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Abstract 

The U.S. Energy Information Administration regularly publishes short-term forecasts of 
the price of crude oil. Traditionally, such out-of-sample forecasts have been largely 
judgmental, making them difficult to replicate and justify, and not particularly successful 
when compared with naïve no-change forecasts, as documented in Alquist, Kilian and 
Vigfusson (2013). Recently, a number of alternative econometric oil price forecasting 
models have been introduced in the literature and shown to be more accurate than the no-
change forecast of the real price of oil. We investigate the merits of constructing real-
time forecast combinations of six such models with weights that reflect the recent 
forecasting success of each model. Forecast combinations are promising for four reasons. 
First, even the most accurate forecasting models do not work equally well at all times. 
Second, some forecasting models work better at short horizons and others at longer 
horizons. Third, even the forecasting model with the lowest mean-squared prediction 
error (MSPE) may potentially be improved by incorporating information from other 
models with higher MSPEs. Fourth, one can think of forecast combinations as providing 
insurance against possible model misspecification and smooth structural change. We 
demonstrate that over the past 20 years suitably constructed real-time forecast 
combinations would have been more accurate than the no-change forecast at every 
horizon up to two years. Relative to the no-change forecast, forecast combinations reduce 
the MSPE by up to 18 per cent. They also have statistically significant directional 
accuracy as high as 77 per cent. We conclude that suitably constructed forecast 
combinations should replace traditional judgmental forecasts of the price of oil. 

JEL classification: Q43, C53, E32 
Bank classification: Econometric and statistical methods; International topics 

Résumé 

L’Energy Information Administration des États-Unis publie périodiquement des 
prévisions à court terme du prix du pétrole brut. Les prévisions de ce type établies hors 
échantillon ont jusqu’à présent fait une large place au jugement, ce qui les rend difficiles 
à reproduire et à justifier. En outre, elles ne sont pas plus précises qu’une prévision naïve 
du prix de l’or noir basée sur une marche aléatoire, ainsi que le montrent Alquist, Kilian 
et Vigfusson (2013). Des modèles économétriques d’un nouveau genre, qui donnent des 
prévisions plus exactes du prix réel du pétrole que cette prévision naïve, ont récemment 
fait leur apparition dans la littérature. Les auteurs se penchent sur l’intérêt d’agréger les 
prévisions en temps réel de six de ces modèles en attribuant à ces derniers des poids 
conformes à leur efficacité récente en prévision. La combinaison de prévisions apparaît 
comme une voie prometteuse pour quatre raisons. D’abord, même les modèles offrant la 
meilleure qualité prédictive peuvent voir leur efficacité varier d’une période à l’autre. 
Deuxièmement, certains modèles produisent des prévisions plus justes aux horizons 
rapprochés, et d’autres, aux horizons éloignés. Troisièmement, même le modèle qui 
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présente la plus petite erreur quadratique moyenne de prévision (EQMP) est susceptible 
d’être amélioré par l’intégration d’information issue d’autres modèles ayant une EQMP 
plus élevée. Enfin, les combinaisons de prévisions peuvent être conçues comme un 
moyen de se prémunir contre de possibles erreurs de spécification et d’éventuels 
changements structurels progressifs. Les auteurs montrent que, sur les vingt dernières 
années, des combinaisons de prévisions en temps réel convenablement construites 
auraient donné de meilleurs résultats qu’un modèle de marche aléatoire aux horizons qui 
ne dépassent pas deux ans. Par rapport à celui-ci, les combinaisons de prévisions se 
distinguent par une baisse de l’EQMP qui peut atteindre 18 %. De plus, les taux de 
réussite observés dans la prévision du sens des variations s’élèvent jusqu’à 77 % et sont 
significativement supérieurs à 50 %. Les auteurs concluent que des combinaisons de 
prévisions convenablement construites devraient remplacer les prévisions du prix du 
pétrole qui font traditionnellement intervenir le jugement. 

Classification JEL : Q43, C53, E32 
Classification de la Banque : Méthodes économétriques et statistiques; Questions 
internationales 

 

 



1 
 

Non-Technical Summary 

Recently, a number of alternative econometric oil price forecasting models have been introduced in the 

literature and shown to be more accurate than the no-change forecast of the real price of oil.  

In this paper, we investigate the merits of constructing real-time forecast combinations of six such models 

with weights that reflect the recent forecasting success of each model. The forecasting models are: 

forecasts from vector autoregressive models of the global oil market that include the key determinants of 

the real price of oil according to economic theory, forecasts based on recent changes in the price index of 

non-oil industrial raw materials, forecasts based on West Texas Intermediate (WTI) oil futures prices, the 

no-change forecast, forecasts based on the spread of the U.S. spot price of gasoline relative to the WTI 

spot price of crude oil, and a time-varying parameter forecasting model allowing the U.S. gasoline spread 

and the U.S. heating oil spread to contribute to the oil price forecast with smoothly varying weights. 

Forecast combinations are promising for four reasons. First, even the most accurate forecasting models do 

not work equally well at all times. Second, some forecasting models work better at short horizons and 

others at longer horizons. Third, even the forecasting model with the lowest mean-squared prediction 

error (MSPE) may potentially be improved by incorporating information from other models with higher 

MSPE. Fourth, one can think of forecast combinations as providing insurance against possible model 

misspecification and smooth structural change.   

Our results show that real-time forecast combinations lead to a considerable reduction in MSPE relative 

to the no-change forecast. We also demonstrate that they have statistically significant directional 

accuracy. Over the past 20 years, suitably constructed real-time forecast combinations would have 

produced more accurate out-of-sample forecasts of the real price of oil than the no-change forecast at 

every horizon up to two years. 
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1. Introduction 

Since long-term oil contracts were abandoned around 1980, one of the most challenging forecasting 

problems has been how to forecast the price of crude oil. One of the few regular producers of oil price 

forecasts has been the U.S. Energy Information Administration (EIA), which constructs monthly and 

quarterly forecasts of the price of crude oil at horizons up to two years. EIA oil price forecasts help guide 

natural resource development and investments in infrastructure. They also play an important role in 

preparing budget and investment plans. Users of oil price forecasts include international organizations, 

central banks, governments at the state and federal level, and a range of industries including utilities and 

automobile manufacturers.  

 Traditionally, the EIA’s short-term oil price forecasts have been largely judgmental, making them 

difficult to replicate and justify. Nor have these forecasts been particularly successful when compared 

with naïve no-change forecasts, as documented in Alquist, Kilian and Vigfusson (2013).  Indeed, many 

pundits have suggested that changes in the price of oil are inherently unforecastable and that attempts to 

forecast the price of crude oil are pointless.  These agnostics view the current price of oil as the best 

forecast of the future price (see, e.g., Davies 2007; Hamilton 2009). In recent years, however, a number of 

new econometric forecasting models have been introduced in the literature and shown to be more accurate 

out of sample than the no-change forecast of the real price of oil, even after taking account of real-time 

data constraints (see, e.g., Baumeister and Kilian 2012, 2013a; Baumeister, Kilian and Zhou 2013).1  

In this paper, we investigate the merits of constructing combinations of six such forecasting 

models with weights that reflect each model’s recent forecasting success. The objective is to generate 

forecasts that do not require judgment and are available in real time. We restrict attention to forecast 

horizons between 1 month and 24 months, consistent with the objective of the EIA. The forecasting 

                                                            
1 In recent years, there has been a resurgence in research on how to forecast the price of commodities in general and 
the price of oil in particular, at least at horizons up to a year. This literature has examined in depth the predictive 
power of oil futures prices, the predictive content of changes in oil inventories, oil production, macroeconomic 
fundamentals, product spreads, and exchange rates, as well as the forecasting ability of professional and survey 
forecasts. Other contributors to this literature include Chernenko, Schwarz and Wright 2004; Knetsch 2007; Sanders, 
Manfredo and Boris 2008; Alquist and Kilian 2010; Chen, Rogoff and Rossi 2010; Reeve and Vigfusson 2011; 
Baumeister and Kilian 2013b; Chinn and Coibion 2013. 
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models considered include forecasts from vector autoregressive (VAR) models of the global oil market, 

forecasts based on recent changes in the price index of non-oil industrial raw materials, forecasts based on 

West Texas Intermediate (WTI) oil futures prices, the no-change forecast, forecasts based on the spread 

of the U.S. spot price of gasoline relative to the WTI spot price of crude oil, and a time-varying parameter 

(TVP) forecasting model allowing the U.S. gasoline spread and the U.S. heating oil spread to contribute 

to the oil price forecast with smoothly varying weights. All models are estimated recursively, as is 

standard in this literature, and subject to real-time data constraints.2 The weights attached to each forecast 

are constructed in real time as well. We consider inverse mean-squared prediction error (MSPE) weights 

based on recursive and rolling windows. 

Forecast combinations are promising for four reasons. First, even the most accurate forecasting 

models do not work equally well at all times. Baumeister and Kilian’s (2012) oil price forecasting model, 

for example, works well during times when economic fundamentals show persistent variation, as was the 

case between 2002 and 2011, but less at other times. Likewise, there is considerable variation over time in 

the ability of oil futures prices to forecast the price of oil.   

Second, previous research has shown that some forecasting models work better at short horizons 

and others at longer horizons. For example, forecasting models based on economic fundamentals tend to 

enjoy superior accuracy at horizons up to 3 months, whereas models based on the spread of refined 

product prices relative to the price of crude oil tend to be most accurate at horizons between 12 and 24 

months.  

Third, even the forecasting model with the lowest MSPE may potentially be improved upon by 

incorporating information from other models with higher MSPEs. For example, Baumeister and Kilian 

(2013a) show that simple equal-weighted averages of forecasts based on oil futures prices and forecasts 

based on VAR models of the global oil market are more accurate than either model alone. This evidence 

suggests that there is little point in ranking models to determine the one model that is most accurate. 

                                                            
2 See Baumeister and Kilian (2013a) for a comparison of oil price forecasts based on rolling and recursive regression 
estimates. 
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Whether forecast combinations will improve on the single most accurate model is by no means a foregone 

conclusion, however. Baumeister and Kilian (2013a), for example, find that one and only one forecast 

combination among the many forecasting models they consider improves on its individual components. 

Fourth, one can think of forecast combinations as providing insurance not only against possible 

model misspecification, but also against smooth structural change. Such structural change may arise, for 

example, from changes in market structure, in the structure of the global economy or in the accessibility 

of crude oil. 

The focus of our analysis is both the U.S. refiners’ acquisition cost for crude oil imports, which is 

commonly viewed as a proxy for the global price of oil, and the spot price of WTI crude oil commonly 

cited in the press. There are two problems with modelling WTI prices. One is that the WTI spot price was 

subject to government regulation until the early 1980s and hence is not representative of the market price 

of oil. The other is that the WTI price has suffered from structural instability since 2011, when restrictions 

on U.S. crude oil exports prevented arbitrage between the WTI price in the United States and the price of 

Brent crude oil in the United Kingdom. As a consequence, generating WTI forecasts in some cases 

requires suitable modifications of the baseline forecasting model (see Baumeister and Kilian 2013a).3 

For each oil price series, we investigate a number of different approaches to combining forecasts. 

Although the accuracy of the forecast combinations remains remarkably robust across alternative 

specifications, our results indicate that inverse MSPE weights based on the most recent 12 months of data 

generate more accurate forecasts than weights based on longer windows or weights obtained from 

recursive estimates. We also demonstrate that, in practice, the inclusion of only four forecasting methods 

– the oil market VAR model, a model based on non-oil commodity prices, a model based on oil futures 

                                                            
3 We do not report results for the Brent price of crude oil. The reason is that there are no suitable data available for 
applying some of the forecasting models considered in this paper. For example, there do not exist long-enough time 
series for Brent futures prices at longer maturities, and no suitable spot price data are available for the Rotterdam 
gasoline and heating oil markets. Without access to these data, there is no reason to expect forecast combinations to 
replicate the successes reported in this paper for other oil price measures. We note, however, that the Brent price has 
remained stable in relation to the U.S. refiners’ acquisition cost for oil imports even in recent years, so to some 
extent our results for the refiners’ acquisition cost are expected to be representative of the Brent price and could be 
mapped into forecasts of that price, as discussed in Baumeister and Kilian (2013a). 
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spreads and a time-varying product spread model – suffices to generate the most accurate forecast 

combination. We show, in particular, that allowing the combination to assign positive weight to the no-

change forecast increases the MSPE at all horizons, providing a powerful argument against the agnostic 

position that the real price of oil is unforecastable. 

Our results demonstrate that over the past 20 years suitably constructed real-time forecast 

combinations would have been more accurate than the no-change forecast at every horizon up to two 

years. Relative to the no-change forecast, forecast combinations may reduce the MSPE by up to 18 per 

cent. They also have statistically significant directional accuracy as high as 77 per cent.  We conclude that 

suitably constructed forecast combinations should replace traditional judgmental forecasts of the real 

price of oil. 

The remainder of the paper is organized as follows. In section 2, we briefly review the six 

forecasting models to be combined in section 3 and the data used in constructing these forecasts. In 

section 3, we investigate how to choose the weights used in the forecast combination. Section 4 formally 

evaluates whether the forecast accuracy may be improved further by dropping one or more of the models 

under consideration. We show that a more parsimonious forecast combination involving only four 

forecasting models performs best overall. We also examine how the gains in accuracy of this combination 

forecast accumulate over time. In section 5, we discuss a number of visual diagnostics designed to inform 

users of the forecast combination about how the loadings on each model change in real time. Section 6 

extends the analysis to forecasts of the real price of oil at quarterly horizons. We conclude in section 7. 

 

2. Six Approaches to Forecasting the Real Price of Oil 

In this section, we briefly review the forecasting models to be combined in section 3. Our focus is on 

forecasts of the real price of oil at horizons between 1 and 24 months. The maximum forecast horizon is 

dictated by the needs of the EIA. We also follow the EIA in focusing on monthly averages of the price of 

oil. Each of the models below has been shown to generate more accurate real-time out-of-sample 

forecasts than the no-change forecast at least at some forecast horizons, although not all models have been 
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examined at horizons beyond 12 months.  All models are estimated subject to real-time data constraints 

using a suitably extended and updated version of the real-time database developed for Baumeister and 

Kilian (2012). 

 

2.1 Forecast Based on a VAR Model of the Global Oil Market 

The first model is a reduced-form VAR model that includes the key variables relevant to the 

determination of the real price of oil in global markets: 

( ) t tB L y u  ,           

where , , ,oil
t t t t ty prod rea r inv       refers to a vector including the per cent change in global crude oil 

production, a measure of global real activity, the log of the U.S. refiners’ acquisition cost for crude oil 

imports deflated by the log of the U.S. CPI, and the change in global crude oil inventories;   denotes the 

intercept; and tu  is a white noise innovation. The inventory data are constructed by multiplying U.S. 

crude oil inventories by the ratio of OECD petroleum inventories to U.S. petroleum inventories. 

Petroleum inventories are defined to include both stocks of crude oil and stocks of refined products. The 

inventory data are from the EIA’s Monthly Energy Review, which also provides data on global oil 

production and the refiners’ acquisition cost. The global real activity index is constructed from freight rate 

data for global dry cargo ocean shipping as described in Kilian (2009).  

This VAR model can be viewed as the reduced-form representation of the structural global oil 

market model developed in Kilian and Murphy (2013). Its forecast accuracy has been examined 

extensively in the literature (see, e.g., Alquist, Kilian and Vigfusson 2013; Baumeister and Kilian 2012, 

2013a). Throughout the paper, we estimate the unrestricted VAR model with 12 autoregressive lags by 

the method of least squares.4 Forecasts |t̂ h hr  of the log of the real price of oil are constructed iteratively 

from the estimated VAR model conditional on the most recent data and converted to levels, resulting in 

the forecast  

                                                            
4 Similar results would be obtained by imposing standard Bayesian priors in estimation. 
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,
| |

ˆ ˆexp( )oil oil VAR
t h t t h tR r  .     (1) 

 Forecasts of the real WTI price are constructed from the same VAR model by assuming that the 

most recent spread between the log WTI price and the log of the U.S. refiners’ acquisition cost remains 

unchanged in the future. By rescaling the forecasts of the U.S. refiners’ acquisition cost in this manner, 

we allow the relationship between the two oil price measures to evolve as a random walk. This approach 

has been shown to be more accurate than the simpler approach of replacing the U.S. real refiners’ 

acquisition cost in the VAR model by the real WTI price (see Baumeister and Kilian 2013a). The WTI 

spot price data are from the FRED database of the Federal Reserve Bank of St. Louis, which also provides 

the real-time U.S. CPI data used to deflate the two measures of the nominal price of oil. 

 

2.2 Forecast Based on the Price of Non-Oil Industrial Raw Materials 

Much of the empirical success of VAR forecasting models of the real price of oil can be traced to the use 

of measures of global real economic activity that help capture fluctuations in the demand for industrial 

commodities. A much simpler forecasting method – based on the same intuition that there are broad-

based predictable shifts in the demand for globally traded commodities – exploits real-time information 

from recent cumulative changes in non-oil industrial commodity price indices. As discussed in 

Baumeister and Kilian (2012), a forecast of the real price of oil can be constructed as follows: 

    ,
| 1 ( )oil oil h industrial raw materials h

t h t t t t tR R E     ,    (2) 

where ,h industrial raw materials
t  stands for the per cent change of an index of the spot price of industrial raw 

materials (other than oil) over the preceding h  months. This index is available in real time from the 

Commodity Research Bureau. The term ( )h
t tE   is the expected inflation rate over the next h periods. In 

practice, this expectation is proxied by recursively constructed averages of past U.S. inflation data, 

starting in July 1986.5 

 

 

                                                            
5 Undoubtedly, the inflation forecast could be refined further, but there is little loss in generality in our approach, 
given that fluctuations in the nominal price of oil dominate the evolution of the real price of oil. 
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2.3 No-Change Forecast 

Baumeister and Kilian (2012) show that forecasting models based on economic fundamentals such as the 

VAR model described above perform best during times of persistent and hence predictable fluctuations in 

economic fundamentals. That is why the VAR forecasting model does particularly well before, during and 

after the Great Recession of 2008. In contrast, during other times the model is only about as accurate as 

the no-change forecast. Indeed, there are indications that, since 2011, we have once again entered a period 

during which VAR models offer at best minimal gains relative to the no-change forecast, and that this 

situation will persist as long as the global economy stagnates.  This observation raises the question of 

whether we would be better off at times if we replaced the VAR forecast by the no-change forecast, or at 

least downweighted the VAR forecast relative to the no-change forecast. This line of reasoning suggests 

that we want to allow for the forecast combination to put positive weight on the no-change forecast: 

 |
ˆ ,oil oil

t h t tR R   (3) 

where oil
tR denotes the real price of oil in levels (as opposed to logs).  

 

2.4 Forecast Based on Oil Futures Prices 

Yet another approach is to exploit information from oil futures markets. Many practitioners rely on the 

price of oil futures contracts in generating forecasts of the nominal price of oil. This forecast can then be 

converted to a forecast of the real price of oil by subtracting expected inflation. This approach is 

embodied in the forecasting model 

  | 1 ( ) , 1,3,6,9,12,15,18,oil oil h h
t h t t t t tR R f s E h        (4) 

where tR  denotes the current level of the real price of oil, h
tf  is the log of the current WTI oil futures  

price for maturity ,h ts  is the corresponding WTI spot price and ( )h
t tE   is again the expected inflation 

rate over the next h periods. Both h
tf  and ts  are available in real time. The oil futures prices are obtained 

from Bloomberg. Although forecasts based on (4) are not significantly more accurate than the no-change 

forecast at horizons of 1, 3 or 6 months (and sometimes less accurate), especially in recent years the 
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accuracy of futures-based forecasts at horizons of 9 and 12 months has improved. In this paper, we use 

the monthly WTI oil futures price data up to a horizon of 18 months, which is the maximum horizon for 

which the construction of continuous monthly time series is feasible, given our evaluation period. This 

means that for horizons beyond 18 months the futures-based forecast receives zero weight in the forecast 

combinations we construct in sections 3 through 6. 

 

2.5 Spread between the Spot Prices of Gasoline and Crude Oil 

Another promising class of oil price forecasting models involves the use of product spreads. Many market 

practitioners believe that a rising spread between the price of gasoline and the price of crude oil signals 

upward pressures on the price of crude oil. For example, Goldman Sachs in April 2013 cut its oil price 

forecast, citing significant pressure on product spreads, which it interpreted as an indication of reduced 

demand for products (see Strumpf 2013).  Such a forecasting model was derived in Baumeister, Kilian 

and Zhou (2013): 

  |
ˆˆ exp ( )oil oil gas h

t h t t t t t tR R s s E       , (5) 

where gas
ts is the log of the nominal U.S. spot price of gasoline, ts  is the log of the spot price of WTI 

crude oil as defined earlier and ̂  is obtained from estimating the model 

|
gas

t h t t t t hs s s         

recursively by the method of least squares. It can be demonstrated that imposing an intercept of zero, as 

shown in (5), greatly enhances the out-of-sample accuracy of this model. This gasoline spread model 

greatly improves on the accuracy of a no-change forecast, especially at horizons beyond one year, making 

it a natural complement to models based on economic fundamentals, which are most accurate at shorter 

horizons. The gasoline spot price data are readily available in real time from the EIA. For further details 

see Baumeister, Kilian and Zhou (2013). 

 

 



10 
 

 

2.6 Time-Varying Model of the Gasoline and Heating Oil Spreads 

The simplicity of the forecast based on the gasoline spread is appealing, yet there are reasons to be wary. 

One concern is that the price of crude oil is likely to be determined by the refined product in highest 

demand. According to Verleger (2011), traditionally, in the United States this product has been gasoline, 

but more recently it has been heating oil (which is nearly equivalent to diesel fuel), suggesting a 

forecasting model that allows for both a gasoline spread and a heating oil spread with time-varying 

coefficients. Another concern is that crude oil supply shocks, local capacity constraints in refining, 

changes in environmental regulations or other market turmoil may all temporarily undermine the 

predictive power of product spreads. These considerations motivate the following generalization of model 

(5), introduced in Baumeister, Kilian and Zhou (2013). 

We first recursively estimate the time-varying regression model 

 | 1 2
gas heat

t h t t t t t t t t hs s s s s               , 

where the additional variable heat
ts  is the log of the nominal U.S. spot price of heating oil. The product 

prices are from the EIA. For details on the data sources, the reader is referred to Baumeister, Kilian and 

Zhou (2013).  In estimating the model, we postulate that ɛt+h ~ NID(0,σ2), while the time-varying 

coefficients  1 2t t t    evolve according to a random walk as 1 ,t t t     and t is independent 

Gaussian white noise with variance .Q  The intercept has again been restricted to zero, following 

Baumeister, Kilian and Zhou (2013), who show that this restriction greatly improves the out-of-sample 

accuracy.  This state-space model is estimated using a Gibbs sampling algorithm. The conditional 

posterior of t  is normal, and its mean and variance can be derived via standard Kalman filter recursions 

(see Kim and Nelson 1999). Conditional on an estimate of t , the conditional posterior distribution of 

2 is inverse Gamma and that of Q  is inverse Wishart.  

Given the TVP estimates, we then construct the TVP model forecast 
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  | 1 2
ˆ ˆˆ exp ( )oil oil gas heat h

t h t t t t t t t t t tR R s s s s E                (6) 

by Monte Carlo integration as the mean of the forecasts simulated based on 1,000 Gibbs iterations 

conditional on the most recent data. Our forecasts take into account that the model parameters continue to 

drift over the forecast horizon according to their law of motion. The first 30 observations of the initial 

estimation period are used as a training sample to calibrate the priors and to initialize the Kalman filter. 

 This TVP product spread model has been shown to be systematically more accurate than the no-

change forecast, especially at horizons beyond one year. At some horizons, it produces forecasts even 

more accurate than the gasoline spread forecast (5). Hence, there is reason to believe that this approach 

may have additional predictive information not already contained in the simpler gasoline spread model. 

 

3. Baseline Results 

Knowing ex post that one or the other forecasting method would have been more accurate is not of much 

use to applied forecasters. The challenge is to be able to detect in real time when one model should be 

downweighted compared to another. A natural approach to measuring the real-time forecast accuracy of 

competing models is to construct inverse MSPE weights based on the recent forecasting performance of 

each model. These weights may then be used to construct a suitable weighted average of the forecasting 

models in question. This forecast combination approach has a long tradition in econometrics (see, e.g., 

Diebold and Pauly 1987; Stock and Watson 2004).  The smaller the MSPE of a model is at date ,t  the 

larger the weight that this model receives in the combination forecast: 

 
16
,,

| , | , 6 1
1 ,1

ˆ ˆ , ,k toil oil k
t h t k t t h t k t

k j tj

m
R R

m
 



  




 


 

where ,k tm  is the recursive MSPE of model k in period .t  In practice, the MSPE estimates must be 

initialized. We proceed by assigning equal weight to each model when entering the evaluation period. For 

subsequent periods, we then recursively update the MSPE of each model. The advantage of inverse 

MSPE weights is that they allow the forecast combination to adjust according to the recent MSPE of each 
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model. As we illustrate in section 5, these weights may also be used to monitor the real-time performance 

of each model, given that they are bounded between 0 and 1 for each model and add up to 1. 

 All forecasting models are evaluated for the same evaluation period of 1992.1–2012.9. Using 

such a long evaluation period reduces the odds of spurious fits. The initial estimation period ends in 

1991.12. Some forecasting models such as the VAR models are estimated on data back to 1973.2. For 

other forecasting models, the estimation period starts much later, reflecting the availability of the data. 

For example, monthly spot prices for gasoline and heating oil are available starting only in 1986. It is 

important to stress that our data are in many cases subject to real-time data constraints. Where 

appropriate, we rely on an updated and extended version of the real-time data base developed at the Bank 

of Canada for the purpose of forecasting oil prices (see Baumeister and Kilian 2012, 2013a,b). We use the 

real price of oil in the March 2013 vintage up to September 2012 as a proxy for the ex-post revised data, 

against which all forecasts are evaluated. 

 We assess the accuracy of various forecast combinations based on their recursive MSPEs over the 

evaluation period (expressed as a ratio relative to the MSPE of the no-change forecast). MSPE ratios 

below 1 mean that the forecast in question is more accurate than the no-change forecast. We also examine 

the directional accuracy of the forecast combinations.  Under the null hypothesis of no directional 

accuracy, the model should be no more successful at predicting the direction of change in the price of oil 

than would be tossing a fair coin with success probability 0.5, so any success ratio higher than 0.5 

indicates an improvement over the no-change forecast. Tests of the null of no directional accuracy are 

conducted using the test of Pesaran and Timmermann (2009). There are, to our knowledge, no tests for 

the statistical significance of MSPE reductions for estimated forecast combinations. Standard tests in the 

literature are based on the premise that we compare the same two models at each point in time. Given that 

the model weights used in the combination evolve over time, that premise appears to be violated. 

 It is useful to start with the evidence for the real U.S. refiners’ acquisition cost for crude oil 

imports. The first column of Table 1 shows that the forecast combination based on recursively estimated 

inverse MSPE weights systematically reduces the recursive MSPE at all horizons but horizon 21; in the 
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latter case, it is almost as accurate as the no-change forecast. The reductions in the recursive MSPE are as 

high as 10 per cent at some horizons.  This forecast combination also has directional accuracy at all 

horizons with success ratios as high as 66 per cent. Most success ratios are statistically significant at the 

10 per cent level or even the 5 per cent level. The gains in forecast accuracy extend to horizons between 

12 and 24 months. It is worth pointing out that some models included in the forecast combination may 

achieve even larger gains at some horizons, but no individual model produces gains as uniformly large 

across horizons. This pattern of results is not specific to the real U.S. refiners’ acquisition cost for crude 

oil imports. The fifth column in Table 1 illustrates that similar results hold when forecasting the real WTI 

price. The reductions in the recursive MSPE are as high as 10 per cent and the success ratios as high as 65 

per cent, and mostly statistically significant. 

 While these results are encouraging, it is not clear that recursive estimates of the inverse MSPE 

are consistent with the notion of smooth structural change. In the latter case, a more natural approach 

would be to use rolling windows in estimating the weights. An obvious question concerns the length of 

these windows. The more pronounced the structural change (or the less stable the individual forecasting 

models), the shorter the window length should be. At the same time, the window cannot be too short 

without the estimates of the weights becoming too noisy.  

In Table 1 we experiment with three window lengths: 36, 24 and 12 months. Columns 2 through 

4 of Table 1 relate to the real U.S. refiners’ acquisition cost for crude oil imports. They show that, while 

the results are remarkably robust across specifications, the most accurate forecasts overall are obtained 

with a rolling window based on the 12 most recent observations. The latter specification reduces the 

recursive MSPE ratios below 1 at all horizons, with gains ranging from 5 per cent to 15 per cent, and has 

directional accuracy between 57 per cent and 73 per cent that is statistically significant at all but one 

horizon. The extent of the improvements in accuracy even at horizons 15 through 24 is impressive. Much 

the same pattern applies to the real WTI price in columns 6 through 8. Again, the most accurate forecast 

combination is obtained with rolling windows based on the last 12 observations. The MSPE reductions 

range from 5 per cent to 17 per cent and the directional accuracy ranges from 52 per cent to 75 per cent. 
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In general, the longer the length of the rolling window, the closer the results are to those for the 

recursively estimated weights. 

 

4. Sensitivity Analysis 

Our baseline combination involves six forecasting models. A question of practical interest is whether all 

of these models are required or whether the set of models may be reduced further. This question may be 

addressed by recomputing the accuracy of the forecast combination, having eliminated one model at a 

time from the forecast combination, as shown in Table 2. Our point of departure is the result in Table 1 

with weights based on rolling windows consisting of the last 12 observations. Evidence that dropping one 

of the six models systematically lowers the recursive MSPE ratio would be an indication that this model 

ought to be eliminated from the forecast combination, if we care about the MSPE outcomes. We illustrate 

this approach for the case of the real U.S. refiners’ acquisition cost for oil imports in Table 2. 

The first column of Table 2 shows that leaving out the VAR model more often than not raises the 

MSPE ratio compared with column 4 in Table 1, reaffirming our decision to include this model in the 

forecast combination. The second and third columns of Table 2 provide similar evidence for the futures-

based forecast and for the non-oil commodity price model. In sharp contrast, the fourth column shows that 

the recursive MSPE may be lowered at all forecast horizons, if we eliminate the no-change model from 

the forecast combination. This result contradicts the rationale we provided in section 2 for including the 

no-change forecast in the forecast combination.  A similar systematic improvement in the recursive 

MSPE can be observed after dropping the gasoline spread model in the fifth column, but not for the TVP 

product spread model in the last column. This evidence suggests that the gasoline spread model adds 

nothing beyond the predictive information in the TVP product spread model, and should be eliminated 

from the forecast combination. It is also worth noting that the VAR model and the commodity price 

model are particularly useful at short horizons, according to Table 2, whereas the oil futures spread model 

contributes mainly at medium-term horizons and the TVP product spread model at medium and longer 

horizons. 
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The first column of Table 3 confirms that, after dropping the no-change forecast and the gasoline 

spread forecast, the accuracy of the forecast combination at most horizons improves further. The resulting 

forecast provides a new benchmark against which other oil price forecasts must be judged. A forecast 

combination consisting only of the VAR model, the commodity price model, the oil futures spread model 

and the TVP product spread model has lower recursive MSPE than the no-change forecast at all horizons 

from 1 month to 24 months. The reductions in the MSPE range from 6 per cent to 18 per cent. The 

improvements in directional accuracy are statistically significant at all but one horizon and range from 56 

per cent to 74 per cent, depending on the horizon. Similar results hold for the real WTI price, as shown in 

the second column of Table 3. Because all of these results were achieved in real time, the evidence in 

Table 3 shows that there is a practical alternative to the construction of judgmental forecasts of the real 

price of oil. 

 The most striking result in our analysis is the ability of combination forecasts to outperform the 

no-change forecast of the real price of oil at horizons between one and two years. An important question 

is whether the recursive MSPE reductions shown in Table 3 are driven by one or two unusual episodes in 

the data or whether they are more systematic. Figure 2 addresses this question by plotting the recursive 

MSPE ratio at the two-year horizon for the evaluation period since 1997. We disregard the earlier MSPE 

ratios for being based on too short a recursive evaluation period to be considered reliable. For illustrative 

purposes we focus on the real U.S. refiners’ acquisition cost for crude oil imports. The plot shows the 

evolution of the recursive MSPE ratio over time. The last entry on the right corresponds to the entry for 

horizon 24 in column 1 of Table 3. Figure 2 shows that the forecast combination in Table 3 has been more 

accurate than the no-change forecast throughout the entire evaluation period. Similar results hold for other 

long horizons.  

 

5. Diagnostics 

A question of practical interest is how the weights assigned to each model evolve in real time, as more 

data become available.  This question can be answered using some simple diagnostics. The upper panel of 
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Figure 1 plots the one-month-ahead rolling inverse MSPE weights for the real U.S. refiners’ acquisition 

cost for crude oil imports. By construction the weights sum to 1. All results are based on the forecast 

combination shown in Table 3. It should be noted that the relative weights of each model may differ 

considerably by forecast horizon and that the results in Figure 1 are not necessarily representative for 

longer horizons. They are intended for illustrative purposes only. It is immediately apparent from Figure 1 

that the weights show considerable variation over time. For example, the VAR model receives 

particularly high weight during the Great Recession of 2008 as well as in 1994, 2003 and 2006, but 

comparatively low weight in 2004/05 and 2012.6  

Interestingly, the forecast based on industrial commodity prices frequently moves in the opposite 

direction from the VAR forecast. One possible explanation is that the VAR model provides additional 

information beyond global real economic activity, including information that is specific to the oil market. 

It is useful to simplify the analysis further by combining the weights associated with the VAR forecasting 

model and the model based on non-oil industrial commodity prices. The lower panel of Figure 1 labels 

this combined weight as “Fundamentals.” While fundamentals still receive by far the highest weight in 

the forecast combination, it is readily apparent that the usefulness of economic fundamentals has declined 

since 2010. This finding is not unexpected. The global economy has been stagnating in recent years. In 

the absence of large and predictable variation in economic fundamentals, VAR forecasting models will 

have no advantage over more parsimonious models, such as the no-change forecast, in determining the 

direction of the real price of oil, but VAR forecasts will suffer from a much higher variance than the no-

change forecast and hence a higher MSPE.  

 In contrast, the weight attached to forecasts based on oil futures prices and forecasts based on the 

TVP product spread model recovered after the Great Recession, reaching an all-time high by 2012. There 

                                                            
6 The fact that VAR weights were comparatively low at times does not mean that economic fundamentals did not 
matter at those times. Rather, it means that predictable variation in the fundamentals was low. Even if we accept that 
global real economic activity helps forecast the real price of oil, for example, this knowledge is useless for 
forecasting out of sample, unless we can also predict the evolution of future global real economic activity within the 
VAR model. 
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is a general tendency for the weight on the TVP product spread model, in particular, to be inversely 

related to the weight on economic fundamentals. When one model’s performance weakens, the other 

model receives increasing weight.  

 

6. Extensions to Quarterly Horizons 

As mentioned earlier, the EIA forecasts not only the monthly price of oil, but also quarterly averages. The 

construction of quarterly forecasts has been studied in depth in Baumeister and Kilian (2013a), who show 

that the most accurate forecasts of the quarterly real price of oil are typically obtained by aggregating 

forecasts from models estimated at monthly frequency to quarterly frequency. For example, the average 

of the January, February and March forecasts generated in December of the preceding year would 

constitute the forecast for the first quarter of the subsequent year.  

 There are two ways of proceeding. The first method is to construct forecast combinations of the 

forecasts generated each month for the monthly horizons 1 through 24 (similar to the results shown in 

Table 3) and then to aggregate the resulting monthly forecasts by quarter. This approach has the 

advantage that the monthly combination forecasts are fully consistent with the quarterly combination 

forecasts. An alternative method is to aggregate the monthly forecasts of each individual forecasting 

method first and then to construct forecast combinations of the resulting quarterly forecasts. We explore 

both methods in Table 4. The construction of the forecast combinations otherwise follows the approach 

taken in Table 3. The benchmark is again the no-change forecast based on the most recent monthly real 

price of oil in each quarter. For the alternative method we rely on a rolling window of length 4, which is 

the quarterly analogue of the window length for the monthly data. We verify that choosing a length of 8 

or 12 produces broadly similar, but less accurate, results. 

 Given the construction of the quarterly real price of oil as the average of the monthly prices, it is 

not possible to infer from the results reported in Table 3 how accurate the combination forecasts of the 

quarterly data will be. The MSPE of the latter also depends on the unknown covariance between the 

monthly forecasts. Table 4 shows that, nevertheless, the method of first combining the monthly forecasts 
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and then aggregating the monthly combination forecast by quarter (Method 1) performs very well for the 

real U.S. refiners’ acquisition cost for oil imports. Column 1 of Table 4 shows systematic reductions in 

the recursive MSPE at all horizons ranging from 8 per cent to 18 per cent. The directional accuracy 

ranges from 60 per cent to 74 per cent and is mostly highly statistically significant. Similar results are 

obtained for the real WTI price in column 4. Method 2, which first aggregates the individual forecasts by 

quarter before combining these quarterly forecasts, also performs reasonably well for both oil price 

measures, but is generally slightly less accurate than Method 1, which has the advantage of ensuring 

consistency between monthly and quarterly forecasts. 

 

7. Conclusion 

One of the challenges faced by producers of short-term oil price forecasts such as the EIA is how to 

generate real-time forecasts of the price of oil that are more accurate than the no-change forecast. We 

showed how to construct such forecasts in a timely manner without relying on judgment. Our analysis 

relied on forecast combinations of several forecasting models that by themselves are superior to the no-

change forecast at least at some horizons. These models utilize as predictors lags of the real price of oil; 

current oil spot prices and oil futures prices; current spot prices in the market for refined products; and 

current and lagged data on economic fundamentals such as oil production, global real activity, other 

industrial commodity prices, and changes in crude oil stocks. We selected the weights for each model in 

real time according to the model’s recent forecast accuracy. The advantage of such data-based forecast 

combinations is that the resulting oil price forecasts tend to be more robust across forecast horizons and 

over time than even the best individual forecasting models. They provide some insurance not only against 

possible model misspecification, but also against smooth structural change. Both problems are potentially 

important concerns when forecasting oil prices.   

The most accurate forecasts are obtained based on inverse MSPE weights computed from rolling 

windows consisting of the last 12 observations. We demonstrated that combinations of forecasts from 

VAR models of the global oil market, forecasts based on non-oil industrial commodity prices, forecasts 
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based on oil futures prices and forecasts from TVP product spread models, in particular, are 

systematically more accurate than the no-change forecast at all horizons from 1 month to 24 months. We 

are not aware of any other forecasting method that accomplishes this objective.  Depending on the 

horizon, our forecast combinations lower the MSPE by as much as 18 per cent relative to the no-change 

forecast, and they have directional accuracy as high as 77 per cent. Very similar results are obtained for 

measures of the global price of oil such as the U.S. refiners’ acquisition cost, and the WTI price of crude 

oil. The most striking result in our analysis is the ability of combination forecasts to outperform the no-

change forecast of the real price of oil at horizons between one and two years. An important question  

is whether the recursive MSPE reductions at long horizons are driven by one or two unusual episodes in 

the data or whether they are more systematic. We found that suitably constructed combination forecasts 

are more accurate than the no-change forecast throughout the entire evaluation period.  

While much of our analysis focused on forecasting the monthly real price of oil, we showed that 

our results also can be generalized to the problem of forecasting the quarterly real price of oil.  Although 

we do not pursue this extension in this paper, we note that it would be straightforward to extend our 

analysis to the problem of forecasting the nominal price of oil. This would involve only the additional 

step of scaling our forecast of the real price of oil by the expected inflation rate over the relevant forecast 

horizon. We also provided an algorithm for deciding which forecasting models to include in the forecast 

combination. We used this algorithm to establish that not all of the forecasting models included in the 

baseline forecast combination contribute toward lower MSPEs, allowing us to eliminate some models 

from consideration. Finally, we suggested diagnostics for assessing the contribution of each forecasting 

model to the forecast combination in real time. We quantified the extent to which forecasting models 

based on economic fundamentals, for example, are more useful during times such as the Great Recession 

of 2008 than during tranquil times in oil markets, and we discussed likely reasons for the evolution of the 

forecast weights over time.  
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Table 1: Real-Time Forecast Accuracy of Baseline Forecast Combination Based on Six Forecasting Models 
 
 

 Real U.S. Refiners’ Acquisition Cost for Oil Imports Real WTI Price 
 Recursive 

Weights 
Rolling Weights Based on  

Windows of Length: 
Recursive 
Weights 

Rolling Weights Based on 
Windows of Length: 

  36 24 12  36 24 12 
Monthly         
Horizon Recursive MSPE Ratios Recursive MSPE Ratios 

1 0.918 0.918 0.907 0.901 0.909 0.907 0.904 0.901 
3 0.901 0.902 0.892 0.890 0.903 0.901 0.900 0.895 
6 0.957 0.961 0.955 0.950 0.961 0.962 0.961 0.954 
9 0.946 0.945 0.941 0.928 0.940 0.947 0.945 0.934 
12 0.908 0.901 0.899 0.878 0.916 0.909 0.909 0.894 
15 0.904 0.889 0.885 0.850 0.913 0.894 0.892 0.865 
18 0.946 0.921 0.904 0.867 0.947 0.917 0.902 0.865 
21 1.006 0.993 0.980 0.914 1.006 0.993 0.982 0.910 
24 0.962 0.946 0.933 0.858 0.958 0.944 0.928 0.835 
         
 Success Ratios Success Ratios 
1  0.578*  0.574*  0.590*  0.586* 0.518 0.526 0.530 0.522 
3  0.591*  0.591*   0.579**   0.583**  0.579*  0.575*    0.571**    0.567** 
6 0.549 0.533 0.533 0.566 0.533 0.525 0.549 0.562 
9   0.581** 0.564 0.564  0.610* 0.560   0.573** 0.560  0.602* 
12  0.626*  0.630*  0.643*  0.681*  0.626*  0.630*  0.639*  0.693* 
15  0.655*  0.672*  0.681*  0.732*  0.638*  0.660*  0.664*  0.741* 
18  0.638*  0.668*  0.681*  0.724*  0.647*  0.677*  0.694*  0.754* 
21       0.568 0.563  0.585*  0.668*  0.563* 0.559   0.590**  0.604* 
24    0.611**    0.602**   0.611**  0.677*    0.602** 0.593   0.615**  0.695* 

 

NOTES: The models are described in the text. Boldface indicates improvements relative to the no-change forecast. * denotes 
significance at the 5 per cent level and ** at the 10 per cent level based on the Pesaran and Timmermann (2009) test for the null 
hypothesis of no directional accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the 
currently available tests of equal predictive accuracy applies in this setting.  
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Table 2: Real-Time Recursive MSPE Ratios of “Leave-One-Out” Forecast Combination with  
Rolling Weights Based on Windows of Length 12 

 
 

 Real U.S. Refiners’ Acquisition Cost for Oil Imports 
       

Model Left Out: VAR Oil Futures 
Spread 

Commodity 
Prices 

No Change Gasoline Spread TVP Product 
Spread 

Monthly       
Horizon Recursive MSPE Ratios 

1 0.952+ 0.889 - 0.913+ 0.888 - 0.891 - 0.894 - 
3 0.930+ 0.882 - 0.920+ 0.873 - 0.878 - 0.877 - 
6 0.964+ 0.957+ 0.947 - 0.942 - 0.946 - 0.958+ 
9 0.927 - 0.945+ 0.920 - 0.918 - 0.924 - 0.952+ 
12 0.884+ 0.908+ 0.871 - 0.861 - 0.870 - 0.896+ 
15         0.852+  0.894+ 0.858+ 0.830 - 0.839 - 0.860+ 
18 0.858 - 0.923+ 0.888+ 0.849 - 0.852 - 0.874+ 
21 0.933+          0.914  0.915+ 0.909 - 0.911 - 0.968+ 
24 0.870+          0.858  0.847 - 0.847 - 0.857 - 0.959+ 

 

NOTES: The models are described in the text. Boldface indicates improvements relative to the no-change forecast. + and – indicate 
increases and decreases of the MSPE ratio relative to column 4 of Table 3. A positive sign indicates that the model left out would have 
improved forecast accuracy if included, whereas a negative sign indicates that it would have worsened forecast accuracy. The 
statistical significance of the MSPE reductions cannot be assessed because none of the currently available tests of equal predictive 
accuracy applies in this setting.  
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Table 3: Real-Time Forecast Accuracy of Forecast Combination with Rolling Weights Based on Windows of Length 12 after  
Dropping No-Change Forecast and Gasoline Spread Forecast 

 

 Real U.S. Refiners’ Acquisition Cost  
for Oil Imports 

Real WTI Price 

   
Monthly Horizon Recursive MSPE Ratios 

1 0.875 - 0.872 
3 0.853 - 0.859 
6 0.935 - 0.942 
9 0.910 - 0.918 
12 0.848 - 0.869 
15 0.814 - 0.831 
18 0.829 - 0.829 
21 0.914+ 0.908 
24 0.852+ 0.823 
   
 Success Ratios 
1  0.586* 0.522 
3  0.591*  0.583* 
6                               0.557   0.570** 
9  0.610*  0.610* 

12  0.681*  0.723* 
15  0.745*  0.770* 
18  0.728*  0.746* 
21  0.664*  0.655* 
24  0.677*   0.695* 

 

NOTES: The models are described in the text. Boldface indicates improvements relative to the no-change forecast. + and – in column 
1 indicate increases and decreases relative to column 4 of Table 2. A positive sign indicates that the model left out would have 
improved forecast accuracy if included, whereas a negative sign indicates that it would have worsened forecast accuracy. * denotes 
significance at the 5 per cent level and ** at the 10 per cent level based on the Pesaran and Timmermann (2009) test for the null 
hypothesis of no directional accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the 
currently available tests of equal predictive accuracy applies in this setting.  
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Table 4: Real-Time Forecast Accuracy of Forecast Combinations at Quarterly Horizons after  
           Dropping the No-Change Forecast and the Forecast Based on the Gasoline Spread 

 
 

 Real U.S. Refiners’ Acquisition Cost for  
Oil Imports 

Real WTI Price 

     
 Method 1 Method 2 Method 1 Method 2 

Quarterly     
Horizon Recursive MSPE Ratios 

1 0.873 0.877 0.866 0.871 
2 0.920 0.930 0.926 0.938 
3 0.909 0.920 0.919 0.934 
4 0.855 0.870 0.868 0.885 
5 0.814 0.841 0.840 0.870 
6 0.815 0.846 0.818 0.848 
7 0.910 0.957 0.907 0.956 
8 0.870 0.903 0.847 0.885 
     
 Success Ratios 
1 0.699*  0.699* 0.711* 0.699* 
2 0.659*  0.646* 0.695* 0.671* 
3 0.704*  0.704* 0.691* 0.679* 
4 0.738*  0.738* 0.750* 0.750* 
5 0.671*  0.658* 0.658* 0.646* 
6 0.705*  0.654* 0.705* 0.654* 
7                0.597 0.584 0.610*  0.610** 
8 0.632* 0.592 0.658*  0.618** 

 

NOTES: The models are described in the text. Method 1 relies on monthly forecast combinations, as in Table 3, that subsequently are 
aggregated by quarter. Method 2 combines the quarterly forecasts obtained by aggregating the forecasts of each monthly model by 
quarter. The latter method relies on inverse MSPE weights based on a rolling window of length 4 quarters. Boldface indicates 
improvements relative to the no-change forecast. * denotes significance at the 5 per cent level and ** at the 10 per cent level based on 
the Pesaran and Timmermann (2009) test for the null hypothesis of no directional accuracy. The statistical significance of the MSPE 
reductions cannot be assessed because none of the currently available tests of equal predictive accuracy applies in this setting.  
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Figure 1: Real-Time Inverse MSPE Weights for Real U.S. Refiners’ Acquisition Cost of Oil Imports at 1-Month Horizon 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
NOTES: The inverse MSPE weights correspond to the weights underlying Table 3. The weight on fundamentals is defined as the sum of the 
weights for the VAR model forecast and the forecast based on industrial commodity prices.
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Figure 2: Real-Time Recursive MSPE Ratio of Forecast Combination Relative to No-Change Forecast of 
Real U.S. Refiners’ Acquisition Cost of Oil Imports at 24-Month Horizon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES:  Results based on the forecast combination shown in Table 3. A ratio below 1 indicates an improvement relative to the  
no-change forecast. The plot shows the evolution of the recursive MSPE ratio over time for the forecast evaluation period since  
1997. This increases the reliability of the MSPE estimates and allows the MSPE ratio to stabilize. 
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