
Optimal Monetary Policy under Incomplete Markets
and Aggregate Uncertainty: A Long-Run Perspective�

Oleksiy Kryvtsov, Malik Shukayevy

Alexander Ueberfeldt

Bank of Canada

August 2010

Abstract

This paper examines the role of monetary policy in an environment with aggregate risk and

incomplete markets. In a two-period overlapping-generations model with aggregate uncer-

tainty, optimal monetary policy attains the ex-ante Pareto optimal allocation. This policy

aims to stabilize the savings rate in the economy by changing real returns of nominal bonds

via variation in expected in�ation. Optimal expected in�ation is procylical and on average

higher than without uncertainty. Simple in�ation targeting rules closely approximate the

optimal monetary policy.
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1. Introduction
What is the role of monetary policy in an environment with aggregate risk and incom-

plete asset markets? We study a two-period overlapping-generations model (OLG) in which

aggregate-income uncertainty and incomplete markets lead to suboptimal levels of savings

and consumption. The ex-ante Pareto optimal allocation can be achieved through monetary

policy. The optimal monetary policy stabilizes savings rates by a¤ecting the expected real

return on nominal bonds. It is characterized by: 1) expected in�ation that on average is

higher than without uncertainty, 2) a positive correlation between expected in�ation and

income, and 3) volatility of expected in�ation that is inversely related to income persistence.

The characteristic properties of the optimal monetary policy stem from the tension

between individually optimal savings decisions under incomplete markets, and the socially

optimal allocation of consumption across generations. When faced with uninsurable income

risk and a constant rate of return on savings, risk averse individuals smooth their consumption

by varying their savings with income. When current income is higher than expected future

income, individuals save more to move part of the current �windfall�into the future. When

current income is lower than expected future income, individuals save less taking advantage

of the anticipated increase in future income. In the presence of income heterogeneity across

individuals, the lack of risk-sharing leads to savings rates that are more volatile and on

average higher than those chosen by the social planner. When income is correlated across

individuals, as in our model, due to aggregate shocks, the level of aggregate savings is not

socially optimal.

We �rst analyze a tractable endowment economy where aggregate endowment shocks

create ex-post income heterogeneity across households. Limited trading opportunities be-

tween generations restrict risk-sharing leading to suboptimally high variations in the savings

rates of young households who are trying to self insure by varying their savings rates with

income. With nominal assets being the only savings vehicle in this economy, the individual

savings behavior of the young directly a¤ects the allocation of goods between the young and

the old because it determines the price of nominal assets sold by the old to the young. As a

result of price level �uctuations, the young face uncertainty regarding the ex-post real rate

of return on their nominal savings. The ex-post return on nominal assets depends on the re-

alization of income of the young next period, and on in�ation. Monetary policy can mitigate

suboptimal �uctuations in savings rates by varying the expected in�ation. In order to lower
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the average level and variability of savings rates, the optimal expected in�ation is positive on

average and procyclical. However, the degree to which expected in�ation responds to income

�uctuations depends on the persistence of the income disturbances. When income �uctu-

ations are long-lived, individual incentives to vary savings are weak, which makes sizeable

variations in the expected in�ation unnecessary. Whereas when income movements are tran-

sitory, individuals have a strong incentive to vary their savings rates to smooth consumption

across time. As a result, optimal in�ation becomes more responsive to transitory income

�uctuations. This implies that the volatility of optimal expected in�ation decreases with

income persistence.

Next, we consider an extension of the benchmark model to a production economy, in

which physical capital is combined with the labor supply of young individuals to produce

consumption goods. In this richer model, money is held as a store-of-value only if it provides

the same expected return as capital. As a result, monetary policy is more restricted, but

still can improve allocations via its e¤ect on the value of nominal assets. Despite this richer

structure, the same qualitative results are obtained for optimal monetary policy as in our

simpler endowment economy.

Finally for the production economy, we show that the optimal monetary policy is well

approximated by an in�ation targeting (IT) rule that sets the expected future in�ation at

a target that is an increasing function of current in�ation and current output. This kind

of targeting policy, is often favoured by central banks due to the uncertainty surrounding

economic mechanisms in the real economy, or uncertainty associated with data revisions.

Another potential advantage of using targeting policies is the alleviation of the �in�ation

bias�that stems from the time-inconsistency problem faced by the monetary authority.1

An important contribution of policy rules is their stabilizing e¤ect on future expec-

tations and subsequently on long term decisions. Doepke and Schneider (2006) have shown

that monetary policy can have sizable welfare consequences in an economy with heteroge-

neous sectors and nominal assets, via redistributive e¤ects of in�ation. Meh and Terajima

(2008) have extended this insight beyond aggregate sectors and shown that di¤erent monetary

1Since the 1990s, 32 central banks announced in�ation targeting as their monetary policy framework. See
Walsh (1998) and Woodford (2003) for reviews of in�ation targeting policy regimes. Ball and Sheridan (2003)
provide a list of central banks that adopted in�ation targeting, as well as timing details and performance
evaluations for this policy change.
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policy regimes can lead to various patterns of wealth redistribution between households of

di¤erent age groups. These �ndings suggest that price-level uncertainty in a monetary policy

regime can have a signi�cant impact on expected returns of long-term nominal assets (such

as mortgages2) and on ex-post wealth redistributions between generations. This is where

policy rules are of key importance as they reduce price uncertainty and improve conditions

regarding long run planning. Our model captures the key elements of the redistributive na-

ture of monetary policy from a household perspective by incorporating nominal contracts,

heterogenous households and aggregate risk.

The paper contributes to macroeconomic theory and monetary policy analysis along

several dimensions. First, it shows, using a tractable model, the consumption smoothing be-

havior in an OLG environment with aggregate income shocks can lead to suboptimal variation

in savings rates. This result contrasts with the �permanent income hypothesis�literature in

which the absence of agent heterogeneity makes the consumption smoothing behavior fully

e¢ cient.3 Furthermore, our paper enriches the insights of the �income �uctuations prob-

lem�which focuses on the average or steady-state ine¢ ciency of savings behavior in models

with uninsurable idiosyncratic income risk (but no aggregate risk).4 The model in this paper

focuses on the savings behavior under aggregate uncertainty, income heterogeneity and in-

complete risk-sharing, providing a rich yet tractable framework for monetary policy analysis.

To our knowledge, there is very little research on monetary policy in a stochastic OLG

environment. Perhaps surprisingly, most of the previous research on monetary policy in OLG

models focused exclusively on deterministic models. Suboptimality of positive in�ation was

one of the main �ndings of that literature.5 Akyol (2004) also �nds positive optimal in�ation

in an environment with in�nitely lived agents, who are subject to uninsurable idiosyncratic

endowment risk and borrowing constraints. With no aggregate uncertainty, the price level in

Akyol�s model increases over time in a deterministic fashion. In our model, we provide a full

characterization of optimal monetary policy under aggregate uncertainty. A recent paper by

2In the US, Mortgage debt of households is quite sizable reaching one GDP (Source: Economic Report of
the President, (2010)).

3The fundamental idea was proposed by Milton Friedman, see Friedman (1957).
4Aiyagari (1994) shows that with uninsurable idiosycratic income risk (but no aggregate risk), households

facing a constant rate of return on their savings, tend to oversave for precautionary reasons. See also Sargent
and Linquist (2004), chapter 17 and references therein. Krusell and Smith (1998) add aggregate uncertainty,
however, they do not focus on optimal policy.

5See, for example, Wallace (1992) or Champ and Freeman (2001).
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Bhattacharya and Singh (2010) is related to ours. The authors use an overlapping generations

endowment economy model in which spacial separation and random reallocation create an

endogenous demand for money. Bhattacharya and Singh focus attention on comparing welfare

implications of two di¤erent monetary policy rules, under various assumptions regarding the

persistence of shocks: one with a constant growth rate of money, and another with a constant

in�ation rate. Our focus is di¤erent: we characterize the optimal monetary policy, which

implies time-varying in�ation and money growth rates. In our model with productive capital

we �nd that in�ation targeting rules closely approximate the optimal monetary policy, a

result related to their conclusion. Overall, the �ndings of Bhattacharya and Singh (2010)

complement our results.

The paper proceeds as follows. Section 2 introduces and analyzes the endowment

economy with �at money as the only asset. In Section 3, the model is extended to a production

economy with capital. Section 4 contains concluding remarks. Proofs and derivations are

collected in the appendices.

2. An OLG Model With Fiat Money
In this section, we study a two-period overlapping-generations endowment economy

in which �at money is the only asset. This simple environment allows an analytical charac-

terization of the optimal monetary policy. In the model, the young individuals use money

to save for the time when they are old. Monetary policy a¤ects real returns on savings via

its e¤ect on expected in�ation. Given asset market incompleteness, monetary policy has the

potential to improve the average welfare in the economy.6

A. The Environment

There is a unit measure of identical individuals born in every period. Each generation

lives for two periods. A young person born in period t is endowed with wt units of a perishable

consumption good in period t and zero units in period t + 1. The endowment wt is random

and represents the only source of uncertainty in the model. The log of the endowment follows

6Markets are incomplete for two reasons. First, the overlapping-generations structure implies that newborn
individuals cannot insure against the endowment risk. Second, young individuals, who save in the form of a
noncontingent asset, cannot fully insure against rate-of-return risk.
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a �rst-order autoregressive process:

lnwt = � lnwt�1 + "t ;

where "t are i.i.d. draws from a zero-mean normal distribution with standard deviation �.

The single asset in the economy is �at money supplied by the government. In period

1 there is an initial old generation that has no endowment and holds M0 units of the money

stock.

The timing of events is as follows. At the beginning of period t the old generation

holdsMt�1 units of �at money acquired in the previous period. Before the current endowment

wt is realized, the government prints (or destroys) money in the amount of Mt �Mt�1; and

distributes it evenly among the old individuals via lump-sum transfer (or tax, if negative)

Tt =Mt�Mt�1:
7 The assumption that monetary transfers occur before the realization of the

current endowment, re�ects the limited ability of the government�s policy to react to current

shocks in the economy, and implies an incomplete degree of control over the price level. After

the realization of the current endowment, wt, the young agents consume c
y
t units of their

endowment. The remaining goods, wt� cyt , are exchanged for Md
t units of money at price Pt:

Thus, a young person born in period t; solves the following problem:

(1) max
cyt ;c

o
t+1;M

d
t

u(cyt ) + �Etu(c
o
t+1)

subject to

Ptc
y
t +Md

t � Ptwt ;(2)

Pt+1c
o
t+1 � Md

t + Tt+1 ;(3)

where cot+1 is the person�s consumption when old, Tt is the monetary transfer from the gov-

ernment in period t, � is the discount factor, and the period utility function u (�) satis�es the

7Appendix A2 shows that our results do not depend on the assumption that only the old receive the
nominal transfer.
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Inada conditions.8 The operator Et denotes the expected value conditional on the history

of endowment realizations through the end of period t. Throughout the paper we use the

following functional form for the period utility function: u (c) = c1�
=(1 � 
), where 
 > 0

is the coe¢ cient of risk aversion.

B. Monetary Equilibrium

Let �t denote the growth of money supply in the economy in period t, �t =
Mt

Mt�1
.

Monetary policy is de�ned as an in�nite sequence of money growth rates, f�tg
1
t=1 as functions

of corresponding state histories.

Definition 1. Given a monetary policy f�tg
1
t=1 and initial endowment of money, a mone-

tary equilibrium for this economy is a set of prices fPtg1t=1 and allocations
�
cyt ; c

o
t ;M

d
t

	1
t=1

;

such that for all t = 1; 2; 3; :::

1. allocations cyt ; c
o
t+1 and M

d
t solve the generation t�s problem (1)-(3), and

2. the good and money markets clear:

cyt + cot = wt ;

Md
t = Mt :

In the next subsection we characterize the optimal allocation and derive the optimal

monetary policy that implements it as a monetary equilibrium.

C. Optimal Monetary Policy

To �nd the optimal monetary policy, we �rst de�ne the social welfare function and

solve the social planner�s problem for the optimal allocation. We then ask whether this

allocation can be implemented as a monetary equilibrium.

8Throughout the paper all variables are random functions of histories of endowment realizations. To keep
notation simple the explicit state-history notation is omitted.
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The Social Planner�s Problem

The social planner is assumed to treat all generations equally. Let the average (ex-

post) utility over T periods be:

VT =
1

T

"
�u(co1) +

"
T�1X
t=1

�
u(cyt ) + �u(cot+1)

�#
+ u(cyT )

#

=
1

T

TX
t=1

[u(cyt ) + �u(cot )] :(4)

We de�ne the social welfare function as

(5) lim
T!1

inf E [VT ] :

This welfare criterion treats all generations equal by attaching the same welfare weight to

the expected utility of each generation.

The social planner maximizes (5) subject to the resource constraint for all periods:

cyt + cot � wt; for t = 1; 2; ::: :

We show in Appendix A1 that the solution to this problem is the sequence of consumptions

fcyt ; cotg
T
t=1 such that in each period the marginal utilities of consumption of the young and

of the old are equal:

u0 (cyt ) = �u0(cot ) ;

cyt + cot = wt :

The dynamic behavior of individual savings decisions and of the optimal allocation of con-

sumption across generations is the determinant of the properties of optimal monetary policy

in the model. For the case of a constant relative risk aversion (CRRA) period utility function,
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u(c) = c1�


1�
 , the �rst-best allocation is:

cyt =
1

1 + �
1



wt ;(6)

cot =
�
1



1 + �
1



wt ;(7)

for all t = 1; 2; ::: . Note that the �rst-best allocation calls for a constant savings rate of the

young to be equal to wt�cyt
wt

= �
1



1+�
1


.

There are two reasons for using the undiscounted welfare function (4) rather than the

discounted one,

(8) VT = u(co1) +
TX
t=1

�t�1
�
u(cyt ) + �u(cot+1)

�
:

The discounted social welfare function (8) implies that the optimal consumption is equally

divided between the young and the old: cyt = cot =
1
2
wt. This pattern of lifetime consumption

does not maximize ex-ante utility of young individuals in an OLG economy, because they

discount old-age consumption and would prefer higher expected consumption when young.

In contrast, the consumption allocation (6) and (7), implied by the undiscounted welfare

function, maximizes the unconditional expected utility of any given generation (except the

initial old). Hence, it is the unique ex-ante optimal allocation. Secondly, without endowment

uncertainty, the allocation (6) and (7) is implementable as a market equilibrium with a

constant money stock. Hence, by using the undiscounted welfare function we circumvent

the issue of �dynamic ine¢ ciency�common in non-stochastic OLG models and focus on the

dynamic properties of optimal monetary policy arising in response to shocks.9

Implementing the Optimal Allocation as a Monetary Equilibrium

Suppose the �rst-best allocation can be implemented in a monetary equilibrium. Any

monetary equilibrium must satisfy the following two necessary and su¢ cient �rst-order con-

9In Diamond (1965) the �dynamic ine¢ ciency�stems from population growth a¤ecting the discount factor
in the social welfare function in an OLG-type setup.
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ditions10:

u0
�
wt �

Md
t

Pt

�
= �Et

�
u0
�
Md
t + Tt+1
Pt+1

�
Pt
Pt+1

�
;(9)

Pt
Pt+1

=
Mt

Mt+1

wt+1 � cyt+1
wt � cyt

:(10)

Equation (9) is a standard intertemporal Euler condition. Equation (10) is derived from the

budget constraint of the young (2) holding with equality, and from the money market clearing

condition Md
t =Mt.

In equilibrium monetary policy can a¤ect savings by varying the expected real rate

of return on money. The ex-post real rate of return on money is given by the inverse of

the in�ation rate, Pt
Pt+1

and is a¤ected by the growth rate of money �t+1 =
Mt+1

Mt
. Due to

our timing assumption on monetary injections, the growth rate of money �t+1 is determined

before wt+1 and Pt+1 are realized. Thus, equation (10) implies

Mt+1

Mt

= Et

�
Pt+1
Pt

wt+1 � cyt+1
wt � cyt

�

where the ratio
wt+1�cyt+1
wt�cyt

is the growth rate of savings in this economy between periods t and

t + 1. Changes in the growth rate of money, �t+1, a¤ect both the ex-ante return on money,

and the expected growth rate of savings.

Before we characterize the optimal monetary policy in this economy, it is instructive

to look at a related OLG economy in which the rate of return on savings is technological

and cannot be changed. Suppose that instead of money, agents have access to a storage

technology, which gives a �xed real return of R for every unit of goods invested. The �rst-

order conditions of a young generation in this modi�ed economy are:

u0 (cyt ) = �Et
�
u0
�
cot+1

�
R
�
;(11)

cyt = wt � st(12)

cot+1 = stR:(13)

10Su¢ ciency follows from the concavity of the decision problem.
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where st is the amount of real goods stored by the young person in period t: Notice that the

old age consumption cot+1 is completely independent of the endowment realization in period

t+ 1; wt+1: This means that the young agents in this economy bear all the endowment risk,

while the old agents face no uncertainty. This is clearly not an optimal allocation, since it

precludes any risk sharing between generations. If the ex-post real rate of return on savings

was an increasing function of the growth rate of endowment wt+1
wt

; then the degree of risk

sharing between generations would increase.

In our model this can be achieved by an appropriately set monetary policy. If the policy

is such that ex-post in�ation is decreasing in wt+1
wt

; then the real rate of return on money is

increasing in wt+1
wt
. Notice that with a mean reverting stochastic process for endowment, this

pattern of adjustment in ex-post in�ation implies a procyclical expected in�ation. When wt

is high, the expected value of the ratio wt+1
wt

is low, which means that the expected in�ation

must be high. On the contrary, when wt is low, the expected value of the ratio
wt+1
wt

is high,

and the expected in�ation is low. Thus, the optimal monetary policy in our economy must

lead to a procyclical expected in�ation rate. Our analysis of the optimal monetary policy

below con�rms this conclusion.

We combine equilibrium conditions (9)-(10) with the �rst-best allocation (6) and (7)

to obtain the expression for optimal money growth

(14)
Mt+1

Mt

= Et

"�
wt+1
wt

�1�
#
;

and prices

(15)
Pt+1
Pt

=
Mt+1

Mt

wt
wt+1

= Et

"�
wt+1
wt

�1�
#
wt
wt+1

:

Given the assumption of log normality of the endowment process, equations (14) and (15)

imply that
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mt+1 �mt =
(1� 
)2�2

2
+ (1� �)(
 � 1)!t;(16)

pt+1 � pt =
(1� 
)2�2

2
+ 
(1� �)!t � "t+1 ;(17)

where mt � lnMt, pt � lnPt, !t � lnwt.
Equations (16) and (17) together with initial conditions fully characterize the dy-

namics of money growth and the price level in the equilibrium that implements the optimal

consumption allocation. It also follows from these equations that the monetary equilibrium

and the optimal monetary policy are unique (up to initial conditions) for any sequence of

endowments f!tg. Equation (17) implies the following equation for expected in�ation as a
function of endowment:

(18) Et [pt+1 � pt] =
(1� 
)2�2

2
+ 
(1� �)!t:

While the cyclical properties of the optimal money growth rate depend on the risk

aversion parameter 
; the expected in�ation is procyclical for any positive 
. This follows

from equations (16) and (18). For example, in the case of log utility, 
 = 1, optimal money

growth is zero but expected in�ation is procyclical. Furthermore equation (15) implies that

the ex-post in�ation rate is a decreasing function of the growth rate of endowment wt+1
wt

and,

controlling for the growth rate of money, is countercyclical. This is an implication of the

timing assumption for monetary injections: money supply in period t + 1 is independent of

the endowment realization in that period. This means that high income realizations of !t+1

will lower the price level pt+1 and the ex-post in�ation rate.

We summarize the main properties of price level dynamics under the optimal monetary

policy in the following proposition:

Proposition 1

1. The average in�ation under the optimal policy is positive, �� = (1�
)2�2
2

, and increasing

with the size of uncertainty, as long as 
 6= 1.
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2. Expected in�ation is positively correlated with the current endowment.

3. The variance of expected in�ation is decreasing in the persistence of the endowment

process, �. If the endowment follows a random walk, � = 1, then the optimal expected

in�ation is constant: Et [pt+1 � pt] = ��.

Proof

While the proof of this proposition follows immediately from the equation (18), Ap-

pendix A3 provides derivations of the equations (16) and (17).

Another way to understand the rationale for the properties of the optimal policy is by

looking at their e¤ects on savings rates. Recall from equations (6) and (7) that the �rst-best

allocation corresponds to the constant savings rate, �
1



1+�
1


. In a monetary equilibrium, the

savings rate depends on the expected return to money Et [pt � pt+1], which is the negative

of the expected in�ation. The monetary authority sets expected in�ation, by appropriately

choosing the rate of money growth, to stabilize the equilibrium savings rate at the optimal

level. The three properties of the optimal monetary policy describe how expected in�ation

must be set to achieve the �rst-best allocation.

Property 1 is due to asset market incompleteness, implying that individuals cannot

perfectly insure themselves against endowment risk. In the face of uncertainty about future

income, risk-averse individuals have an incentive to self-insure by smoothing consumption

across time. Without positive trend in�ation, they tend to save on average more than optimal

for precautionary reasons, as in Aiyagari (1994).11 The positive average in�ation serves as

a tax on savings, which discourages oversaving. The log-utility case (
 = 1) is a notable

exception from this rule: the optimal long-run in�ation rate is precisely zero for this special

case. As is well known, with log-utility individuals do not vary their savings rates in response

to uncertainty about future rates of return. As a result, the optimal in�ation rate is zero.12

11More precisely, Property 1 says that in�ation under optimal policy with uncertainty is higher than without
uncertainty (zero in this case).
12It might seem strange at �rst, that the optimal in�ation rate is positive for both 
 greater and less than

one. It is well known that with a CRRA utility function the sign of the relationship between (uncompensated)
changes in the rate of return on savings and the supply of savings depends crucially on the value of the risk
aversion parameter 
. This is because the relative strength of two opposing e¤ects induced by changes in
the rate of return: the income e¤ect and the substitution e¤ect, depend on 
: In our case however, changes
in the long-run in�ation rate do not have income e¤ects, because the newly created money is rebated to the
households. As a result, the higher in�ation rate reduces savings for both 
 > 1 and 
 2 (0; 1):
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According to Property 2, a positive correlation between the expected in�ation and

income implies a high (low) tax on savings when income is high (low). This discourages

individuals from varying savings rates to smooth consumption over time and thereby stabilizes

the savings rate.13 Hence Property 2 of the optimal monetary policy recti�es the cyclical

component of socially suboptimal precautionary savings, whereas Property 1 dampens its

average component.

Finally, Property 3 implies that with a higher endowment persistence there is a smaller

di¤erence between the endowment of current-period young relative to next-period young and

thus lower incentives to vary the savings rate. Furthermore, we see less variation in the

marginal utility of consumption between the young and the old. As a result, the optimal

expected in�ation has to vary less to discourage consumption smoothing. In the limit, when

income follows a random walk, the optimal expected in�ation is constant.

It is relatively straightforward to show that the OLG structure is not essential for our

results. The mechanism through which monetary policy implements reallocation of resources

under aggregate uncertainty requires the existence of non-contingent nominal assets and ex-

post income heterogeneity across agents and time. In the extended version of the paper,

Kryvtsov, Shukayev, and Ueberfeldt (2007), we study an in�nite-horizon model, in which

these elements make nominal non-contingent assets essential and create demand for trades

that facilitate risk sharing. The results in the in�nite-horizon model are equivalent to those

in the OLG model of this section.

In the next Section we extend our simple model to a production economy with capital.

3. An OLG Economy With Capital and Money
To keep things analytically tractable, the model in the previous section has only one

asset, �at money, and an exogenous income process. In this section, we present a richer

model, in which households can save by accumulating capital in addition to money, and

physical capital can be combined with the labor endowment of the young to produce con-

sumption goods. Since capital can be used as a store of value, money has to promise the

13The response of the savings rate to expected real return depends on the relative risk aversion parameter

. When 
 > 1; the savings rate is decreasing in expected return, while with 
 2 (0; 1) the savings rate is
increasing in expected return. However, we �nd for either case that the expected in�ation must be increasing
in income in order to stabilize the savings rate. A constant money stock creates too little procyclicality of
expected in�ation when 
 > 1; and too much when 
 2 (0; 1): As a result the optimal growth rate of money
is procyclical when 
 > 1 and countercyclical when 
 2 (0; 1) as is clear from equation (16).
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same expected return, to be held along with capital. We derive the optimal monetary policy

which implements the �rst-best allocation, using the same welfare criterion as before. We

�nd that the qualitative results and the intuition for the endowment economy with money

carry over to the production economy with money and capital.

A. The Environment

There is a unit measure of agents born every period. All individuals of the same

generation are identical in all respects. Every generation lives for two periods. At the

beginning of period t; the young generation is endowed with a unit of time (N = 1) that can

be used for work. The old own the entire stock of capital Kt�1 plus the entire stock of money

Mt�1. The government prints (destroys) new money in the amount Mt�Mt�1; and allocates

it equally among the old with a lump-sum transfer (or tax) Tt =Mt �Mt�1.

After the money transfer Tt takes place, a productivity shock At is realized. The young

inelastically supply their working time (Nt = N) and rent capital from the old to produce

output Yt using a Cobb-Douglas production technology: Yt = AtK
�
t�1N

1��
t = AtK

�
t�1. They

use part of that output to pay rental income rtKt�1 to the old. The remainder of their income

plus a government lump-sum real subsidy Gt, is used for consumption c
y
t and for investment

into capital Kt and money Md
t .

To ensure the existence of a monetary equilibrium in this model, the government must

redistribute income from the old to the young in every period. In the absence of redistribution,

standard values of the capital income share � imply that the young generation�s share of

income is too small for them to invest into both capital and nominal assets.14 Since our focus

is on the dynamic properties of monetary policy, we delegate the role of steady-state income

redistribution to the �scal policy. For this purpose, we assume that the government subsidy

Gt is paid only to the young. The subsidy is �nanced by taxing consumption of young and

old at a �xed rate � ; i.e., Gt = � (cyt + cot ).
15

14Alternatively, su¢ ciently small values of � make income redistribution unneccessary.
15A �xed lump-sum tax alternative has an unattractive feature of being completely independent of income,

which might lead to the transfer being infeasible when income realizations are particularly low. Further, we
chose a consumption tax rather than an income tax because income taxes distort intertemporal investment
decisions, which makes it impossible for the monetary policy to attain the �rst best. Since our focus in this
paper is on the optimal monetary policy, a �xed consumption tax is a more convenient redistributive tool for
our purposes.
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Thus, the budget constraint of the young in period t is

(19) (1 + �) cyt +
Md
t

Pt
+Kt � AtK

�
t�1 � rtKt�1 +Gt:

The current old, on the other hand, in period t consume everything they have:

(20) (1 + �) cot = rtKt�1 +
Md
t�1 + Tt
Pt

:

We assume that the log of the productivity shock, at = lnAt, follows a �rst-order

autoregressive process:

at = �at�1 + "t ;

where "t are i.i.d. draws from normal distribution N(0; �2). The productivity shock process

is the only source of uncertainty in the model.

The problem of the young in period t is the following:

max u(cyt ) + �Etu(c
o
t+1)

subject to (19) and the period-(t+ 1) version of (20).

Definition 2. Given a monetary policy f�tg
1
t=1 and initial endowments of capital and money,

a monetary equilibrium in the production economy is a set of prices fPtg1t=1 and allocations�
cyt ; c

o
t ; Kt;M

d
t

	1
t=1

; such that for all t = 1; 2; 3; :::

1. allocations cyt ; c
o
t+1; Kt and Md

t solve the generation t�s problem, and

2. the good, labor, capital and money markets clear. In particular, good market clearing

condition is

cyt + cot +Kt = AtK
�
t�1.

15



Similarly to the endowment economy, a relatively simple equilibrium system can be

derived for the CRRA utility function u(c) = c1�


1�
 . In this case, equilibrium sequences of

real money balances xt = Mt

Pt
and capital Kt satisfy:

(21)�
(1� �+ �)AtK

�
t�1 � xt � (1 + �)Kt

1 + �

��

= �Et

"�
�At+1K

�
t + xt+1

1 + �

��

�At+1K

��1
t

#
;

(22)
�
(1� �+ �)AtK

�
t�1 � xt � (1 + �)Kt

1 + �

��

= �Et

"�
�At+1K

�
t + xt+1

1 + �

��

xt+1
xt�t+1

#
:

To complete the description of the model it remains to specify a monetary policy.

Again, we focus on the optimal monetary policy.

B. Optimal Monetary Policy

We maintain the same social welfare criterion as in Section 2. For given initial endow-

ments of capital, the social planner solves the following problem:

max lim
T!1

inf E

"
1

T

TX
t=1

[u(cyt ) + �u(cot )]

#

subject to the resource constraint:

cyt + cot +Kt � AtK
�
t�1, 8t .

The �rst-order conditions for this problem are:

u0 (cyt ) = �t ;

�u0 (cot ) = �t ;

�t = �Et�t+1At+1K
��1
t ;

where �t is the Lagrange multiplier on the resource constraint.

16



With CRRA utility function the optimal allocation of consumption is

cyt =
1

1 + �
1



�
AtK

�
t�1 �Kt

�
;(23)

cot = �
1

 cyt =

�
1



1 + �
1



�
AtK

�
t�1 �Kt

�
;(24)

where the optimal capital sequence satis�es

(25)
�
AtK

�
t�1 �Kt

��

= Et

�
[At+1K

�
t �Kt+1]

�
 �At+1K
��1
t

	
:

To �nd the policy that implements the optimal allocation, we plug the consumption

allocations (23) and (24) into the budget constraints (19) and (20) holding with equality, and

into the monetary equilibrium conditions (21) and (22) to obtain:16

(26)
�
AtK

�
t�1 �Kt

��

= Et

�
[At+1K

�
t �Kt+1]

�
 �At+1K
��1
t

	
;

(27)
�
AtK

�
t�1 �Kt

��

=

1

�t+1
Et

�
[At+1K

�
t �Kt+1]

�
 xt+1
xt

�
:

where real money balances satisfy17

(28) xt = (1 + �)
�
1



1 + �
1



�
AtK

�
t�1 �Kt

�
� �AtK

�
t�1:

Equation (26) is identical to the Euler equation for the optimal allocation (25), which means

that the optimal monetary policy ensures optimal capital investment. Equation (27) implies

that in equilibrium the ex-ante return on nominal assets equals the ex-ante return on capital.

The sequence of money growth rates that implements the �rst-best allocation is given by

16Recall that Mt+1 is determined before the t+ 1 productivity shock is realized, so Et
�
1=�t+1

�
= 1=�t+1:

17In general xt =
�
1

 (1+�)

1+�
1



�
AtK

�
t�1 �Kt

�
� �AtK�

t�1 does not always have to be positive. We however

sidestep this issue by setting (1 + �) high enough so that xt is always positive in our simulations. More

speci�cally, we set it at (1 + �) = �
1



1+�
1


so that xt = (1� �)AtK��

t�1 � K�
t . As long as xt is positive, the

value of � does not a¤ect the dynamic aspects of the model, which is the focus of this study.

17



(27). The in�ation rate under the optimal policy is then

(29) �t+1 = ln
Pt+1
Pt

= ln�t+1 + lnxt � lnxt+1

and the expected optimal in�ation

(30) Et [�t+1] = ln�t+1 + lnxt � Et lnxt+1:

C. Properties of the Optimal Monetary Policy

In this section we characterize the optimal monetary policy and check whether it has

the same dynamic properties as in the simple endowment economy of Section 2.. Unlike the

simple economy case however, the economy with capital cannot be solved fully analytically.

As a result, we use a combination of �rst-order approximation techniques and numerical

computations to deduce the dynamic properties of optimal in�ation. We start by stating the

following proposition:

Proposition 2

1. The average in�ation under the optimal policy is positive, as long as 
 6= 1.
2. Up to the �rst-order of approximation, the optimal expected in�ation is determined

according to the following equation:

(31) Et�t+1 = ���t + �yyt + �aat�1;

where yt = ln
�
Yt
�Y

�
= ln

�
AtK�

t�1
�Y

�
is the log-deviation of output from its steady state

value, at = lnAt is the log-productivity term and the elasticity coe¢ cients �� � 0; �y �
0 and �a are given in Appendix A4.

3. In the special case of the logarithmic utility function (
 = 1) ; the exact analytical solu-

tion for expected in�ation is:

(32) Et�t+1 = ���t + (1� �) (1� �) yt;

18



which implies that:

(a) Expected in�ation is positively correlated with the current output

(b) The responsiveness of expected in�ation to current output is decreasing in the per-

sistence of the productivity process, �. If productivity follows a random walk, � = 1,

then the optimal expected in�ation is independent of output.

(c) As long as � > 0 and � > 0; the optimal expected in�ation is positively correlated

to current in�ation, with a response elasticity which is increasing in the persistence

of the productivity process, �.

Proof

See Appendix A4.

Equation (31) represents a policy rule that determines the target of monetary policy

in this model, i.e. expected in�ation, as a function of current in�ation, output and the lagged

productivity level.

An interesting property of the law of motion governing expected in�ation is that it is

similar to a standard in�ation targeting policy rule up to the lagged productivity term �aat�1.

We will show that for a big set of parameter values, this last term is relatively unimportant

for the dynamics of expected in�ation. Thus, the simple rule

(33) Et�t+1 = ���t + �yyt;

provides a good approximation of optimal monetary policy. This property is useful from a

practical point of view, since many central banks today have adopted an in�ation-targeting

policy that is based on setting the target for future in�ation as a function of current in�ation

and output.18

The exact solution for the dynamics of the optimal expected in�ation obtained for the

case of a logarithmic utility function is quite remarkable. In this case, the optimal expected

18If �uctuations in real interest rate are second order, equation (33) can be written in the form of a Taylor
rule:

it = �{+ ���t + �yyt:
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in�ation is a weighted average of current in�ation and current output

(34) Et�t+1 = ���t + (1� �) (1� �) yt:

Note that the weight on in�ation is increasing in � from zero to �; while the weight on output

is decreasing in � from (1� �) to zero, in particular, if � = 0 the solution coincides to the

one for the endowment economy. Thus, the dynamic properties 2 and 3 of optimal monetary

policy in the endowment economy transfer perfectly to this case of the production economy.

Namely, expected in�ation is procyclical and its responsiveness to output �uctuations is

decreasing in output persistence.

The dependence of expected future in�ation on current in�ation is a new aspect, which

was not present in the simple endowment economy. In the endowment economy monetary

policy was targeting the real interest rate, which is a function of total output. In the pro-

duction economy monetary policy is targeting the real return on nominal assets relative to

the real return on capital. The elasticity of next period�s return on capital with respect to

current productivity is ��. Hence, given the change in output due to a change in productivity,

expected in�ation needs to increase by an additional amount of ���t to bring the real interest

rate at par with the increased ex-ante real rate of return on capital. If the ex-ante return on

capital is constant (i.e. the capital income share in production, �, is zero) or productivity

�uctuations are i.i.d. (� = 0), then the current in�ation term in equation (32) disappears.

For other values of 
 we use numeric simulations to demonstrate that the dynamic

properties 2 and 3 of optimal monetary policy in the endowment economy hold also in the

production economy. Speci�cally, we assign structural parameter values as summarized in

Table 1 and plot the elasticity parameters ��; �y and �a in equation (31) against di¤erent

values of persistence of productivity shocks, �:

Figure 1 plots the elasticities of expected in�ation with respect to current in�ation

and output, ��and �y respectively. It shows that for 
 = 0:5; 
 = 1:5 and 
 = 4 the general

pattern is the same as for the logarithmic case (
 = 1): the coe¢ cient on in�ation, ��; is

positive and increasing in persistence, �, while the coe¢ cient on output, �y, is positive and

decreasing in �, though generally not to zero.

Figure 2 plots the elasticity of expected in�ation with respect to the lagged productiv-
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ity shock, �a, as a function of �: From the �gure we can see that for 
 close to 1; the coe¢ cient

�a is generally small, but not necessarily zero. For higher 
 = 4 the elasticity coe¢ cient �a

becomes larger in absolute value, thus increasing the importance of the lagged productivity

term for optimal in�ation dynamics.

Hence, the main properties of optimal monetary policy that we documented for a

simple endowment economy carry over to a more general economy with production and other

assets. In the remainder of this section we check the accuracy of our linear approximation

results by solving the non-linear version of the model.

D. Non-linear simulations of optimal monetary policy

We set the standard deviation of productivity innovations at � = 0:16;19 and use a

collocation method with a dense grid to solve equation (26) for the optimal capital sequence.

Once we know the optimal capital sequence, we can use equations (23), (24), (28), (29) and

(30) to solve for all the other variables, including expected in�ation. Then we simulate a long

(T = 10; 000 periods) series of the optimal expected in�ation and �nd residuals that are not

explained by the linear model (31):

�t = Et�t+1 � ���t � �yyt � �aat�1:

We use the residuals to compute two summary statistics. First, we compute the fraction

of the total sample variation in expected in�ation accounted for by the sample variation in

current in�ation, output and lagged productivity:


1 = 1�
PT

t=1

�
�t � ��

�PT
t=1 (Et�t+1 � ��)

:

This measure quanti�es the accuracy of our �rst-order approximations results, which ignores

higher order variations in expected in�ation. The closer 
1 is to unity, the smaller is the

approximation error of our analytic solution for expected in�ation.

19Our estimates of � from long-term U.S. and U.K. GDP data, range from 0.02 to 0.16 depending on how
we detrend the data and the assumed stationarity of the income process. We chose a higher value from
this range to get an upper bound on the importance of productivity �uctuations for the optimal expected
in�ation.
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The second summary statistic is the fraction of total variation in expected in�ation

due to sample variation in current in�ation and output only:


2 = 1�
PT

t=1

�
�t + �aat�1 � ��

�PT
t=1 (Et�t+1 � ��)

:

This shows how closely a simple linear in�ation targeting rule (33) emulates the optimal

expected in�ation. The closer 
2 is to unity, the less important is the lagged productivity

term in equation (31) for the dynamic behavior of expected in�ation.

Tables 2 and 3 show 
1 and 
2 statistics for various values of �; and 
. As we can

see from the results for 
1, the �rst-order approximated solution accounts for more than 99

percent of total variation in the expected in�ation, except when the relative risk aversion

(
) is very far from unity and at the same time the productivity process is highly president

(�! 1). Similarly, the lagged productivity term accounts for only a small fraction of variation

in the optimal expected in�ation, as summarized by 
2.

We recap the following general results regarding the optimal monetary policy in the

model with capital and money :

1. Average in�ation under the optimal policy is positive.

2. Expected in�ation is positively correlated with current income.

3. The degree to which expected in�ation responds to income �uctuations is decreasing in

the persistence of income �uctuations.

4. The dynamics of optimal in�ation very closely resemble a simple in�ation targeting

rule in that expected future in�ation is an increasing function of current in�ation and

output.

Overall, the results in this section con�rm and enrich the insights obtained from the

simple endowment economy in Section 2..

4. Conclusions
We explore the role of monetary policy in the environment with aggregate risk, in-

complete markets and long-term nominal bonds. In a two-period overlapping-generations

model with aggregate uncertainty and nominal bonds, optimal monetary policy attains the

ex-ante Pareto optimal allocation. This policy implies a positive average in�ation, a positive
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correlation between expected in�ation and income, and an inverse relationship between the

volatility of expected in�ation and the persistence of income. The results extend to a more

general environment with productive capital. The model with capital predicts that the dy-

namics of the optimal in�ation resemble a simple in�ation targeting rule very closely, which

sets the target for future in�ation as an increasing function of current in�ation and output.
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Appendix

1. The Solution To the Social Planner�s Problem
Suppose, for a given history of endowment realizations, wT = fw1; w2; :::; wTg; we are

solving the following problem:

maxVT

subject to :

cyt + cot � wt; for all t = 1; 2; :::; T:(1)

The solution of this problem is fcyt ; cotg
T
t=1 such that:

u0 (cyt ) = �u0(cot );

cyt + cot = wt:

It is a pair of consumption functions cyt = cy�(wt); and cot = co�(wt): Given wt, they are

independent of T and of the realized endowment history wT :

Let

V �
T =

1

T

TX
t=1

[u(cy�(wt)) + �u(c
o�(wt))] :

Let fcyt ; cotg
T
t=1 be any other sequence of consumptions that satis�es (1) in each period t; and

let VT be the corresponding average ex-post utility as de�ned in (4). Then V �
T � VT ; since

for all t = 1; 2:::; T we have

(2) u(cy�(wt)) + �u(c
o�(wt)) � u(cyt ) + �u(cot ):

Taking expectation of V �
T � VT with respect to realizations of wT we have:

E [V �
T ]� E [VT ] � 0:
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Taking the liminf with respect to T , we have

lim
T!1

inf (E [V �
T ]� E [VT ]) � 0:

Since the sequence fcyt ; cotg
T
t=1 was arbitrary, the stationary policy c

y�(w); co�(w) attains the

maximum of the expected average utility, E [VT ], for all T:

2. Relaxing the assumption on monetary injections being given to
the old
In the simple endowment economy of Section 2 we assumed that the entire monetary

injection Mt �Mt�1 is given to the old agents only. Here we will generalize that assumption

by assuming that the old agents get a fraction � 2 (0; 1] of the monetary injection, while the
young receive the rest. Thus the young person born in period t solves:

maxu(cyt ) + �Etu(c
o
t+1)

subject to

Ptc
y
t +Md

t � Ptwt + T yt

Pt+1c
o
t+1 � Md

t + T ot+1 ;

where

T yt = (1� �) (Mt �Mt�1)

T ot+1 = � (Mt+1 �Mt) :

The �rst-order condition for this problem

u0
�
wt +

T yt
Pt
� Md

t

Pt

�
= �Et

�
u0
�
Md
t + T ot+1
Pt+1

�
Pt
Pt+1

�
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and the money market clearing condition is Md
t =Mt, imply

u0
�
wt �

�Mt + (1� �)Mt�1

Pt

�
= �Et

�
u0
�
�Mt+1 + (1� �)Mt

Pt+1

�
Pt
Pt+1

�
:

With a CRRA utility function, the �rst-best allocation (6), (7) implies the following

expression for real return on money:

Pt
Pt+1

=
�Mt + (1� �)Mt�1

wt � cyt

wt+1 � cyt+1
�Mt+1 + (1� �)Mt

=
�Mt + (1� �)Mt�1

�Mt+1 + (1� �)Mt

wt+1
wt

:

It follows that the optimal monetary policy is implementable with the money stock growing

according to the rule

(wt)
�
 = Et

�
(wt+1)

�
 �Mt + (1� �)Mt�1

�Mt+1 + (1� �)Mt

wt+1
wt

�

(3)
�Mt+1 + (1� �)Mt

�Mt + (1� �)Mt�1
= Et

"�
wt+1
wt

�1�
#
:

Despite the growth rate of money being clearly dependent on �; the dynamics of optimal

in�ation rate are independent of � 2 (0; 1]:

Pt+1
Pt

=
�Mt+1 + (1� �)Mt

�Mt + (1� �)Mt�1

wt
wt+1

= Et

"�
wt+1
wt

�1�
#
wt
wt+1

:

Thus all our conclusions regarding the properties of the optimal expected in�ation remain

valid. Note, however that � = 0 would make the optimal policy infeasible, because by

assumption, Mt is determined before wt is known, thus making it impossible for equation (3)

to hold. Intuitively, if all of the newly injected money was given to the young (who were to

hold this money till the next period), then this new money would not a¤ect the current price

level, simply because it would not enter the money market in the current period.
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3. Proof of Proposition 1
The equation for the optimal money growth rate

Mt+1

Mt

= Et

"�
wt+1
wt

�1�
#

can be further transformed as follows

ln
Mt+1

Mt

= lnEt

"�
wt+1
wt

�1�
#
= (
 � 1) lnwt + lnEt

�
w1�
t+1

�
= (
 � 1)!t + lnEt

�
(exp [!t+1])

1�
�
= (
 � 1)!t + lnEt exp [(1� 
) �!t + (1� 
) "t+1]

= (
 � 1) (1� �)!t + lnEt exp [(1� 
) "t+1] :

The assumption of log-normality of the endowment process, implies that

lnEt exp [(1� 
) "t+1] =
(1� 
)2�2

2
;

which implies equation (16)

mt+1 �mt =
(1� 
)2�2

2
+ (1� �)(
 � 1)!t:

Similarly, for optimal in�ation we obtain

ln
Pt+1
Pt

= ln

�
Mt+1

Mt

wt
wt+1

�
= mt+1 �m+ !t � !t+1

=
(1� 
)2�2

2
+ (1� �)(
 � 1)!t + (1� �)!t � "t+1

which implies equation (17)

pt+1 � pt =
(1� 
)2�2

2
+ 
(1� �)!t � "t+1:
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The equation (17) in turn, implies equation (18) :

Et [pt+1 � pt] =
(1� 
)2�2

2
+ 
(1� �)!t;

which immediately con�rms all of the stated properties of optimal expected in�ation.

4. Proof of Proposition 2
1. First we prove that the optimal monetary policy implies a positive average in�ation.

Since the logarithm is a concave function, by Jensen�s inequality we have

lnMt+1 � lnMt = lnEt

"�
At+1K

�
t �Kt+1

AtK�
t�1 �Kt

��

xt+1
xt

#
� Et

�
flnxt+1 � 
 ln (At+1K

�
t �Kt+1)g �

�
lnxt � 
 ln

�
AtK

�
t�1 �Kt

�	�
:

Taking the unconditional expectation on both sides of the above inequality and noting that�
lnxt � 
 ln

�
AtK

�
t�1 �Kt

��
has a stationary distribution, we obtain

E [lnMt+1 � lnMt]

� E flnxt+1 � 
 ln (At+1K
�
t �Kt+1)g � E

�
lnxt � 
 ln

�
AtK

�
t�1 �Kt

�	
= 0:

Furthermore, when the term
�
lnxt � 
 ln

�
AtK

�
t�1 �Kt

��
is stochastic, the inequality above

is strict, implying a positive average in�ation. Whether this term is stochastic depends on

the relative risk aversion parameter 
:

If the utility function is logarithmic in consumption, 
 = 1; then the optimal capi-

tal investment is proportional to output Kt+1 = �At+1K
�
t and, similar to the endowment
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economy, the optimal money stock is constant:

lnMt+1 � lnMt = lnEt

"�
At+1K

�
t �Kt+1

AtK�
t�1 �Kt

��1
xt+1
xt

#

= lnEt

"�
At+1K

�
t �Kt+1

AtK�
t�1 �Kt

��1 (1 + �) �
1+�

(At+1K
�
t �Kt+1)� �At+1K

�
t

(1 + �) �
1+�

�
AtK�

t�1 �Kt

�
� �AtK�

t�1

#

= lnEt

24�(1� �)At+1K
�
t

(1� �)AtK�
t�1

��1 h(1 + �) �(1��)
1+�

� �
i
At+1K

�
th

(1 + �) �(1��)
1+�

� �
i
AtK�

t�1

35 = 0
For all other values of 
 > 0 the inequality E [lnMt � lnMt�1] � 0 is strict, the optimal in�a-
tion rate is positive and (at least in all numerical simulations) is increasing with uncertainty.

2. Next, to verify the second property of the optimal monetary policy, we �nd a �rst-

order approximated solution. De�ning the aggregate consumption as Ct = AtK
�
t�1 �Kt we

can state the equilibrium equations as

Ct = AtK
�
t�1 �Kt ;

C�
t = Et
�
C�
t+1�At+1K

��1
t

	
:

The log-linear approximation of these equations around a non-stochastic steady state gives

�Cct = �K�at + � �K�kt�1 � �Kkt

�
ct = Et f�
ct+1 + at+1 � (1� �) ktg ;

where �K = �
1

1�� , �C = �K� � �K; and ct = ln
�
Ct
�C

�
; kt = ln

�
Kt
�K

�
; at = lnAt: The solution of

this system is

ct =
1

1� �
(at + �kt�1 � �kt) ;

kt+1 = �1kt + �2at+1,
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where

�1 =

�
2
� + (1� �)2

�
�
q�
2
� + (1� �)2

�2 � 4
2�2
2
�

;

�2 =

 + � (1� �)� 
�

2
�� 
��1 + (1� �)2 � 
��
:

Further, by using a guess-and-verify approach, we can show that in the log-linear solution,

the expected in�ation satis�es

Et�t+1 = ���t + �yyt + �aat�1;

where

�� =
(1� �) (�1 � ��2) + ��

1� �+ � 
;

�y = (1� �)�2 + �� � � ;

�a = ��� (1�  ) ;

and the parameter  is given by

 =
1

�x

"
(1 + �)

�
1



1 + �
1



�
�K� � �K

�
(1� �)

(1� ��2)� � �K�

#

with �x being the steady-state value of the optimal real money balances in equation (28).

3. Substituting the value of 
 = 1 into the above equations, it is straightforward to

verify that in the log-utility case the elasticity coe¢ cients become

�� = ��;

�y = (1� �) (1� �) and
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�a = 0:

Moreover, in this special case the log-linear solution is exact.
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Table 1: Parameter values for model simulations.

Parameter Values
Discount factor, � 0:9630

Relative risk aversion, 
 0:5; 1; 1:5; 4
Capital share in production function, � 0:33

Table 2: The accuracy of the �rst-order approximated solution for optimal monetary policy.


1 
 = 0:5 
 = 1:0 
 = 1:5 
 = 4
� = 0:1 0:999 1 1 0:999
� = 0:5 0:998 1 0:999 0:992
� = 0:9 0:999 1 0:999 0:956

Table 3: The accuracy of approximating the optimal expected in�ation with a linear in�ation
targeting rule.


2 
 = 0:5 
 = 1:0 
 = 1:5 
 = 4
� = 0:1 0:999 1 1 0:999
� = 0:5 0:997 1 0:999 0:991
� = 0:9 0:957 1 0:993 0:938
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Figure 1: Top panel shows the elasticity of expected in�ation to �uctuations in current
in�ation, for di¤erent values of persistense, �; and of risk aversion, 
. Lower panel shows
the elasticity of expected in�ation to �uctuations in current output, for di¤erent values of
persistense, �; and of risk aversion, 
:

34



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
­0.2

­0.15

­0.1

­0.05

0

0.05

0.1

0.15
Coef f icient on lagged productiv ity

ρ

γ = 0.5
γ = 1
γ = 1.5
γ = 4

Figure 2: The �gure shows the elasticity of expected in�ation with respect to �uctuations in
lagged productivity, for di¤erent values of persistense, �; and of risk aversion, 
.
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