

FX market illiquidity and funding liquidity constraints

Chiara Banti and Kate Phylaktis Cass Business School

8th Annual Central Bank Workshop Market Microstructure 25-26 October 2012

Motivation

- Trading volume in FX market is large. Does it translate to a highly liquid FX market? That depends on the definition of liquidity adopted and the proxy used
- Recent studies found a time-varying common component in FX market liquidity across currencies (Banti, Phylaktis and Sarno (2012); Mancini, Ranaldo and Wrampelmeyer (2011))
- Recent literature on the interaction of market liquidity and funding liquidity emerged to explain the severity of liquidity drop during the latest financial crisis (Brunnermeier and Pedersen (2009); Hameed, Kang and Viswanathan (2010); Acharya and Viswanathan (2011))

Research questions

- What are the determinants of time variation in FX market illiquidity?
- Is it affected by changes in investors' funding liquidity constraints?
- In particular, does a tightening in the funding liquidity constraints cause an increase in FX market illiquidity?

Literature Review: determinants of FX market illiquidity

- Identification of a systematic and time-varying component in FX market liquidity
 - Mancini et al. (2011)
 - Banti et al. (2012)
- Positive relationship between the VIX and TED spread measures and FX market liquidity for the most traded currencies during the recent financial crisis
 - Mancini et al. (2011)
- Positive relationship between volatility and the bid-ask spreads of some currencies in different frequencies and time periods
 - Bollerslev and Melvin (1994)
 - Bessembinder (1994); Ding (1999)

Literature Review: market illiquidity & funding liquidity

- Traders financial constraints influence the liquidity of financial markets. Funding liquidity constraints affect their operations creating a systematic source of variation in liquidity across financial assets
 - ➤ Shleifer and Vishny (1997) introduce financially constrained arbitrageurs that are unable to fully exploit opportunities due to the risk of investors redemption
 - ➤ Gromb and Vayanos (2002) model the financial constraints, arguing that margin requirements affect arbitrageurs' ability to provide liquidity to the market
 - (Brunnermeier and Pedersen (2009)Under certain conditions, the interaction between market and funding liquidity leads to illiquidity spirals and finally to liquidity dry-ups

Contributions

- Identification of the determinants of changes in the common component of FX market illiquidity across 20 currencies
 - Transaction costs: bid-ask spread
 - ➤ Market depth : Pastor-Stambaugh liquidity measure
- Investigation of the relationship between FX market illiquidity and changes in investors' financing conditions
 - > Are funding conditions related to market declines?
 - ➤ Do changes in funding liquidity constraints have a strong positive impact on FX market illiquidity during crisis periods?
- Document other important determinants such as declining market returns, volatility and day-of-the-week effects

Methodology: measuring FX market illiquidity

- Among the liquidity proxies developed, we measure illiquidity as transaction costs: the percentage bid-ask spreads of the USD against the currencies following the American system.
- We estimate the changes in the common component across currencies by differencing the cross-sectional average:

$$PS_{t} = \frac{1}{N} \sum_{i=1}^{N} PS_{i,t}$$

$$\Delta PS_{t} = \log(PS_{t}) - \log(PS_{t-1})$$
Cass Business School City University London

Methodology: funding liquidity constraints proxy

- Among the proxies for funding liquidity conditions, we employ the interest rate on financial commercial papers, available daily.
- Since we are interested in the changes in funding liquidity, we take the first difference of the logs of the FCP rates:

$$\Delta FCP_{t} = \log(FCP_{t}) - \log(FCP_{t-1})$$

 So, an increase in FCP interest rates is a proxy for a tightening of funding liquidity constraints.

Methodology: measures for the other determinants

 Global FX volatility (Menkhoff, Sarno, Schmeling and Schrimpf (2012)):

$$VOL_{t} = \log(VXY_{t}) - \log(VXY_{t-1})$$

• FX market returns (Chordia et al. (2001); Hameed et al. (2010)):

$$MKT_t = \sum_{i=1}^{20} \left(\frac{r_{i,t}}{20} \right)$$

Weekly seasonality (Bessembinder (1994)

Data

- 20 currencies (10 developed countries and 10 emerging markets) for a time period of 13 years, Jan 1998 to Dec 2010
- Daily foreign exchange bid, ask and mid rates of the USD versus the currencies are obtained from Datastream
- (WM/Reuters Closing Spot, provided by Reuters at 16 GMT)
- Daily FCP interest rate is available from the U.S. Federal Reserve Board
- Proxies for margin requirements:
 - Federal Funds rate: available from the U.S. Federal Reserve Board
 - ➤ TED spread: 3-month LIBOR from Datastream and the 3-month Treasury rate from the U.S. Federal Reserve Board
- Daily VXY is obtained from Bloomberg

Descriptive statistics of main variables

	Δ illiq	Δ FCP
mean	-0.00003	-0.00369
median	0.70948	0
$\operatorname{st} \operatorname{dev}$	0.11454	0.09241
min	-0.55196	-2.07944
max	0.58896	1.50408
skew	-0.01154	-4.00308
kurt	2.32023	147.02724
AC(1)	-0.46000	-0.06987

	_ D FCP	D FF	D TED spread
D FF	0.2686		
D TED spread	-0.0379	-0.0383	
D VXY	0.0322	0.0794	0.1781

Changes in FX market illiquidity

Changes in FCP interest rates

FX market illiquidity and funding liquidity constraints

Run the following regression:

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \delta VOL_{t} + \varphi \Delta TS_{t} + \varsigma \Delta FF_{t} + \mu MKT_{t-1} +$$

$$\gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4} \theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

Results of the main regression analysis

	1	2
D FCP t	0.03892	0.03752
VOLt		0.1761
MKT t-1		-1.0724
dummy mon	-0.02847	-0.02952
dummy tue	-0.02814	-0.02903
dummywed	-0.02018	-0.02167
dummy thur	-0.00001	-0.01426
constant	0.01752	0.01848
Rbar	0.35	0.35

Market illiquidity, market declines and funding liquidity

 To test if the impact of market returns is symmetric, we interact lagged market returns with a dummy for negative and positive market returns:

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \mu_{1}d_{t-1}^{+}MKT_{t-1} + \mu_{2}d_{t-1}^{-}MKT_{t-1} + \delta VOL_{t} +$$

$$\gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4}\theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

 To test if the impact of market declines is indicative of capital constraints, we interact market returns with a dummy for lagged positive changes in funding constraints:

$$\Delta illiq_{t} = \alpha + \beta \Delta FCP_{t} + \mu d_{t-1}^{+FUND} MKT_{t-1} + \delta VOL_{t} +$$

$$\gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4} \theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

$$\text{Cass Business School}$$
CITYLINITERSTITY LONDON

Market illiquidity, market declines and funding liquidity

	1	2	3	4
D FCP t	0.03953	0.03811	0.03737	0.03606
lag dummy pos MKT ret	0.070			
lag dummy neg MKT ret	-2.224	-2.186		
dummy for pos fund constraints			-2.137	-2.067
VOLt		0.171		0.167
dummy mon	-0.029	-0.029	-0.028	-0.029
dummy tue	-0.028	-0.029	-0.029	-0.029
dummy wed	-0.020	-0.021	-0.019	-0.020
dummy thur	-0.013	-0.014	-0.013	-0.013
constant	0.014	0.015	0.016	0.016
Rbar	0.35	0.35	0.35	0.35

Crisis episodes and FX market illiquidity

- In order to test if during crisis periods the changes in funding liquidity constraints have a strong positive impact on FX market illiquidity, we take the level of the TED spread as an indicator for crisis periods
- We interact it with our measure of changes in funding constraints in the following regression:

$$\Delta illiq_{t} = \alpha + \beta (TS_{t} * \Delta FCP_{t}) + \delta VOL_{t} + \mu MKT_{t-1}$$

$$\gamma_{1}d_{t}^{MON} + \gamma_{2}d_{t}^{TUE} + \gamma_{3}d_{t}^{WED} + \gamma_{4}d_{t}^{THUR} + \sum_{i=1}^{4} \theta_{i}\Delta illiq_{t-i} + \varepsilon_{t}$$

We expect the beta to be positive and statistically significant

TED SPREAD

Crisis episodes and FX market illiquidity

TED t * D FCP t	0.0208
VOLt	0.1687
MKT t-1	-1.0564
dummy mon	-0.0297
dummy tue	-0.0291
dummy wed	-0.0216
dummy thur	-0.0140
Constant	0.0185
Rbar	0.35

Robustness tests

- Repeat estimation using GMM: results are qualitatively the same
- Investigate determinants of shocks to FX market illiquidity:
 Determinants are the same as in the main analysis
- Use an alternative measure of liquidity, market depth:
 - Pastor-Stambaugh proxy for liquidity

GMM estimation

_	1	2
D FCP t	0.039	0.038
VOLt		0.176
lag MKT		-1.072
dummy mon	-0.028	-0.030
dummy tue	-0.028	-0.029
dummy wed	-0.020	-0.022
dummy thur	-0.013	-0.014
constant	0.018	0.018
Rbar	0.35	0.35

Determinants of shocks to FX market illiquidity

D FCP t	0.0340
VOLt	0.1705
MKT t-1	-1.0257
dummy mon	-0.0306
dummy tue	-0.0279
dummy wed	-0.0200
dummy thur	-0.0131
constant	0.0179
Rbar	0.02

Pastor-Stambaugh proxy for liquidity

Temporary price change in terms of expected return reversal accompanying order flow

$$\begin{split} r_{i,t} &= \alpha_i + \beta_i \Delta x_{i,t} + \gamma_i \Delta x_{i,t-1} + \varepsilon_{i,t} \\ L_{i,m} &= \hat{\gamma}_{i,m} \\ \Delta L_m &= \alpha + \gamma \Delta REPO_m + \beta \Delta FCP_m + \delta VOL_m + \\ + \varphi \Delta TS_m + \varsigma \Delta FF_m + \mu MKT_{m-1} + \theta \Delta L_{m-1} + \varepsilon_m. \end{split}$$

- Analysis at a different frequency, monthly
- Funding liquidity measured as changes in amount outstanding of REPOs and changes in monthly FCP rates
- Volatility is the monthly standard deviation of FX currency returns

Pastor-Stambaugh proxy for liquidity

	1	2
REPOS	0.0089	0.0085
FCP	-0.0003	0.0000
VOLt		-0.4405
constant	-0.0001	0.0016
Rbar	0.37	0.41

Conclusions

- We find a strong impact of the changes in funding liquidity conditions on the time variation of FX market illiquidity, controlling for global FX volatility and market returns
- We identify a strong weekly seasonality in FX market illiquidity
- We document an asymmetric effect of market returns on illiquidity in the FX market; inventory accumulation concerns are more important in declining markets, and this relates to periods when the suppliers of liquidity face capital tightness
- We show that liquidity dry-ups during crisis times impact on FX market illiquidity

Conclusions

- Funding liquidity together with the other explanatory variables are found to explain shocks to FX market illiquidity as well
- The relationship between funding liquidity and FX market illiquidity holds true for another liquidity proxy at a lower frequency