Identifying Cross-Sided Liquidity Externalities

Johannes A. Skjeltorp[§], Elvira Sojli[†] and Wing Wah Tham[†]

[§]Norges Bank [†]Erasmus University of Rotterdam

Background - Two sided markets and externalities

Two-sided market (Rysman,2009)

- two sets of agents ("sides"), one platform
- the decision of each side affect the outcomes of the other side, typically through an externality

Background - Two sided markets and externalities

Two-sided market (Rysman,2009)

- two sets of agents ("sides"), one platform
- the decision of each side affect the outcomes of the other side, typically through an externality

Important for platform's pricing decisions

► transaction **volume** depends on how platform **allocates fees** between sides (Rochet/Tirole,2006)

• e.g. if a nightclub offers free entrance for females, this will attract more males to the club and may increase overall profits

Background - Two sided markets and externalities

Two-sided market (Rysman,2009)

- two sets of agents ("sides"), one platform
- the decision of each side affect the outcomes of the other side, typically through an externality

Important for platform's pricing decisions

► transaction **volume** depends on how platform **allocates fees** between sides (Rochet/Tirole,2006)

• e.g. if a nightclub offers free entrance for females, this will attract more males to the club and may increase overall profits

Applied to understand pricing decisions in wide range of settings.. e.g newspapers, matching markets, payment card industry, video game systems, software OS etc.

Foucault, Kadan, Kandel (JF, 2012)

- two "sides" in a limit order market
 - **•** makers: supply liquidity \rightarrow post limit orders
 - **•** takers: demand liquidity \rightarrow market orders
- new cross-side liquidity externality between makers and takers
 - faster liquidity supply induces faster liquidity demand
- rationalizes the adoption of maker/taker pricing by trading platforms
 - fee breakdown between make/take side matters for volume

Using the empirical implications of Foucault et. al (2012) we,

- identify a new cross-side liquidity externality between liquidity makers and takers
- quantify the economic size of the cross side externality by evaluating the pricing decision of a trading platform

First paper to empirically study the economics of two-sidedness in equity markets

Foucault, Kadan and Kandel (2012)

Trading is characterized by liquidity cycles with two phases

- "take" phase taker consumes liquidity through market order \Rightarrow bid/ask spread widens, order-book \rightarrow "empty" state
 - $\Rightarrow\,$ creates profit opportunity for makers..
- "make" phase maker posts limit order
 - $\Rightarrow~{\sf bid}/{\sf ask}$ spread narrows, order-book \rightarrow "full" state
 - \Rightarrow creates profit opportunity for takers..

Empirical implications

Phase durations depends on monitoring intensity of makers/takers

• ..race to be first to identify/react to profit opportunities

Monitoring intensity depends on..

- monitoring costs, make/take fees, number of makers/takers
- ⇒ increased monitoring intensity of one side exerts a positive externality on the other side (increased likelihood to find a profit opportunity)

Phase durations depends on monitoring intensity of makers/takers

• ..race to be first to identify/react to profit opportunities

Monitoring intensity depends on..

- monitoring costs, make/take fees, number of makers/takers
- ⇒ increased monitoring intensity of one side exerts a positive externality on the other side (increased likelihood to find a profit opportunity)

Empirical implication

• exogenous shocks to these variables for one side will be useful for identifying the cross-side externality to the other side

- a measure of make and take cycle durations
- exogenous shocks that shift the monitoring intensity of one side, without directly affecting the monitoring intensity of the other side

Data Description

- complete set of order/trade messages at NASDAQ BX (ITCH TotalView data)
 - unique order ids, nanosecond timestamp, track full history of each individual order
 - period: October 2010 March 2011
- \bullet retain common stock for which information is available in CRSP, TAQ and Compustat \rightarrow 1867 stocks
- rebuild the complete limit order book for each stock (message by message)
- use this to construct measure of liquidity cycles compatible with Foucault et al. (2012)

Measuring Liquidity Cycles

- make phase \Rightarrow periods when order book is being replenished
- \bullet take phase \Rightarrow periods when the order book is being drained

Descriptives - intraday characteristics

Figure: Intraday make take cycle durations

- ▶ take cycle < make cycle</p>
- both cycles are quicker at the beginning/end of the day
- \Rightarrow intraday clustering of trading activity (e.g. Jain/Joh'88, Admati/Pfleiderer'88)

Identification Strategy - cross sided externality

Identification Strategy - take fee shock ($c_T \downarrow$)

Identification Strategy - taker technology shock ($\gamma \downarrow$)

Instrumental variable regression

▶ Does shifts in take cycle affect the make cycle?

Table: Instrumental Variable Regression (2SLS)

	Fee Shock				Technology Shock			
	1st S	1st Stage		Stage	1st Stage	2nd Stage		
Dep.variable	Take cycle		Make cycle		Take cycle	Make cycle		
-								
Take cycle			1.63	(0.08)				
Fee Shock	-7.72	(0.00)						
Trade Size	0.11	(0.59)	0.06	(0.82)				
Trades	-0.01	(0.01)	-0.19	(0.00)				
Traded Shares	0.00	(0.89)	0.51	(0.00)				
Volatility	-40.68	(0.00)	-74.92	(0.50)				
Spread	37.59	(0.00)	256.97	(0.00)				
AP Test	9.38	(0.00)						
Under-Identification	9.30	(0.00)						
Weak-Identification	27.65							
Kleibergen-Paap Wald	9.38							

(firm and time fixed effects, standard errors clustered at firm level.)

Instrumental variable regression

▶ Does shifts in take cycle affect the make cycle?

Table: Instrumental Variable Regression (2SLS)

	Fee Shock				Technology Shock				
	1st Stage		2nd Stage		1st Stage		2nd Stage		
Dep.variable	Take cycle		Make cycle		Take cycle		Make cycle		
-									
Take cycle			1.63	(0.08)			11.10	(0.00)	
Fee Shock	-7.72	(0.00)							
Technology Shock					-5.55	(0.00)			
Trade Size	0.11	(0.59)	0.06	(0.82)	0.11	(0.60)	-1.02	(0.67)	
Trades	-0.01	(0.01)	-0.19	(0.00)	-0.01	(0.04)	-0.13	(0.00)	
Traded Shares	0.00	(0.89)	0.51	(0.00)	0.00	(1.00)	0.50	(0.04)	
Volatility	-40.68	(0.00)	-74.92	(0.50)	-40.26	(0.00)	304.31	(0.15)	
Spread	37.59	(0.00)	256.97	(0.00)	36.62	(0.00)	-101.48	(0.50)	
AP Test	9.38	(0.00)			8.42	(0.00)			
Under-Identification	9.30	(0.00)			8.43	(0.00)			
Weak-Identification	27.65				7.66				
Kleibergen-Paap Wald	9.38				8.42				

(firm and time fixed effects, standard errors clustered at firm level.)

Table: Instrumental Variable Regression (2nd stage) - Median cycles

	F	ee	Technology		
	Sł	iock	Shock		
	Coef.	p-value	Coef.	p-value	
Take cycle	7.48	0.00	3.77	0.02	
Trade Size	-0.02	0.99	-0.02	0.96	
Trades	-0.06	0.00	-0.07	0.00	
Traded Shares	0.20	0.06	0.20	0.00	
Volatility	89.28	0.14	32.90	0.59	
Spread	38.22	0.32	79.47	0.00	
AP Test	13.20	0.00	9.33	0.00	
Under-identification	13.09	0.00	9.35	0.00	

Quantifying the size of the cross-sided externality

BX pricing decision, Nov.1, 2010

- $\bullet\,$ BX doubled rebate to take liquidity from $1\rightarrow 2$ cents (per 100 shares)
- $\bullet\,$ make fee unchanged at 2.5 cents \Rightarrow BX profit reduced from 1.5 to 0.5 cents

► did BX recover the loss from increased subsidization of takers?

Quantifying the size of the cross-sided externality

BX pricing decision, Nov.1, 2010

- $\bullet\,$ BX doubled rebate to take liquidity from $1\rightarrow 2$ cents (per 100 shares)
- $\bullet\,$ make fee unchanged at 2.5 cents \Rightarrow BX profit reduced from 1.5 to 0.5 cents

► did BX recover the loss from increased subsidization of takers?

- Foucault et al (2012) model, IV and cycle estimates
- fee-change \Rightarrow reduced profits of **\$770k**/year
- without cross side externality \Rightarrow reduced profits of **\$970k**/year
- value of cross side externality **\$200k**/year
 - approx 0.9% of BX' annual net fee income (2011)

- identify the existence of a new cross-sided liquidity externality proposed by Foucault, Kadan, Kandel (2012)
- quantify size of the cross sided externality associated with a fee change at BX
- provide a new (model free) measure of resiliency (cycle duration)