Discussion of Bloomfield, O'Hara and Saar (2012) "Hidden Liquidity: Some New Light on Dark Trading"

Haoxiang Zhu

MIT Sloan School of Management

8th Central Bank Workshop on Microstructure Bank of Canada, October 25–26, 2012

Main results

- Does transparency affect traders' behaviors? Yes
- Does transparency affect market outcomes? No
- Interesting results with regulatory implications on dark trading

Main results

- Does transparency affect traders' behaviors? Yes
- Does transparency affect market outcomes? No
- Interesting results with regulatory implications on dark trading
- These results are also natural through the lens of a model.
 - A simple trading model in the form of a batch double auction, e.g. an open auction, or a close auction. Adapted from Du and Zhu (2012) "Ex Post Equilibria..."
 - Model predicts the sign of comp stat, but not statistical significance.
 - "Revenue equivalence theorem" in auction theory typically applies to independent values.

A trading model

- *n* symmetric traders. Trader *i*:
 - receives a private signal s_i and values the asset at

$$m{v}_i = lpha m{s}_i + eta \sum_{j
eq i} m{s}_j, \hspace{1em} ext{where} \hspace{1em} lpha + (n-1)eta = 1.$$

▶ has the expost utility $U(q_i, p^*; v_i) = (v_i - p^*)q_i - \frac{1}{2}\lambda q_i^2$, where $q_i =$ quantity and $p^* =$ price.

A trading model

- *n* symmetric traders. Trader *i*:
 - receives a private signal s_i and values the asset at

$$m{v}_i = lpha m{s}_i + eta \sum_{j
eq i} m{s}_j, \hspace{1em} ext{where} \hspace{1em} lpha + (n-1)eta = 1.$$

- ▶ has the expost utility $U(q_i, p^*; v_i) = (v_i p^*)q_i \frac{1}{2}\lambda q_i^2$, where $q_i =$ quantity and $p^* =$ price.
- The market is organized as a uniform-price double auction, with observed liquidity supply *S*.
 - Each trader *i* submits a *demand schedule* x_i(p).
 Trader *i* is willing to buy x_i(p) units at the price of p.
 - The market-clearing price p* satisfies

$$\sum_{i=1}^n x_i(p^*) = S.$$

An ex post equilibrium

Solution concept: "ex post equilibrium"—Traders are happy with their ex ante strategies even if they observe others' signals ex post.

An ex post equilibrium

Solution concept: "ex post equilibrium"—Traders are happy with their ex ante strategies even if they observe others' signals ex post.

Proposition

Suppose that $n\alpha > 2$. There exists an ex post equilibrium in which trader i submits the demand schedule

$$x_i(p) = rac{nlpha - 2}{\lambda(n-1)}(s_i - p) + rac{1-lpha}{n-1}S,$$

and the equilibrium price is

$$p^* = \frac{1}{n} \sum_{i=1}^n s_i - \frac{(n\alpha - 1)}{n(n\alpha - 2)} \lambda S.$$

Ex post optimality is much stronger than Bayesian optimality.

An ex post equilibrium and interpretation

• In the ex post equilibrium, the distribution of signals $(s_1, s_2, ..., s_n)$ is irrelevant. If transparency only affects (beliefs about) distribution of signals, then the (ex post) equilibrium outcome is independent of transparency regimes.

An ex post equilibrium and interpretation

- In the ex post equilibrium, the distribution of signals $(s_1, s_2, ..., s_n)$ is irrelevant. If transparency only affects (beliefs about) distribution of signals, then the (ex post) equilibrium outcome is independent of transparency regimes.
- But transparency may change λ.
 e.g. λ = aVar(v_i | s_i, display) + b funding costs.
 - \blacktriangleright How much information is displayed: Visible \geq Iceberg \geq Hidden
 - Uncertainty about $\{v_i\}$: Hidden \geq Iceberg \geq Visible
 - λ is weakly increasing in opacity: $\lambda_{hid} \ge \lambda_{ice} \ge \lambda_{lit}$.
 - If $\lambda_{hid} \approx \lambda_{ice} \approx \lambda_{lit}$, then there is no observable difference across transparency regimes.

3.4 Market quality: Information Efficiency

Model: The equilibrium price

$$p^* = rac{1}{n}\sum_{i=1}^n s_i - rac{(nlpha-1)}{n(nlpha-2)}\lambda S.$$

If $\mathbb{E}(S) = 0$, then $\mathbb{E}(p^*) = \sum_i s_i / n$ in all three regimes.

Experiment: Info efficiency is similar across transparency regimes.

Consistent

Haoxiang Zhu (MIT)

3.5 Trading profits

Model: Liquidity orders have a price impact proportional to λS . Their loss is proportional to λS^2 . More opaque, more uninformed loss.

3.5 Trading profits

Model: Liquidity orders have a price impact proportional to λS . Their loss is proportional to λS^2 . More opaque, more uninformed loss.

Experiment: Profits(hidden) > profits(visible) for high-value info, otherwise not significantly different.

Consistent, up to statistical power.

3.3 Market quality: Liquidity

Model: Recall $x_i(p; s_i) = \frac{n\alpha-2}{\lambda(n-1)}(s_i - p) + \frac{1-\alpha}{n-1}S$. Aggregate depth at price p is

$$\left|\frac{\partial \sum_{i} x_i(p)}{\partial p}\right| = \frac{n(n\alpha - 2)}{(n-1)} \cdot \lambda^{-1}.$$

Price impact, $\partial p / \partial x_i$, is proportional to λ .

Effective bid-ask spread is proportional to price impact (and to λ).

More opacity, higher λ , higher effective spread, and higher price impact.

3.3 Market quality: Liquidity

Model: Recall $x_i(p; s_i) = \frac{n\alpha-2}{\lambda(n-1)}(s_i - p) + \frac{1-\alpha}{n-1}S$. Aggregate depth at price p is

$$\frac{\partial \sum_i x_i(p)}{\partial p} = \frac{n(n\alpha - 2)}{(n-1)} \cdot \lambda^{-1}.$$

Price impact, $\partial p / \partial x_i$, is proportional to λ .

Effective bid-ask spread is proportional to price impact (and to λ).

More opacity, higher λ , higher effective spread, and higher price impact.

Experiment: Bid-ask spread and price impact do not vary with opacity. Consistent, up to statistical power

Depths are larger in opaque markets. Inconsistent, but how about "serious", closer-to-mid depth in the data? (If I can manage orders as price moves, I don't have to post many orders away from the mid.)

3.1 Who use nondisplayed orders?3.2 Who supplies or demands liquidity?

The model has limited predictions for these questions.

Experiment:

- Informed traders respond more to changes in transparency.
- Total number of limit orders submitted does not vary significantly with transparency.
- Submission rates, fill rates, and taking rates vary (mildly) with transparency.

3.1 Who use nondisplayed orders?3.2 Who supplies or demands liquidity?

The model has limited predictions for these questions.

Experiment:

- Informed traders respond more to changes in transparency.
- Total number of limit orders submitted does not vary significantly with transparency.
- Submission rates, fill rates, and taking rates vary (mildly) with transparency.

Questions:

- What determines traders' choices between lit/dark orders? e.g. Why would informed submit any visible order in the hidden regime?
- Plot the schedule of limit orders by informed and uninformed traders?

Summary

- Conclusion: Market outcomes vary little with transparency regimes.
- Provocative (and natural) results, fresh insights on dark trading.
- A model that "explains" the results?
- Would richer order types "offset" market structure changes?