance that explicitly incorporate 
the depths. We then empirically compare the new measures with the robust ones when 
dealing with forecasting integrated variance or trading options. We show that, in several 
cases, the new measures dominate the traditional measures. 

JEL classification: C14, C51, C58 
Bank classification: Econometric and statistical methods; Financial markets 

Résumé 

Les auteurs proposent de nouvelles mesures de la variance intégrée qui reposent sur des 
données à haute fréquence concernant les écarts entre cours acheteur et vendeur et les 
profondeurs affichées, c.-à-d. les quantités offertes à ces deux cours. Dans l’approche 
traditionnelle, le cours médian est considéré comme un bon indicateur du prix sans 
frictions. Or les travaux économétriques récents ayant mis à contribution ce type de 
données voient dans le cours médian une mesure entachée de bruit et proposent plutôt 
l’emploi de nouveaux estimateurs de la variance intégrée qui sont robustes. Dans la 
présente étude, les auteurs n’incluent pas de terme de friction de type additif, 
contrairement aux modèles classiques, et démontrent que les profondeurs affichées 
peuvent servir à construire des mesures plus précises de la volatilité réalisée en partant de 
l’hypothèse que le prix sans frictions se situe entre les cours vendeur et acheteur. Plus 
précisément, ils formulent des hypothèses au sujet de la distribution conditionnelle du 
prix sans frictions étant donné l’information disponible, dont les cours et profondeurs 
affichés. Grâce à ces hypothèses, il est possible d’élaborer des mesures de la variance 
intégrée qui tiennent compte explicitement des profondeurs affichées. Les auteurs 
comparent ensuite les nouvelles mesures avec des estimateurs robustes afin d’en évaluer 
l’apport empirique pour la prévision de la variance intégrée ou les transactions d’options. 
Dans plusieurs cas, les nouvelles mesures surpassent celles couramment utilisées. 

Classification JEL : C14, C51, C58 
Classification de la Banque : Méthodes économétriques et statistiques; Marchés 
financiers 



1 Introduction

Measuring volatility using high-frequency data has attracted growing interest since

the late 1990s, for many reasons. First, thanks to the increased availability of

large data samples, we can observe almost continuous data processes, which in turn

justifies the use of the continuous time framework. The Trades and Quotes (TAQ)

database1 usually releases one-second frequency prices and quotes, but recently it

has been releasing one-millisecond frequency data. Such an ultra-high-frequency

data set opens up research opportunities to explore intraday volatility features and

spot volatility estimation. The second major reason for the growing interest is that

the model-free approach of the theory of quadratic variation is not vulnerable to

model misspecification, as is the case with other approaches from the parametric

literature.

In this paper, we are interested in measuring the integrated variance of asset returns

using bid and ask prices. We assume conditional distributional assumptions on

the frictionless price. The common approach is to assume that the mid-quote

price – the bid and ask prices average – is the sum of the frictionless price and

a noise term. By making assumptions on the noise, one could derive consistent

estimators of the integrated variance; see, for example, Zhang et al. (2005), Zhang

(2006), Barndorff-Nielsen et al. (2008), and Jacod et al. (2009). Early assumptions

hypothesized an exogenous independent and identically distributed (i.i.d.) dynamic

for the noise. Later on, this assumption was relaxed to allow for some forms of

endogeneity with the frictionless price and an autocorrelated noise. The problem is

that, since noise is not observed it is difficult to be precise about its time-varying

characteristics.

This paper follows a novel approach. As a first attempt, we derive bounds on the

integrated variance when assuming that the frictionless price lies between the bid and

the ask prices. Such a non-point identification (also known as partial identification)

approach was initiated by Manski (2003) and later surveyed by Tamer (2010).

Unfortunately, this approach leads to wide bounds, implying that one needs to

1The TAQ database is a collection of intraday trades and quotes for all securities listed on
the New York Stock Exchange, American Stock Exchange, Nasdaq National Market System and
SmallCap issues. TAQ provides historical tick-by-tick data of all stocks listed on NYSE back to
1993.
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make additional assumptions. Our main approach consists of making distributional

assumptions on the frictionless price conditioned on quoted data (the bid, ask and

depths). We then derive new realized volatility measures. One important feature

of the new measures is the explicit presence of the bid-ask spread variable. So

far, in market microstructure theory, the spread has been only implicitly shown to

impound information about volatility; see Hasbrouck (1999) for a bid and ask model

that features ARCH volatility effects.

We consider a range of distributions and evaluate them through three criteria. First,

we analyze the ability to capture noise at high frequency using the signature plot that

was first introduced in Andersen et al. (1999). Indeed, the signature plot – drawing

the realized variance against sampling frequencies – gives an idea of the magnitude of

the noise in the data for each sampling frequency. Second, we examine the forecast

performance of the integrated volatility measures that we propose, both in-sample

and out-of-sample. For instance, Andersen et al. (2003) evaluate the forecasting

abilities of the standard realized variance, and Aı̈t-Sahalia and Mancini (2008) study

the forecasting of integrated volatility using the robust-to-noise estimator: the two

time-scales estimator. Third, we use the proposed integrated volatility measures to

quantify the pecuniary gain or loss for option pricing in a hypothetical market, as

in Bandi et al. (2008). We show that some new measures outperform the existing

ones.

We carry out our analysis by adding the quoted depths (the ask volume and the bid

volume) to the conditioning information set. The ask (bid) volume is the maximum

number of shares to buy (sell) at the ask (bid) price. The quoted depths reveal

information about the stock liquidity and inventory control. For instance, Kavajecz

(1999) shows that changes in quoted depths are consistent with market makers

managing their inventory as well as having expectations about the stock’s future

value. Consequently, using the depths may lessen the microstructure frictions effect.

The bounded distributions for the frictionless price that we use are the uniform

and the triangular over the bid-ask interval. We also accommodate the normal

distribution to a bounded support. We explicitly model the correlation between

successive prices.

In the empirical section, we use data from the Alcoa stock traded on the New York

Stock Exchange during the January 2009 – March 2011 period. We find that the
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best measures stemming from the forecasting exercise are different from those based

on the option-trading exercise. Moreover, the new realized measures can outperform

the traditional robust-to-noise volatility estimators.

The rest of this paper is structured as follows. In section 2, we present the common

realized measures, the Mincer-Zarnowitz regression for forecasting evaluation, and

the option-trading exercise. In section 3, we use the bid-ask prices as bounds for the

unobserved frictionless price, in order to derive bounds for the traditional realized

volatility measure. Section 4 states the distributional assumptions and the new

volatility measures that they imply. We also assess the forecasting performance

of each new realized measure. We explore the value of the volume information in

section 5. Finally, section 6 concludes.

2 The Forecasting Performance of the Realized

Measures

In this paper, we focus on daily integrated volatility. This frequency is of interest to

analyze daily patterns of volatility and option pricing, as in Hansen and Lunde

(2006) and Bandi et al. (2008). Weekly or monthly frequencies could also be

examined using the same framework.

In what follows, t stands for the day. We observe a sample of size N of intraday

bids and asks denoted bt−1+ih, at−1+ih in log terms, where i = 1..N and h is the

sampling frequency. The logarithm of the frictionless price is latent and denoted

pt−1+ih. Throughout the paper, we simplify the notation by letting bi, ai and pi

refer to bt−1+i/N , at−1+i/N and pt−1+i/N , respectively. The intraday return is given

by

ri = pi − pi−1. (1)

We suppose that the frictionless price follows a semimartingale given by

dps = µsds+ σsdWs, (2)

where Ws is a Wiener process and σt is a càdlàg volatility function. The object of

interest is the integrated variance for a given day, defined as

IVt =

∫ t

t−1

σ2
sds. (3)
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The realized variance is defined as

RVt(h) =

1/h∑
i=1

r2t−1+ih, (4)

where rt−1+ih = pt−1+ih − pt−1+(i−1)h. The realized variance computed with the

highest-frequency returns would be a consistent estimator of the integrated variance

if the observed price were equal to the frictionless price; see Jacod (1994), and

Barndorff-Nielsen and Shephard (2002) for a proof of the consistency and the limit

theory of the realized volatility.

Let mt−1+ih and st−1+ih denote the mid-quotes and the spread, respectively. Thus

we have

mt−1+ih =
at−1+ih + bt−1+ih

2
, (5)

and

st−1+ih = at−1+ih − bt−1+ih. (6)

In this paper, we make assumptions about the distribution of the frictionless price

conditioning on the quotes data. These data include bid, ask prices and quoted

depths. The ask (bid) depth specifies the maximum quantity for which the ask (bid)

price applies. Such an assumption does not conflict with the previous semimartingale

assumption for the price. We work in a discrete time setting, since we make a

distributional hypothesis about successive intraday prices.

2.1 The common realized measures

The realized variance defined in equation (4) is an inconsistent estimator of the

integrated variance because of the market microstructure noise that contaminates

frictionless prices. Empirical evidence of the noise is the signature plot introduced

by Andersen et al. (1999). The signature plot draws a sample average of

the daily realized measure of volatility as a function of the underlying returns

sampling frequency. A graph that explodes at high frequencies is evidence of

market microstructure noise severity. At low frequencies, the plot converges to

the integrated variance measure and the noise effect disappears.
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If the highest-frequency returns are used to compute the realized variance, we obtain

the RV all
t estimator given by

RV all
t =

N∑
i=1

r2i . (7)

Figure 1 shows the signature plot of the realized variance. We use Alcoa data

covering the January 2009 – March 2011 period. We indeed notice that the noise

causes a considerable bias at high frequencies.

If a low-frequency h is used to compute the returns, we obtain the following

estimator:

RV low
t = RVt(h) =

1/h∑
i=1

r2
t−1+ih

. (8)

The two time-scales estimator of Zhang et al. (2005), which is consistent under i.i.d.

market microstructure noise, is defined as

RV TS
t = RV average

t − N

N
RV all

t , (9)

where the average estimator RV average is the mean of several sparse estimators.

Formally, it is given by

RV average
t =

1

K

K∑
k=1

RV
(k)
t , (10)

where RV
(k)
t =

∑N−k+1
i=1 r2t−1+(i+k−1)h, and h is the sampling frequency.

The kernel estimator of Barndorff-Nielsen et al. (2008) achieves a faster rate of

convergence than the RV TS, and is defined as

RV kernel
t = γ0 +

L∑
l=1

f

(
l − 1

L

)
{γl + γ−l}, (11)

where γl =
∑N

j=1 rt−1+jhrt−1+(j−l)h, f(x) = (1 − cosπ(1 − x)2)/2, and L is the

bandwidth.

The pre-averaging estimator introduced by Jacod et al. (2009) is robust to

heteroscedastic noise, and achieves an optimal rate of convergence. We denote RV pre
t

the pre-averaging estimator, given by

RV pre
t =

N−k∑
i=0

{
k∑

j=1

ϕ

(
j

k

)
ri+j

}2

− 6

θ2
RV all

t ,

where k√
N

= θ +O(N−1/4) for some θ > 0, and ϕ(x) = min(x, 1− x).
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2.2 Mincer-Zarnowitz regression

In order to assess the forecasting performance of a realized measure RMt, we use a

Mincer and Zarnowitz (1969) regression, given by

IVt+1 = α+ βRMt+1|t + ηt+1, (12)

where RMt+1|t is the forecast at time t of IVt+1 using the measure RM , and ηt+1 is

an error term. A forecast RMt+1|t is good if α = 0, β = 1 and there is a high R2. In

the empirical results, we report only the R2 because we find that none of our realized

measures results in both an α significantly not different from 0 and a β significantly

not different from 1. Since the dependent variable is latent, we use RV low
t+1 as a proxy

for IVt+1. For the longer forecasting horizon H, the Mincer-Zarnowitz regression is

given by

IVt:t+H = α+ βRMt+H|t + ηt+H , (13)

where IVt:t+H =
∫ t+H

t
σ2
sds. The term RMt+H|t refers to the forecast at time t of

IVt:t+H using the measure RM . We denote the error term ηt+H .

The forecasting model that we use is an AR(3) with RV low as the dependent variable

and a 100-day rolling window. We conduct both an in-sample and out-of-sample

forecasting exercise. In Table 1, we report the R2 for the in-sample and out-of-

sample forecasts for a one-day and 5-day horizon. The results show that the pre-

averaging estimator achieves the highest R2 whether in-sample or out-of-sample for

the short forecasting horizon. In addition, the realized variance RV all has the least

R2. However, the R2 is close for the estimators RV all, RV TS, RV kernel and RV pre.

For the longer horizon of five days, we find that the overall forecasting performance

of the four estimators has improved upon the short horizon. Finally, the RV TS

becomes the best forecast whether in-sample or out-of-sample when the forecasting

horizon equals five days.

2.3 Option trading

In this section, we evaluate the proposed integrated volatility estimates in the

context of the profits from option pricing and trading. Using alternative forecasts

obtained in the previous section, agents price short-term options on Alcoa stock
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before trading with each other at average prices. The average profits are used as the

criteria to evaluate alternative volatility estimates and the corresponding forecasts.

We construct a hypothetical option market as in Bandi, Russell and Yang (2008) in

order to quantify the economic gain or loss for using alternative integrated volatility

forecasts. The methodology was first proposed by Engle et al. (1990). Consider

a simple market of only two traders such that each one uses a different volatility

forecast. The trades are conducted at the midpoint of the two traders’ prices. The

trader with the highest-volatility forecast will buy a call and a put option from a

counterpart. The average dollar profits obtained from the trading represent the

metric used to evaluate alternative variance forecasts. If the high-volatility forecast

is accurate, the straddle is underpriced. Then, the trader who buys the straddle is

expected to make a profit.

In this paper, our artificial market has as many traders as alternative forecasts.

Each trader uses a different measure from the set of realized measures.

First, each trader constructs an out-of sample, one-day-ahead variance forecast using

daily variances series and computes a predicted Black-Scholes option price. We focus

on an at-the-money price of a one-day or 5-day option on a one-dollar share of Alcoa.

The risk-free rate is taken to be zero.

Second, the pairwise trades take place. For two given traders, if the forecast of the

first is higher than the midpoint of the forecasts of the two traders, then the option

is perceived as underpriced. Thus the first trader will buy a straddle (one call and

one put) from a counterpart. Then the positions are hedged using the deltas of the

options.

Finally, we compute the profits or losses. Each trader averages the profits or losses

from the pairwise trading. We report the average profits across all days in the

sample.

The option trading and profit results are computed as in the following three steps:

1- Compute the option price. Let σt denote the volatility forecast for a given

measure. The Black-Scholes option price Pt is given by

Pt = 2Φ(
1

2
σt)− 1,

where Φ is the cumulative normal distribution.

2- Compute the profit for each trader. The daily profit for a trader who buys the
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straddle is

| Rt | −2Pt +Rt(1− 2Φ(
1

2
σt)),

where the last term corresponds to the hedging, and Rt is the daily return for day t.

The daily profit for a trader who sells the straddle is

2Pt− | Rt | −Rt(1− 2Φ(
1

2
σt)).

3- Average the profits and obtain the metric.

We use the out-of-sample forecasts of section 2.2. The profits in cents are reported

in Table 2 when all the realized measures are used in the trading game. We find that

the agents using the four traditional measures RV all, RV TS, RV kernel and RV pre

endure losses. For the one-day horizon, the RV pre is the worst estimator, whereas

it becomes the best at the 5-day horizon. The inverse is observed for RV all, where

it is the best at the short horizon but the worst at the long horizon.

3 Simple Bounds

We make the assumption that the frictionless price is bounded by the bid and the

ask. This assumption is restrictive, since the frictionless price could be less than

the bid or higher than the ask. Formally, we have

Assumption A bi ≤ pi ≤ ai, i = 1...N.

Under Assumption A, we derive bounds for the realized variance in the following

proposition.

Proposition 1 Under Assumption A,

RV inf
t ≤ RVt ≤ RV sup

t ,

where

RV sup
t =

1/h∑
i=1

r2i ,

RV inf
t =

1/h∑
i=1

r2i ,

(14)
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and

r2i = Max
{
(bi − ai−1)

2; (ai − bi−1)
2
}
,

r2i =

{
0 if (bi − ai−1)(ai − bi−1) ≤ 0
Min {(bi − ai−1)

2; (ai − bi−1)
2} else.

}
(15)

The bounds derived in Proposition 1 are not tight to be informative for the volatility

level. Indeed, they are based on very weak assumptions. We draw the signature plot

of RV inf and RV sup in Figure 2. At high frequencies, the interval [RV inf , RV sup]

is very wide; at low frequencies, this interval becomes narrow. For the forecasting

results, we find in Table 1 that the bound RV sup beats all the traditional measures

RV all, RV TS, RV kernel and RV pre, whether in-sample, out-of-sample, short- or long-

horizon forecasting. The lower-bound RV inf has the worst results compared to the

traditional measures at the short horizon, but beats them at the long forecasting

horizon. The profits from the option-trading exercise are reported in Table 2. At

the long horizon, the upper-bound RV sup achieves a significant profit, whereas the

lower-bound RV inf has a considerable loss.

We also report in Table 3 the profits from option trading when the agents use the

traditional measures RV all, RV TS, RV kernel, RV pre and the new measure RV inf .

The objective of this alternative game is that by restricting the participating agents

to only those using the traditional measures and RV inf , we actually evaluate the

performance of RV inf compared to the traditional measures only, instead of all the

measures of this paper. We find that the agent using RV inf endures losses both

at the short and long horizon and is dominated by the traditional measures. In

Table 4, we report the results for the option trading between the agents using the

aforementioned four measures in addition to RV sup. This new measure beats the

traditional measures at the 5-day horizon. However, the agent using RV sup endures

more losses than the agents using the traditional measures.

In the following section, our goal is to examine some distributional restrictions for

the price. In fact, imposing many more restrictions may provide better volatility

estimators.

4 A Distributional Approach

In this section, we impose more restrictions on the distribution of the price. We

evaluate the new realized measures using signature plots, the Mincer-Zarnowitz
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regression for forecasting performance and the option-trading outcome.

4.1 A Dirac measure

If we assume that the frictionless price pi follows a Dirac measure in the mid-quotes,

we obtain the usual expression for the realized volatility,

RV all
t =

N∑
i=1

(mi −mi−1)
2. (16)

If we assume that the frictionless price pi follows a Dirac measure in the bid, we

obtain the measure

RV bid
t =

N∑
i=1

(bi − bi−1)
2. (17)

The same applies for the ask, and the corresponding measure is given by

RV ask
t =

N∑
i=1

(ai − ai−1)
2. (18)

The signature plots in Figure 3 of RV bid
t and RV ask

t are very close and more noisy

than RV all
t at high frequencies. Table 1 reports the forecasting results, showing that

RV bid
t and RV ask

t have a similar forecasting performance to the traditional realized

measures. However, the option-trading profits/losses in Table 2 are positive for the

5-day horizon, contrary to the negative outcome of the traditional realized measures.

At the short horizon, the traders using RV bid
t and RV ask

t endure losses comparable

to those of the traditional measures.

In the option-trading game where only the agents using the traditional measures

and RV bid
t play, we find that the bid-based measure beats the traditional measures

at the long horizon. The results are reported in Table 5. RV ask
t achieves similar

results to RV ask
t , as shown in Table 6.

4.2 Univariate distributions

We take the set of intraday quotes as the conditioning set,

I = {bj, aj, j = 1, ..., N}. (19)

11



The components of the squared return conditional expectation are derived as follows:

E[r2i | I] = (E[ri | I])2 + V ar[ri | I]

= (E[pi | I]− E[pi−1 | I])2

+ V ar[pi | I] + V ar[pi−1 | I]− 2Cov[pi, pi−1 | I].

(20)

We make the following assumption.

Assumption B

Conditional on I, rt−1+ih and pt−1+(i−1)h are independent.

Assumption B specifies that any intraday return is conditionally independent from

the previous price. In Proposition 2, we use Assumption B and expression (20) to

derive the conditional expectation of the realized variance.

Proposition 2 Under Assumption A and B,

E[RVt(h) | I]

=

1/h∑
i=1

(E[pt−1+ih | I]− E[pt−1+(i−1)h | I])2 + V ar[pt−1+ih | I] + V ar[pt−1+(i−1)h | I]

− 2Min

(√
V ar[pt−1+(i−1)h | I]
V ar[pt−1+ih | I]

, 1

)√
V ar[pt−1+ih | I]

√
V ar[pt−1+(i−1)h | I].

(21)

Equation (21) is only a function of the expectation and the variance. Therefore,

by varying the distributional hypothesis regarding the intraday price, we obtain

different estimators. We define the resulting realized measure as

RMt = E[RVt | I]. (22)

We specifically examine the realized measures based on uniform and triangular

distributional assumptions.

4.2.1 The uniform distribution

We make the assumption that the intraday price follows a uniform distribution.

Formally,

pi | I ∼ Uniform[bi, ai]. (23)
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The uniform distribution is such that all intervals of the same length on the

distribution’s support [bi, ai] are equally probable. The first two moments are given

by

E[pi | I] = mi,

V ar[pi | I] =
s2i
12

.
(24)

We define RV uniform using equations (21) and (22); thus,

RV uniform
t =

1/h∑
i=1

{
(mi −mi−1)

2 + vi + vi−1 − 2Min{
√

vi−1

vi
1}
√
vi
√
vi−1

}
, (25)

where vi =
s2i
12
. The bid-ask spread appears in the new realized variance RV uniform.

The spread is a friction measure that is not yet explored, to our knowledge, in the

high-frequency literature on measuring volatility.

The empirical results of RV uniform show a similar forecasting performance to the

traditional realized measures, as reported in Table 1. However, in the short horizon,

the trader using RV uniform endures the smallest loss among the realized measures

introduced so far, as shown in Table 2. At the 5-day horizon, the trader using

RV uniform achieves a profit. The signature plots in Figures 1 and 3 show that, at

high frequencies, RV uniform is more noisy than the realized variance RV all.

If only the agents using the traditional measures and RV uniform play, this new

measure generates net profits for the agent using it, whereas the other agents endure

losses at the long horizon, as shown in Table 7.

4.2.2 The triangular distribution

Let the frictionless price follow a centred triangular distribution,

pi | I ∼ Centred Triangular[bi, ai]. (26)

This distribution has an affine probability density function. The mid-quotes is the

most probable of the distribution support. The expectation and variance expressions

are, respectively,

E[pi | I] = mi,

V ar[pi | I] =
b2i + a2i +m2

i − biai − bimi −miai
18

.
(27)
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For the uniform distribution, we define RV triangular using equations (21) and (22) as

RV triangular
t =

1/h∑
i=1

{
(mi −mi−1)

2 + vi + vi−1 − 2Min{
√

vi−1

vi
; 1}

√
vi
√
vi−1

}
, (28)

where

vi =
b2i + a2i +m2

i − biai − bimi −miai
18

. (29)

The new realized measure RV triangular uses the bid, ask and mid-quotes. Assuming

that the frictionless price has a centred triangular distribution means that the mid-

quotes is the most probable value for the frictionless price. However, the other values

in the bid-ask interval are realized with non-zero probability. In addition, the least

probabilities are obtained near the edge of [bi, ai].

Empirically, we find thatRV triangular is less noisy than the univariate-based measures

RV bid, RV ask and RV uniform, as shown in the signature plots of Figure 3. The

forecasting performance of RV triangular, measured by the R2 of the Mincer-Zarnowitz

regression, is similar to the univariate-based measures reported in Table 1. However,

the trader using RV triangular endures losses at the 5-day horizon in the option-trading

exercise, contrary to the other univariate-based measures (Table 2). At the one-day

horizon, RV triangular gives fewer losses than the traditional realized measures.

For the option-trading game where only the agents using the traditional measures

and RV triangular play, we also find that this new measure beats the traditional ones

at the long horizon; see Table 8 for the results.

4.3 Bivariate distributions

In this section, we do not assume the independent form of successive intraday

prices specified by Assumption B. Rather, we specify the joint distribution of each

successive intraday price and use general equation (20) to find the realized measure

expression. We denote ρ(h) the correlation between two intraday prices pt−1+ih and

pt−1+(i−1)h. We assume that

(i)ρ(.) ∈ [0, 1], decreasing,

(ii)ρ(0) = 1; limh→∞ρ(h) = 0.
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Assumption (i) implies that the correlation parameter decreases as the time interval

between successive observations becomes larger. At the limit, (ii) assumes a zero

correlation if the intraday prices are sampled at a very low frequency.

4.3.1 The bivariate normal distribution

In this section, we assume a joint normal distribution for successive prices. Although

the normal distribution does not have a bounded support, we parameterize it to have

very slim tails, as if the distribution had almost bounded support (consistent with

Assumption A). Formally, we assume that[
pi
pi−1

]
| I ∼ N (

[
mi

mi−1

]
,

(
vi ci;i−1

ci;i−1 vi−1

)
), (30)

where

ci,i−1 = ρ(h)
√
vivi−1, (31)

and

vi = λ2s2i ,

vi−1 = λ2s2i−1.
(32)

λ is a constant such that P [bi ≤ pi ≤ ai]=0.99 and P [bi−1 ≤ pi−1 ≤ ai−1]=0.99, i.e.

λ = 0.19.

We define the measure RV corr.Normal, using equations (20) and (22) by,

RV corr.Normal =

1/h∑
i=1

(mi −mi−1)
2 + vi + vi−1 − 2ci,i−1, (33)

where the variance and covariance are given in (31) and (32).

The new measure RV corr.Normal is a function of the friction measure (the spread)

and the correlation parameter that we specify ad hoc.

The empirical performance of the realized measure RV corr.Normal is similar to the

traditional RV all when one looks at the signature plot; the Mincer-Zarnowitz

regression results; and the short horizon outcome of the option-trading game. See,

respectively, Figures 1 and 4; Table 1; and Table 2. However, the trader using

RV corr.Normal endures much less loss than the trader using RV all for the long horizon.

When only the agents using the traditional measures and RV corr.Normal trade
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options, we notice in Table 9 that this new measure beats the traditional ones

both at the short and long horizons. The agent using RV corr.Normal always achieves

a profit.

4.3.2 The bivariate uniform distribution

We assume the bivariate distribution:

pi | I ∼ Uniform[bi, ai],

pi−1 | I ∼ Uniform[bi−1, ai−1],

Cov[pi, pi−1 | I] =
ρ(h)

12
sisi−1.

Using equations (20) and (22), we define the measure RV corr.Uniform by

RV corr.Uniform =

1/h∑
i=1

(mi −mi−1)
2 +

s2i
12

+
s2i−1

12
− 2

ρ(h)

12
sisi−1. (34)

The signature plot and the forecasting results of RV corr.Uniform are similar to

the RV corr.Normal, as shown in Figure 4 and Table 1. For the short horizon,

RV corr.Uniform achieves the smallest loss compared to the measures introduced so

far, including the traditional measures as reported in Table 2. We also notice that

the long-horizon loss of RV corr.Uniform is smaller than that for RV corr.Normal.

In Table 10 we report the results for the restricted game where only agents using

the traditional measures and RV corr.Uniform play. At the long horizon, this measure

beats all the traditional ones, but it generates small losses at the short horizon.

4.3.3 The bivariate triangular distribution

We assume that successive intraday prices follow the joint distribution, given by

pi | I ∼ Triangular{[bi, ai];mi},

pi−1 | I ∼ Triangular{[bi−1, ai−1];mi−1},

Cov[pi, pi−1 | I] =
ρ(h)

√
ai − bi

√
ai−1 − bi−1

[

1

18
((mi − bi)

3/2(mi−1 − bi−1)
3/2 + (ai −mi)

3/2(ai−1 −mi−1)
3/2)

+ (
π

8
+

4

9
)((mi − bi)

3/2(ai−1 −mi−1)
3/2 + (ai −mi)

3/2(mi−1 − bi−1)
3/2)].

(35)

16



Using equations (20) and (22), we define the measure RV corr.Triangular by

RV corr.Triangular =

1/h∑
i=1

(mi −mi−1)
2 + vi + vi−1 − 2Cov[pi, pi−1 | I], (36)

where

vi =
b2i + a2i +m2

i − biai − bimi −miai
18

, (37)

and the covariance expression is given in (35).

The signature plot of RV corr.Triangular in Figure 4 shows more bias at high frequencies

than the other bivariate uniform and normal distribution-based measures, and

even the traditional realized variance RV all. The forecasting performance

of RV corr.Triangular as reported in Table 1 is better than RV corr.Normal and

RV corr.Uniform, whether at short or long horizons, and in-sample or out-of-sample.

The trader using RV corr.Triangular achieves the best profit compared to the overall

realized measures of this paper for the long horizon, as shown in Table 2.

If only the agents using the traditional measures and RV corr.Triangular play, we still

find that the new measure beats the traditional ones at the long horizon, as shown

in Table 11.

5 The Volume Information

In order to explore the volume information, we include the intraday quoted depths

in conditioning set I.

5.1 The Dirac distribution

We define a weighted volume measure RV depths.Weighted
t , as in Gatheral and Oomen

(2010), by

RV depths.Weighted
t =

N∑
i=1

(
V B
i ai + V A

i bi
V A
i + V B

i

−
V B
i−1ai−1 + V A

i−1bi−1

V A
i−1 + V B

i−1

)2

, (38)

where V B (V A) denotes the bid depth (ask depth).

The forecasting results using Alcoa data in Table 1 show that RV depths.Weighted
t has

the highest R2 whether in-sample or out-of-sample, and for short or long horizons,
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among the other Dirac-based measures RV all, RV bid and RV ask. The signature

plots depicted in Figures 1, 3 and 5 show evidence that RV depths.Weighted
t is less

noisy than RV bid and RV ask, but more noisy than RV all at high frequencies. For

the option-trading exercise, RV depths.Weighted
t is the unique realized measure that

achieves profits for its user at both short and long horizons (Table 2).

In Table 12 we report the profits for option trading of the agents using the four

traditional measures and RV depths.Weighted
t only. Unlike the traditional measures,

RV depths.Weighted
t achieves profits both at the short and long horizon.

5.2 The univariate triangular distribution

We assume the price distribution,

Pi | I ∼ Non− Centred Triangular[bi, ai]. (39)

We denote ci the mode, or the most probable value of the distribution support [bi, ai].

The first moments are then given by

E[pi | I] =
ai + bi + ci

3
,

V ar[pi | I] =
b2i + a2i + c2i − biai − bici − ciai

18
.

(40)

Using the quoted depths, we incorporate the volume information in the mode

expression. Let’s denote the volume increments by ∆V A
i = V A

i − V A
i−1 and

∆V B
i = V B

i − V B
i−1. We set the mode in the following way:

ci =


|∆V B

i |
|∆V A

i |+|∆V B
i |bi +

|∆V A
i |

|∆V A
i |+|∆V B

i |ai if ∆V A
i ∆V B

i ̸= 0

0.95bi + 0.05ai if ∆V A
i = 0;∆V B

i ̸= 0
0.05bi + 0.95ai if ∆V A

i ̸= 0;∆V B
i = 0

0.5bi + 0.5ai if ∆V A
i = 0;∆V B

i = 0.

 (41)

We then define RV depths.Triangular using equation (20) and by applying Proposition

2:

RV depths.Triangular

=

1/h∑
i=1

{
(
ai + bi + ci

3
− ai−1 + bi−1 + ci−1

3
)2 + vi + vi−1 − 2Min

(√
vi−1

vi
, 1

)
√
vi
√
vi−1

}
,

(42)
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where

vi =
b2i + a2i + c2i − biai − bici − ciai

18
. (43)

Observe that the non-centred triangular distribution assumption for the price implies

that the most probable value for the frictionless price depends on the quoted depths

variations. Incorporating the bid volume and ask volume into the mode expression

connects inventory control to volatility estimation. The variations of the quoted

depths measure how severe the friction is.

The signature plot of RV depths.Triangular does not beat the traditional realized

variance RV all at high frequencies, as shown in Figures 1 and 5. We find

that the volume information improves the forecasting ability of the univariate

triangular-based measure. Indeed, RV depths.Triangular has higher R2 than RV triangular

for all horizons and both in-sample and out-of-sample, as shown in Table 1.

In addition, the improvement in the 5-day out-of-sample performance is less

important than that in the one-day. However, the bivariate triangular-based

measure RV corr.Triangular beats both RV depths.Triangular and RV triangular. Therefore,

we introduce in the next section a measure that is based on a bivariate triangular

distribution, also incorporating the volume information.

For the option-trading exercise, Table 2 shows that RV depths.Triangular is better at

the long horizon because it causes losses at the short horizon. Moreover, the profit

that the trader using RV depths.Triangular achieves is less than the one for the trader

using RV depths.weighted at the 5-day horizon. Both RV triangular and RV depths.Triangular

cause losses at the one-day horizon, but at the long horizon the depths information

incorporated in RV depths.Triangular makes it achieve a positive gain to the trader using

that measure, compared to the one using RV depths.Triangular who endures losses.

In Table 13, we report the option-trading results for the restricted game where only

the agents using the traditional measures and RV depths.Triangular play. At the long

horizon, this new measure achieves a profit, whereas the other measures result in

losses. But at the short horizon, the agent using RV depths.Triangular endures a loss.

5.3 The bivariate triangular distribution

In this section, we use the volume information and impose a bivariate structure

for successive prices. We assume the following triangular distribution for intraday
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prices:

pi | I ∼ Triangular{[bi, ai]; ci},

pi−1 | I ∼ Triangular{[bi−1, ai−1]; ci−1},

Cov[pi, pi−1 | I] =
ρ(h)

√
ai − bi

√
ai−1 − bi−1

[

1

18
((ci − bi)

3/2(ci−1 − bi−1)
3/2 + (ai − ci)

3/2(ai−1 − ci−1)
3/2)

+ (
π

8
+

4

9
)((ci − bi)

3/2(ai−1 − ci−1)
3/2 + (ai − ci)

3/2(ci−1 − bi−1)
3/2)],

(44)

where the mode expression is given in (41).

Using equations (20) and (22), we define RV depths.corr.Triangular as

RV depths.corr.Triangular

=

1/h∑
i=1

(
ai + bi + ci

3
− ai−1 + bi−1 + ci−1

3

)2

+ vi + vi−1 − 2Cov[pi, pi−1 | I],
(45)

where

vi =
b2i + a2i + c2i − biai − bici − ciai

18
,

and the covariance is given in (44).

Empirically, the trader using RV depths.corr.Triangular has the best profit among the

overall realized measures of this paper (see Table 2) at the long horizon. Therefore,

it is important to exploit the volume information as well as a correlated structure

of successive intraday prices. However, at the short horizon, the trader using

RV depths.corr.Triangular endures a loss. As expected for the forecasting results in

Table 1, RV depths.corr.Triangular has the highest R2 among all the triangular-based

measures RV corr.Triangular, RV Triangular and RV depths.Triangular, whether in-sample

or out-of-sample and at short or long horizons. Finally, the signature plot of

RV depths.corr.Triangular in Figure 5 shows a more noisy measure at high frequencies

than the traditional RV all of Figure 1.

In Table 14, we report the option-trading results for the game where the agents using

the four traditional measures and RV depths.corr.Triangular only play. This new measure

achieves a large profit at the long horizon compared to the traditional measures that

endure losses. However, at the short horizon, RV depths.corr.Triangular does not perform

better than the other measures.
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6 Conclusion

In this paper, we make distributional assumptions on the frictionless price and

obtain new realized measures that incorporate the spread and the quoted depths

information. To assess the performance of the new realized measures, we empirically

compare their forecasting ability using the Mincer-Zarnowitz regression and an

option-trading game. We also measure the noise magnitude at each sampling

frequency using the signature plot. For an Alcoa data sample covering January 2009

– March 2011, we find that the new realized measures beat in many cases the common

robust-to-noise realized measures. However, there is no clear conclusion regarding

the superior performance of the new volatility measures among the competing

measures with respect to all the aforementioned criteria.

In practice, it could be that the transaction price lies outside the interval bounded

by the bid and the ask prices. In the future, it would be interesting to consider the

case where the frictionless price lies outside the bid-ask interval and thus relax the

main assumption of this paper.
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Figure 1: Signature plot for the realized measure RV all. We use the expression
given in (16). The intraday returns are computed over the frequencies of the x-axis.
The sample period covers 01/2009–03/2011 for Alcoa stock. The reported average
is over the business days of our sample.
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Figure 2: Signature plot for the realized measures RV inf and RV sup. We use
the expressions given in (14). The intraday increments are computed over the
frequencies of the x-axis. The sample period covers 01/2009–03/2011 for Alcoa
stock. The reported average is over the business days of our sample.
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Figure 3: Signature plot for the univariate realized measures RV bid, RV ask,
RV Uniform, RV Triangular. We use the expressions given in (17), (18), (25) and (28).
The intraday increments are computed over the frequencies of the x-axis. The sample
period covers 01/2009–03/2011 for Alcoa stock. The reported average is over the
business days of our sample.
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Figure 4: Signature plot for the bivariate realized measures RV corr.Normal,
RV corr.Uniform, RV corr.Triangular. We use the expressions given in (33), (34) and
(36). The intraday increments are computed over the frequencies of the x-axis. The
sample period covers 01/2009–03/2011 for Alcoa stock. The reported average is over
the business days of our sample.

23



0 10 20 30 40 50
7

7.5

8

8.5

9

9.5

10

10.5

Sampling frequency in ticks

A
ve

ra
ge

 R
V

 

 
RVdepths.weighted
RVdepths.Triangular
RVdepths.corr.Triangular

Figure 5: Signature plot for the realized measures based on the depths
RV depths.weighted, RV depths.Triangular and RV depths.corr.Triangular. We use the expression
given in (38), (42) and (45). The intraday increments are computed over the
frequencies of the x-axis. The sample period covers 01/2009–03/2011 for Alcoa
stock. The reported average is over the business days of our sample.
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Alcoa 1 day 5 days
R2 In Out In Out

RV all 0.4767 0.4746 0.5105 0.4965
RV TS 0.4800 0.4873 0.5133 0.5006
RV kernel 0.4870 0.4934 0.5123 0.4997
RV pre 0.4927 0.4959 0.5025 0.4910

RV inf 0.4159 0.4101 0.5275 0.5108
RV sup 0.5121 0.5095 0.5432 0.5313

RV bid 0.4851 0.4827 0.5056 0.4927
RV ask 0.4754 0.4728 0.5101 0.4954
RV Uniform 0.4804 0.4781 0.5088 0.4950
RV Triangular 0.4787 0.4765 0.5097 0.4957

RV corr.Uniform 0.4790 0.4768 0.5096 0.4957
RV corr.Triangular 0.5019 0.4997 0.5238 0.5116
RV corr.Normal 0.4778 0.4756 0.5101 0.4961

RV depths.weighted 0.4901 0.4883 0.5179 0.5045
RV depths.Triangular 0.4862 0.4839 0.5120 0.4983
RV depths.corr.Triangular 0.5072 0.5049 0.5275 0.5151

Table 1: In-sample and out-of-sample forecasting R2. The table provides the R2

of the Mincer-Zarnowitz regression (12) related to forecasts of IVt+1 for 1 and 5
days ahead. We report in-sample and out-of-sample results with a 100-days rolling
window. The forecasting model is an AR(3) with RV low as the dependent variable.
The sample period covers 01/2009–03/2011 for Alcoa stock.
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Profits H=1 H=5

RV all -0.0635 -5.8989
RV TS -0.2562 -2.3097
RV kernel -0.2520 -3.4331
RV pre -0.5743 -1.7204

RV inf -1.5702 -10.6035
RV sup -0.4364 5.7356

RV bid -0.2634 1.3735
RV ask -0.3421 1.3403
RV Uniform -0.0533 0.3004
RV Triangular -0.0816 -2.8749

RV corr.Uniform 0.0418 -2.0785
RV corr.Triangular -0.1139 5.9221
RV corr.Normal -0.0653 -4.5714

RV depths.weighted 0.2051 3.0643
RV depths.Triangular -0.0609 2.6296
RV depths.corr.Triangular -0.2759 7.0041

Table 2: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre, RV inf , RV sup, RV bid, RV ask, RV Uniform, RV Triangular,
RV corr.Uniform, RV corr.Triangular, RV corr.Normal, RV depths.weighted, RV depths.Triangular

and RV depths.corr.Triangular – agents price options on Alcoa stock before trading with
each other at average prices. H refers to the horizon of the agents’ forecasts in days.
The average profits from option trading are reported in cents. See section 2.3 for
further details. The sample period covers 01/2009–03/2011.
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Profits H=1 H=5

RV all 0.0831 0.5507
RV TS -0.0186 0.6674
RV kernel -0.0258 0.1889
RV pre -0.1331 0.6702

RV inf -0.4006 -2.7671

Table 3: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV inf – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all -0.0001 -0.5381
RV TS -0.0244 -0.3058
RV kernel -0.0455 -0.8169
RV pre -0.1576 -0.3348

RV sup -0.1863 1.4011

Table 4: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV sup – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0368 -0.5341
RV TS -0.0513 -0.1807
RV kernel -0.0673 -0.7073
RV pre -0.1748 -0.1111

RV bid -0.0277 1.1772

Table 5: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV bid – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.
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Profits H=1 H=5

RV all 0.0329 -0.5269
RV TS -0.0470 -0.0926
RV kernel -0.0624 -0.6736
RV pre -0.1614 -0.1219

RV ask -0.0396 1.0494

Table 6: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV ask – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0104 -0.6048
RV TS -0.0201 -0.0873
RV kernel -0.0425 -0.6494
RV pre -0.1598 -0.0652

RV Uniform -0.0513 1.0695

Table 7: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV Uniform – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0172 -0.6111
RV TS -0.0555 0.0218
RV kernel -0.0425 -0.5595
RV pre -0.1660 0.0485

RV Triangular -0.0068 0.7792

Table 8: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV Triangular – agents price options on Alcoa stock before
trading with each other at average prices. H refers to the horizon of the agents’
forecasts in days. The average profits from option trading are reported in cents. See
section 2.3 for further details. The sample period covers 01/2009–03/2011.
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Profits H=1 H=5

RV all 0.0196 -0.5738
RV TS -0.0673 0.0488
RV kernel -0.0539 -0.4825
RV pre -0.1764 0.0660

RV corr.Normal 0.0291 0.6283

Table 9: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV corr.Normal – agents price options on Alcoa stock
before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0196 -0.5795
RV TS -0.0555 0.0252
RV kernel -0.0479 -0.5576
RV pre -0.1673 0.0467

RV corr.Uniform -0.0032 0.7433

Table 10: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV corr.Uniform – agents price options on Alcoa stock
before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0370 -0.7064
RV TS -0.0422 -0.3570
RV kernel -0.0763 -0.8816
RV pre -0.1682 -0.2951

RV corr.Triangular -0.0577 1.8229

Table 11: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV corr.Triangular – agents price options on Alcoa stock
before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.
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Profits H=1 H=5

RV all -0.0093 -0.7469
RV TS -0.0487 -0.2222
RV kernel -0.0928 -0.7560
RV pre -0.1704 -0.1632

RV depths.weighted 0.0590 1.5445

Table 12: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV depths.weighted – agents price options on Alcoa stock
before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0499 -0.6673
RV TS -0.0353 -0.1466
RV kernel -0.0623 -0.7222
RV pre -0.1675 -0.1466

RV depths.Triangular -0.0520 1.3344

Table 13: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV depths.Triangular – agents price options on Alcoa stock
before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.

Profits H=1 H=5

RV all 0.0552 -0.6968
RV TS -0.0560 -0.3869
RV kernel -0.0736 -0.8670
RV pre -0.1615 -0.3082

RV depths.corr.Triangular -0.0870 1.8126

Table 14: Alcoa profits from option trading. Using the alternative forecasts – RV all,
RV TS, RV kernel, RV pre and RV depths.corr.Triangular – agents price options on Alcoa
stock before trading with each other at average prices. H refers to the horizon of the
agents’ forecasts in days. The average profits from option trading are reported in
cents. See section 2.3 for further details. The sample period covers 01/2009–03/2011.
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