The Model

Equilibrium

Application: Maker-Taker Fees

Summary O

Maker-Taker Fees and Informed Trading in a Low-Latency Limit Order Market

Michael Brolley and Katya Malinova

October 25, 2012

8th Annual Central Bank Workshop on the Microstructure of Financial Markets

Introduction	The Model	Equilibrium	Application: Maker-Taker Fees	Summ
•000	00	000		O
		Backgro	ound	

- Equity trading worldwide relies on voluntary liquidity provision in limit order books.
- How do you get people to supply liquidity?
- Trading venues' answer: maker-taker trading fees.
 - subsidize producers, or makers, of liquidity (limit orders)
 - charge consumers, or takers, of liquidity (marketable orders)
- SEC (2010): "Highly automated exchange systems and liquidity rebates have helped establish a business model for a new type of professional liquidity provider [...] [who] take[s] advantage of low-latency systems."
- To compete with HFTs, need to have better information.

Introduction	
0000	

The Model

quilibrium

Application: Maker-Taker Fees

Summary O

Background

Specialist/Market Maker Markets

- Uninformed, competitive liquidity supply
- E.g., Glosten and Milgrom (1985), Kyle (1985), Easley and O'Hara (1987), Glosten (1994)

Limit Order Markets

- Strategic liquidity supply
- Uninformed liquidity supply: e.g., Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005), and Rosu (2009)
- Informed liquidity supply: e.g., Kaniel and Liu (2006), Goettler, Parlour, and Rajan (2009), and Rosu (2011)

Limit Order Markets with Professional Liquidity Providers

Informed and competitive liquidity supply: this paper

Introduction	The Model	Equilibrium	Application: Maker-Tal
0000	00	000	

Summary O

Background Limit Order Books: Modelling Challenges

- Informed trading + limit vs. market order choice:
 - optimal order type + strategic limit order price choice
 - limit order price = signal about (private) information
- \Rightarrow a difficult dynamic problem
- Objective: build a simple model
 - to capture trade-off between market and limit orders
 - to allow informative limit and market orders
- Competitive pricing reduces complexity by removing the price choice.

Introduction	
0000	

Application: Maker-Taker Fees 000000000 Summary O

- 1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - \Rightarrow we can analyze
 - liquidity

Introduction	
0000	

Application: Maker-Taker Fees 000000000 Summary O

- 1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - \Rightarrow we can analyze
 - liquidity
 - price impact

Introduction	
0000	

Application: Maker-Taker Fees 000000000 Summary O

- 1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - \Rightarrow we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)

Introduction	
0000	

The Model

Equilibrium

Application: Maker-Taker Fees 000000000 Summary O

- 1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - \Rightarrow we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)
 - welfare

Introduction
0000

Application: Maker-Taker Fees 000000000 Summary O

What Do We Add?

- 1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - \Rightarrow we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)
 - welfare

2. \Rightarrow Apply to analyze the impact of maker-taker fees

Introduction	The Model	Equilibrium	Application: Maker-Taker Fees	Summary
0000	●○	000		O
The Model Ingredients				

• Fundamental = sum of i.i.d. innovations:

• extreme values are less likely than moderate ones

one innovation per periodsymmetric on [-1,1]

Intro	odu	cti	on
000	00		

Application: Maker-Taker Fees

Summary O

The Model Ingredients

- Fundamental = sum of i.i.d. innovations
- Traders:
 - Investors:
 - one per period
 - knows the innovation to the fundamental
 - private value: uniform on [-1,1]
 - order choice: market, limit, no trade

Intro	odu	cti	on
000	00		

Application: Maker-Taker Fees 000000000 Summary O

The Model Ingredients

- Fundamental = sum of i.i.d. innovations
- Traders:
 - Investors
 - Low-latency liquidity providers:
 - permanently monitor prices and quotes
 - competitive (zero-expected profit)
 - only limit orders
 - no private value, no fundamental info advantage
 - speed advantage in reacting to new trades and quotes

Period *t* investor enters market

or get cancelled

or get cancelled

or get cancelled

Equilibrium: Competitive Prices

• Market orders at *t* execute at:

- $\mathsf{ask}_t = \mathsf{E}[\mathsf{fundamental}_t \mid \mathsf{market} \; \mathsf{buy}_t, \mathsf{history}_t]$
- $bid_t = E[fundamental_t | market sell_t, history_t]$

tion	The
	00

Equilibrium: Competitive Prices

• Market orders at *t* execute at:

 $ask_t = E[fundamental_t | market buy_t, history_t]$

 $bid_t = E[fundamental_t | market sell_t, history_t]$

• Limit orders (by investors) at t are posted at:

 $ask_{t+1} = E[fundamental_t | market buy_{t+1}, limit sell_t, history_t]$ $bid_{t+1} = E[fundamental_t | market sell_{t+1}, limit buy_t, history_t]$

tion	The
	00

Equilibrium: Competitive Prices

• Market orders at t execute at:

 $ask_t = E[fundamental_t | market buy_t, history_t]$ bid_t = E[fundamental_t | market sell_t, history_t]

• Limit orders (by investors) at t are posted at:

 $ask_{t+1} = E[fundamental_t | market buy_{t+1}, limit sell_t, history_t]$

 $bid_{t+1} = E[fundamental_t | market sell_{t+1}, limit buy_t, history_t]$

- What if a limit order is posted at the "wrong" price?
- ⇒ gets undercut by a low-latency liquidity provider!
 ⇒ zero probability of execution

(Appendix: out-of-equilibrium beliefs)

Intro		cti	on
muic	Juu		OII
	0		

Equilibrium: Decisions

- Observing independent innovations:
 - \Rightarrow <u>all</u> agree on history interpretation
 - \Rightarrow <u>all</u> agree on probabilities of future order submissions
- \Rightarrow Investors trade on their informational advantage, over the information revealed by their own actions
- Order choice based on the aggregate valuation *z_t*:

 $z_t := private value_t + innovation_t$

Look for a stationary, symmetric equilibrium

Equilibrium: A Threshold Strategy

Equilibrium: A Threshold Strategy

The Model

Equilibrium

Application: Maker-Taker Fees • 000000000 Summary O

Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- <u>All</u> pay taker fees and receive maker rebates
- Competitive pricing \Rightarrow
 - $ask_t = E[fundamental_t | market buy_t, history_t] maker rebate$
 - $bid_t = E[fundamental_t | market sell_t, history_t] + maker rebate$

The Model 00 Equilibrium

Application: Maker-Taker Fees • 000000000 Summary O

Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- <u>All</u> pay taker fees and receive maker rebates
- Competitive pricing \Rightarrow

 $ask_t = E[fundamental_t | market buy_t, history_t] - maker rebate$

 $bid_t = E[fundamental_t | market sell_t, history_t] + maker rebate$

• A market (buy) order submitter pays

 $ask_{t} + taker fee = E[fundamental_{t} | market buy_{t}, history_{t}] + taker fee - maker rebate_{total fee}$

The Model 00 Equilibrium

Application: Maker-Taker Fees • 000000000 Summary O

Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- All pay taker fees and receive maker rebates
- Competitive pricing \Rightarrow

ask_t = $E[fundamental_t | market buy_t, history_t] - maker rebate$ bid_t = $E[fundamental_t | market sell_t, history_t] + maker rebate$

• A market (buy) order submitter pays

 $\begin{aligned} \mathsf{ask}_t + \mathsf{taker fee} &= \mathsf{E}[\mathsf{fundamental}_t \mid \mathsf{market buy}_t, \mathsf{history}_t] \\ &+ \underbrace{\mathsf{taker fee} - \mathsf{maker rebate}}_{\mathsf{total fee}} \end{aligned}$

• \Rightarrow prices adjust and only the total fee matters. (As in Angel, Harris, and Spatt (2011), Colliard and Foucault (2012))

The Model Equilibrium Application: Maker-Taker Fees

• Investors pay a flat fee per trade (brokers break even, on average):

flat fee = E[average exchange fee on investor trades]

Low-latency liquidity providers receive maker rebates

n

he Model

Equilibrium

Application: Maker-Taker Fees

Summary O

Application: Maker-Taker Pricing

- Colliard and Foucault (2012) cover the impact of the total fee
- From now on:
 - set: total fee = $0 \Rightarrow$ taker fee = maker rebate
 - focus on the impact of the maker-taker split
 - comparative statics w.r.t. the taker fee

The Model

Equilibrium

Application: Maker-Taker Fees

Summary O

Application: Maker-Taker Pricing Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee

The Mode

Equilibrium

Application: Maker-Taker Fees

Summary O

Application: Maker-Taker Pricing Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee
- A market (buy) order submitter pays:

$$ask_t + flat fee = E[fundamental_t | market buy_t, history_t] + \underbrace{flat fee - maker rebate}_{<0}$$

• \Rightarrow Incentive to submit market orders

The Mode

Equilibrium

Application: Maker-Taker Fees

Summary O

Application: Maker-Taker Pricing Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee
- A market (buy) order submitter pays:

$$ask_t + flat fee = E[fundamental_t | market buy_t, history_t] + \underbrace{flat fee - maker rebate}_{<0}$$

- \Rightarrow Incentive to submit market orders
- \Rightarrow Similarly: disincentive to submit limit orders (less obvious)

The Model

Equilibrium

Application: Maker-Taker Fees

Summary O

Quoted vs. Cum-Fee Spreads

Cum-fee half-spread = half-spread + flat fee

The Model

Equilibrium

Application: Maker-Taker Fees

Summary O

Price Impact

Price Impact (of a buy) = ask - E[fundamental | market buy]

Expected gains from trade, based on private values

Summary

- A simple model of a limit order book with
 - informed limit orders
 - competitive liquidity provision
- Apply the model to study maker-taker fees
- When all pay maker-taker fees, only the total exchange fee matters (consistent with the literature)
- When investors pay only the average exchange fee (aka a flat fee, paid to their broker), a higher maker rebate leads to
 - more market orders, fewer limit orders
 - lower (cum-fee) costs of market orders, lower price impact
 - higher volume, lower participation of investors
 - \rightarrow higher participation of low-latency liquidity providers
 - higher welfare