Maker-Taker Fees and Informed Trading in a Low-Latency Limit Order Market

Michael Brolley and Katya Malinova

October 25, 2012

8th Annual Central Bank Workshop on the Microstructure of Financial Markets
Background

- Equity trading worldwide relies on voluntary liquidity provision in limit order books.
- How do you get people to supply liquidity?
- Trading venues’ answer: maker-taker trading fees.
 - subsidize producers, or makers, of liquidity (limit orders)
 - charge consumers, or takers, of liquidity (marketable orders)
- SEC (2010): “Highly automated exchange systems and liquidity rebates have helped establish a business model for a new type of professional liquidity provider [...] [who] take[s] advantage of low-latency systems.”
- To compete with HFTs, need to have better information.
Background

Specialist/Market Maker Markets
- Uninformed, competitive liquidity supply

Limit Order Markets
- Strategic liquidity supply
- Uninformed liquidity supply: e.g., Parlour (1998), Foucault (1999), Foucault, Kadan, and Kandel (2005), Goettler, Parlour, and Rajan (2005), and Rosu (2009)
- Informed liquidity supply: e.g., Kaniel and Liu (2006), Goettler, Parlour, and Rajan (2009), and Rosu (2011)

Limit Order Markets with Professional Liquidity Providers
- Informed and competitive liquidity supply: this paper
Introduction
The Model
Equilibrium
Application: Maker-Taker Fees
Summary

Background

Limit Order Books: Modelling Challenges

- Informed trading + limit vs. market order choice:
 - optimal order type + strategic limit order price choice
 - limit order price = signal about (private) information
- ⇒ a difficult dynamic problem
- Objective: build a simple model
 - to capture trade-off between market and limit orders
 - to allow informative limit and market orders
- Competitive pricing reduces complexity by removing the price choice.
What Do We Add?

1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - ⇒ we can analyze
 - liquidity
What Do We Add?

1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - ⇒ we can analyze
 - liquidity
 - price impact
What Do We Add?

1. A model of a limit order book, with informed, competitive liquidity provision:
 - **Choice:** a market order, a limit order, or no order
 - Private values + fundamental information
 - ⇒ we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)
What Do We Add?

1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - ⇒ we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)
 - welfare
What Do We Add?

1. A model of a limit order book, with informed, competitive liquidity provision:
 - Choice: a market order, a limit order, or no order
 - Private values + fundamental information
 - ⇒ we can analyze
 - liquidity
 - price impact
 - volume
 - no-trade decisions (market participation)
 - welfare

2. ⇒ Apply to analyze the impact of maker-taker fees
The Model Ingredients

• Fundamental = sum of i.i.d. innovations:
 • one innovation per period
 • symmetric on [-1,1]
 • extreme values are less likely than moderate ones
The Model Ingredients

- Fundamental = sum of i.i.d. innovations
- Traders:
 - Investors:
 - one per period
 - knows the innovation to the fundamental
 - private value: uniform on [-1,1]
 - order choice: market, limit, no trade
The Model Ingredients

- **Fundamental** = sum of i.i.d. innovations
- **Traders:**
 - Investors
 - **Low-latency liquidity providers:**
 - permanently monitor prices and quotes
 - competitive (zero-expected profit)
 - only limit orders
 - no private value, no fundamental info advantage
 - speed advantage in reacting to new trades and quotes
Period t investor enters market
Period t investor enters market

Period t investor submits order (if any)
Timeline

Period t investor enters market

Period t investor submits order (if any)

Period $t - 1$ limit orders either trade against the period t market order or get cancelled
Timeline

Period t investor enters market

Period t investor submits order (if any)

Period $t-1$ limit orders either trade against the period t market order or get cancelled

Period $t-1$ investor leaves market
Low-latency liquidity providers post limit orders to empty side(s) of the book.

- **Period t investor enters market**
- **Period t investor submits order (if any)**
- **Period $t-1$ investor leaves market**
- **Period $t-1$ limit orders either trade against the period t market order or get cancelled**
Low-latency liquidity providers post limit orders to empty side(s) of the book.

Period t investor enters market

Period t investor submits order (if any)

Period $t - 1$ limit orders either trade against the period t market order or get cancelled

Period $t - 1$ investor leaves market

Period $t + 1$ investor enters market
Equilibrium: Competitive Prices

- **Market** orders at t execute at:

 \[
 \text{ask}_t = \mathbb{E}[\text{fundamental}_t | \text{market buy}_t, \text{history}_t] \\
 \text{bid}_t = \mathbb{E}[\text{fundamental}_t | \text{market sell}_t, \text{history}_t]
 \]
Equilibrium: Competitive Prices

- Market orders at t execute at:

 \[
 \text{ask}_t = \mathbb{E}[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] \\
 \text{bid}_t = \mathbb{E}[\text{fundamental}_t \mid \text{market sell}_t, \text{history}_t]
 \]

- Limit orders (by investors) at t are posted at:

 \[
 \text{ask}_{t+1} = \mathbb{E}[\text{fundamental}_t \mid \text{market buy}_{t+1}, \text{limit sell}_t, \text{history}_t] \\
 \text{bid}_{t+1} = \mathbb{E}[\text{fundamental}_t \mid \text{market sell}_{t+1}, \text{limit buy}_t, \text{history}_t]
 \]
Equilibrium: Competitive Prices

- Market orders at t execute at:
 \[
 \text{ask}_t = \mathbb{E}[\text{fundamental}_t | \text{market buy}_t, \text{history}_t] \\
 \text{bid}_t = \mathbb{E}[\text{fundamental}_t | \text{market sell}_t, \text{history}_t]
 \]

- Limit orders (by investors) at t are posted at:
 \[
 \text{ask}_{t+1} = \mathbb{E}[\text{fundamental}_t | \text{market buy}_{t+1}, \text{limit sell}_t, \text{history}_t] \\
 \text{bid}_{t+1} = \mathbb{E}[\text{fundamental}_t | \text{market sell}_{t+1}, \text{limit buy}_t, \text{history}_t]
 \]

- What if a limit order is posted at the “wrong” price?
 - \Rightarrow gets undercut by a low-latency liquidity provider!
 - \Rightarrow zero probability of execution

(Appendix: out-of-equilibrium beliefs)
Equilibrium: Decisions

- Observing independent innovations:
 - \Rightarrow all agree on history interpretation
 - \Rightarrow all agree on probabilities of future order submissions
- \Rightarrow Investors trade on their informational advantage, over the information revealed by their own actions
- Order choice based on the aggregate valuation z_t:
 $z_t := \text{private value}_t + \text{innovation}_t$
- Look for a stationary, symmetric equilibrium
Equilibrium: A Threshold Strategy

- \(z^M \)
- \(z^L \)
- \(z_t \)
- \(z^M \)
- \(z^L \)
- Market Buy
- Limit Buy
- Limit Sell
- Market Sell
- No Order

2 aggregate valuation \(z_t \)
Equilibrium: A Threshold Strategy

Existence Theorem: There exist thresholds z^M and z^L and out-of-equilibrium beliefs that constitute an equilibrium.
Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- **All** pay taker fees and receive maker rebates
- Competitive pricing ⇒

\[
\text{ask}_t = \mathbb{E}[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] - \text{maker rebate}
\]
\[
\text{bid}_t = \mathbb{E}[\text{fundamental}_t \mid \text{market sell}_t, \text{history}_t] + \text{maker rebate}
\]
Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- **All** pay **taker fees** and receive **maker rebates**
- Competitive pricing \(\Rightarrow \)

\[
\begin{align*}
\text{ask}_t &= E[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] - \text{maker rebate} \\
\text{bid}_t &= E[\text{fundamental}_t \mid \text{market sell}_t, \text{history}_t] + \text{maker rebate}
\end{align*}
\]

- A market (buy) order submitter pays

\[
\begin{align*}
\text{ask}_t + \text{taker fee} &= E[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] \\
&+ \text{taker fee} - \text{maker rebate} \tag{total fee}
\end{align*}
\]
Application: Maker-Taker Pricing

Benchmark: all traders pay maker-taker fees.

- All pay taker fees and receive maker rebates
- Competitive pricing ⇒

\[
\begin{align*}
\text{ask}_t &= E[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] - \text{maker rebate} \\
\text{bid}_t &= E[\text{fundamental}_t \mid \text{market sell}_t, \text{history}_t] + \text{maker rebate}
\end{align*}
\]

- A market (buy) order submitter pays

\[
\text{ask}_t + \text{taker fee} = E[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] \\
+ \text{taker fee} - \text{maker rebate}
\]

- ⇒ prices adjust and only the total fee matters. (As in Angel, Harris, and Spatt (2011), Colliard and Foucault (2012))
Introduction

The Model

Equilibrium

Application: Maker-Taker Fees

Summary

Evidence: Not Everybody Receives Rebates

Interactive Brokers’ Webpage

Stocks, ETFs and Warrants / Overview

IB offers two pricing structures, Flat Rate and Cost Plus, to calculate commissions for stocks and ETFs in the US, Canada, Europe and Hong Kong. Portfolio Margin customers can pre-borrow US stocks for shorting when they join the IB Pre-Borrow program, and can borrow and lend stocks on AQS. Click the Borrow/Lend link above for fee details.

<table>
<thead>
<tr>
<th>Flat RATE</th>
<th>Cost PLUS</th>
</tr>
</thead>
</table>

- **Flat Rate**: In the Flat Rate pricing structure, you will be charged either a fixed amount per share or a set percent of trade value, which includes commissions and all exchange and regulatory fees.

- **Cost Plus**: In the Cost Plus pricing structure, you will be charged a fixed IB fee, based on volume, that does not include exchange, regulatory or other third-party fees. You will be charged separate fees that are intended to approximate the costs incurred by IB from exchanges, regulators or other third parties to execute your order.
Application: Maker-Taker Pricing

Flat Fee Model

- Investors pay a flat fee per trade (brokers break even, on average):
 \[
 \text{flat fee} = E[\text{average exchange fee on investor trades}]
 \]

- Low-latency liquidity providers receive maker rebates
Application: Maker-Taker Pricing

- Colliard and Foucault (2012) cover the impact of the total fee
- From now on:
 - set: total fee = 0 ⇒ taker fee = maker rebate
 - focus on the impact of the maker-taker split
 - comparative statics w.r.t. the taker fee
Application: Maker-Taker Pricing

Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee
Application: Maker-Taker Pricing

Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee
- A market (buy) order submitter pays:

\[
\text{ask}_t + \text{flat fee} = \mathbb{E}[\text{fundamental}_t | \text{market buy}_t, \text{history}_t] \\
+ \underbrace{\text{flat fee} - \text{maker rebate}}_{<0}
\]

- \Rightarrow Incentive to submit market orders
Application: Maker-Taker Pricing

Flat Fee Model

- Flat fee = weighted average (taker fee, maker fee)
- When maker fee < 0 (i.e., maker rebate): flat fee < taker fee
- A market (buy) order submitter pays:
 \[
 \text{ask}_t + \text{flat fee} = \mathbb{E}[\text{fundamental}_t \mid \text{market buy}_t, \text{history}_t] \\
 + \underbrace{\text{flat fee} - \text{maker rebate}}_{<0}
 \]

- ⇒ Incentive to submit market orders
- ⇒ Similarly: disincentive to submit limit orders (less obvious)
Thresholds

- Market Order
- Limit Order
- No Order

\(z^M \)

\(z^L \)

Taker fee
Quoted vs. Cum-Fee Spreads

Cum-fee half-spread = half-spread + flat fee

[Graph showing the relationship between cumulative and quoted fees]
Price Impact

Price Impact (of a buy) = \text{ask} - \mathbb{E}[\text{fundamental} \mid \text{market buy}]

Shameless self-promotion:
price impact is consistent with Malinova and Park (2011)
Welfare

Expected gains from trade, based on private values
Summary

- A simple model of a limit order book with
 - informed limit orders
 - competitive liquidity provision
- Apply the model to study maker-taker fees
- When all pay maker-taker fees, only the total exchange fee matters (consistent with the literature)
- When investors pay only the average exchange fee (aka a flat fee, paid to their broker), a higher maker rebate leads to
 - more market orders, fewer limit orders
 - lower (cum-fee) costs of market orders, lower price impact
 - higher volume, lower participation of investors
 → higher participation of low-latency liquidity providers
 - higher welfare