FX market illiquidity and funding liquidity constraints

by Chiara Banti and Kate Phylaktis

Discussion by Hans Joergen Tranvaag

BoC Ottawa, October 26, 2012

- Aim: Model the time-variation in FX market liquidity
- **Main question**: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?

- Aim: Model the time-variation in FX market liquidity
 - Previous studies on bid-ask spreads for individual currencies
- **Main question**: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?

- Aim: Model the time-variation in FX market liquidity
 - · Previous studies on bid-ask spreads for individual currencies
 - More recently commonality in daily market liquidity
- **Main question**: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?

- Aim: Model the time-variation in FX market liquidity
 - · Previous studies on bid-ask spreads for individual currencies
 - More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction

- Aim: Model the time-variation in FX market liquidity
 - · Previous studies on bid-ask spreads for individual currencies
 - More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction
- Empirical approach follows Chordia et al. (2001) (Equities)

- Aim: Model the time-variation in FX market liquidity

- · Previous studies on bid-ask spreads for individual currencies
- · More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction
- Empirical approach follows Chordia et al. (2001) (Equities)
 - 13 years for 20 currencies against the USD

- Aim: Model the time-variation in FX market liquidity

- · Previous studies on bid-ask spreads for individual currencies
- · More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction
- Empirical approach follows Chordia et al. (2001) (Equities)
 - 13 years for 20 currencies against the USD
 - Periods of market decline and crises

- Aim: Model the time-variation in FX market liquidity

- · Previous studies on bid-ask spreads for individual currencies
- · More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction
- Empirical approach follows Chordia et al. (2001) (Equities)
 - 13 years for 20 currencies against the USD
 - Periods of market decline and crises
 - Robustness: Other market liquidity proxy; endogeneity; shocks

- Aim: Model the time-variation in FX market liquidity

- · Previous studies on bid-ask spreads for individual currencies
- · More recently commonality in daily market liquidity
- Main question: Is the time-variation in FX market liquidity due to changes in funding liquidity of financial intermediaries?
 - Recent research on market and funding liquidity interaction
- Empirical approach follows Chordia et al. (2001) (Equities)
 - 13 years for 20 currencies against the USD
 - Periods of market decline and crises
 - Robustness: Other market liquidity proxy; endogeneity; shocks
- Contribution: Accounts for common trends and shocks in liquidity

— Daily market illiquidity measure as average bid-ask spread

- Daily funding liquidity proxied by the FCP index

- Daily market illiquidity measure as average bid-ask spread
- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))

— Daily market illiquidity measure as average bid-ask spread

- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect

- Daily market illiquidity measure as average bid-ask spread
- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect
 - Adverse selection costs

- Daily market illiquidity measure as average bid-ask spread
- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect
 - Adverse selection costs
 - Inventory costs

- Daily market illiquidity measure as average bid-ask spread
- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect
 - Adverse selection costs
 - Inventory costs

- Daily market illiquidity measure as average bid-ask spread

- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect
 - Adverse selection costs
 - Inventory costs
- Hsieh and Kleidon (1996): Volatility in spreads not consistent with adverse selection

- Daily market illiquidity measure as average bid-ask spread

- Daily funding liquidity proxied by the FCP index
- Market liquidity and funding liquidity connected (Tirole (2011))
- From FX microstructure, dealer's spreads reflect
 - Adverse selection costs
 - Inventory costs
- Hsieh and Kleidon (1996): Volatility in spreads not consistent with adverse selection
- Bessembinder (1994): Spreads widen with proxies for inventory-carrying costs

Comments I and II Extension: Market decline Comments III and IV

Baseline results

- Baseline regression

 $\Delta \textit{illiq}_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4} \theta_{i}\Delta \textit{illiq}_{t-i} + \varepsilon_{t}$

Comments I and II Extension: Market decline Comments III and IV

Baseline results

- Baseline regression

1

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation

Comments I and II Extension: Market decline Comments III and IV

Baseline results

- Baseline regression

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation
 - β negatively signed

Comments I and II Extension: Market decline Comments III and IV

Baseline results

- Baseline regression

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation
 - β negatively signed
 - Nice robust monotonically decreasing liquidity Monday to Friday

Comments I and II Extension: Market decline Comments III and IV

Baseline results

— Baseline regression

$$\Delta \textit{illiq}_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta \textit{illiq}_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation
 - β negatively signed
 - Nice robust monotonically decreasing liquidity Monday to Friday
- Further controls
 - Changes in margin requirements. TED and Federal Funds rate

Comments I and II Extension: Market decline Comments III and IV

Baseline results

— Baseline regression

$$\Delta \textit{illiq}_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta \textit{illiq}_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation
 - β negatively signed
 - Nice robust monotonically decreasing liquidity Monday to Friday
- Further controls
 - Changes in margin requirements. TED and Federal Funds rate
 - Lagged market-wide return. Average daily USD return

Comments I and II Extension: Market decline Comments III and IV

Baseline results

— Baseline regression

$$\Delta \textit{illiq}_{t} = \alpha + \beta \Delta FCP_{t} + \gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta \textit{illiq}_{t-i} + \varepsilon_{t}$$

- Baseline findings
 - Accounts for 35% of the variation
 - β negatively signed
 - Nice robust monotonically decreasing liquidity Monday to Friday
- Further controls
 - Changes in margin requirements. TED and Federal Funds rate
 - Lagged market-wide return. Average daily USD return
 - Volatility (G7 VXY)

Comments I and II Extension: Market decline Comments III and IV

Comments I and II

- Equal weighted returns as a proxy for states
 - Overall dollar appreciation noisy signal of market condition

Comments I and II

- Equal weighted returns as a proxy for states

- Overall dollar appreciation noisy signal of market condition
- USD 'safe-haven', JPY even more so. Relative prices

Comments I and II

- Equal weighted returns as a proxy for states
 - Overall dollar appreciation noisy signal of market condition
 - USD 'safe-haven', JPY even more so. Relative prices
 - Clear-cut measure: Carry trade return index, or weigh/sign each individual return with FCU-USD interest rate differential.

Comments I and II

- Equal weighted returns as a proxy for states

- Overall dollar appreciation noisy signal of market condition
- USD 'safe-haven', JPY even more so. Relative prices
- Clear-cut measure: Carry trade return index, or weigh/sign each individual return with FCU-USD interest rate differential.
- Volatility
 - NYSE specialists in Chordia et al. (2001) hold positions
 - FX dealers prefer a zero *daily* closing position (Lyons (1998); Lyons (2001); Osler (2008))

Comments I and II

- Equal weighted returns as a proxy for states

- Overall dollar appreciation noisy signal of market condition
- USD 'safe-haven', JPY even more so. Relative prices
- Clear-cut measure: Carry trade return index, or weigh/sign each individual return with FCU-USD interest rate differential.
- Volatility
 - NYSE specialists in Chordia et al. (2001) hold positions
 - FX dealers prefer a zero *daily* closing position (Lyons (1998); Lyons (2001); Osler (2008))
 - Effect if inventory is zero? Causally?

Comments I and II

- Equal weighted returns as a proxy for states

- Overall dollar appreciation noisy signal of market condition
- USD 'safe-haven', JPY even more so. Relative prices
- Clear-cut measure: Carry trade return index, or weigh/sign each individual return with FCU-USD interest rate differential.
- Volatility
 - NYSE specialists in Chordia et al. (2001) hold positions
 - FX dealers prefer a zero *daily* closing position (Lyons (1998); Lyons (2001); Osler (2008))
 - Effect if inventory is zero? Causally?
 - Chordia et al. (2001) use MA of realized volatility. Would this change your results?

Comments I and II Extension: Market decline Comments III and IV

Market decline

6/9

 Do overall price decline ('bad' states) impact market liquidity more than overall price increase ('good' states)?

Market decline

- Do overall price decline ('bad' states) impact market liquidity more than overall price increase ('good' states)?
- Two approaches:
 - 1. Split market returns. Find significant asymmetry. 'Bad' states decrease market liquidity

Market decline

- Do overall price decline ('bad' states) impact market liquidity more than overall price increase ('good' states)?
- Two approaches:
 - 1. Split market returns. Find significant asymmetry. 'Bad' states decrease market liquidity
 - Interact negative market returns with positive changes in FCP. Find additional large negative effect of funding constraints on market liquidity during 'bad' states

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

1. 'Good' and 'bad' states

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

- 1. 'Good' and 'bad' states
 - Equal-weighting implies that dollar depreciation ('bad' state) against AUD, CLP and JPY are given equal weight, and --represent the same state

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

- 1. 'Good' and 'bad' states
 - Equal-weighting implies that dollar depreciation ('bad' state) against AUD, CLP and JPY are given equal weight, and --- represent the same state
 - Lustig et al. (2011): Cross-sectional variation in excess returns explained by a carry-factor

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

- 1. 'Good' and 'bad' states
 - Equal-weighting implies that dollar depreciation ('bad' state) against AUD, CLP and JPY are given equal weight, and --- represent the same state
 - Lustig et al. (2011): Cross-sectional variation in excess returns explained by a carry-factor
- 2. Interacting negative market returns with positive changes in FCP, is testing whether 'bad' states only matter when funding liquidity is declining

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

- 1. 'Good' and 'bad' states
 - Equal-weighting implies that dollar depreciation ('bad' state) against AUD, CLP and JPY are given equal weight, and --- represent the same state
 - Lustig et al. (2011): Cross-sectional variation in excess returns explained by a carry-factor
- 2. Interacting negative market returns with positive changes in FCP, is testing whether 'bad' states only matter when funding liquidity is declining
- Testing for a possible additional effect of funding liquidity on market liquidity during 'bad' states might be more informative

Comments I and II Extension: Market decline Comments III and IV

Comments III and IV

- 1. 'Good' and 'bad' states
 - Equal-weighting implies that dollar depreciation ('bad' state) against AUD, CLP and JPY are given equal weight, and --- represent the same state
 - Lustig et al. (2011): Cross-sectional variation in excess returns explained by a carry-factor
- 2. Interacting negative market returns with positive changes in FCP, is testing whether 'bad' states only matter when funding liquidity is declining
- Testing for a possible additional effect of funding liquidity on market liquidity during 'bad' states might be more informative
 - Specifying instead κ · d⁻_{t-1} · ΔFCP_t, you could check if the effect of funding liquidity is *more* important during 'bad' states

Crises and Comment V

 Effect of crises on the relationship between funding liquidity and market liquidity, interacting changes in the FCP with the TED level

- Effect of crises on the relationship between funding liquidity and market liquidity, interacting changes in the FCP with the TED level
 - Coefficient nearly halved compared to baseline

- Effect of crises on the relationship between funding liquidity and market liquidity, interacting changes in the FCP with the TED level
 - · Coefficient nearly halved compared to baseline
 - Require some sort of sub-sample, unless the proxy is straight-on

- Effect of crises on the relationship between funding liquidity and market liquidity, interacting changes in the FCP with the TED level
 - Coefficient nearly halved compared to baseline
 - Require some sort of sub-sample, unless the proxy is straight-on
 - If you want to analyse additional effects during specific dates: time-dummies interacted with changes in FCP?

- Effect of crises on the relationship between funding liquidity and market liquidity, interacting changes in the FCP with the TED level
 - Coefficient nearly halved compared to baseline
 - Require some sort of sub-sample, unless the proxy is straight-on
 - If you want to analyse additional effects during specific dates: time-dummies interacted with changes in FCP?
 - If you want to analyse if crises 'in general' increase the effect of funding liquidity on market liquidity: TED higher than on average? Volatility higher than on average?

Comments I and II Extension: Market decline Comments III and IV

Thank you

HJ Tranvaag, Ottawa October 26, 2012