
Haoxiang Zhu

MIT Sloan School of Management

8th Central Bank Workshop on Microstructure
Bank of Canada, October 25–26, 2012
Main results

- Does transparency affect traders’ behaviors? Yes
- Does transparency affect market outcomes? No
- Interesting results with regulatory implications on dark trading
Main results

- Does transparency affect traders’ behaviors? Yes
- Does transparency affect market outcomes? No
- Interesting results with regulatory implications on dark trading
- These results are also natural through the lens of a model.
 - A simple trading model in the form of a batch double auction, e.g. an open auction, or a close auction. Adapted from Du and Zhu (2012) “Ex Post Equilibria…”
 - Model predicts the sign of comp stat, but not statistical significance.
 - “Revenue equivalence theorem” in auction theory typically applies to independent values.
A trading model

- n symmetric traders. Trader i:
 - receives a private signal s_i and values the asset at
 \[v_i = \alpha s_i + \beta \sum_{j \neq i} s_j, \quad \text{where } \alpha + (n - 1)\beta = 1. \]
 - has the ex post utility
 \[U(q_i, p^*; v_i) = (v_i - p^*)q_i - \frac{1}{2} \lambda q_i^2, \quad \text{where } q_i = \text{quantity and } p^* = \text{price}. \]
A trading model

- \(n \) symmetric traders. Trader \(i \):
 - receives a private signal \(s_i \) and values the asset at
 \[v_i = \alpha s_i + \beta \sum_{j \neq i} s_j, \quad \text{where} \quad \alpha + (n - 1)\beta = 1. \]
 - has the ex post utility
 \[U(q_i, p^*; v_i) = (v_i - p^*)q_i - \frac{1}{2} \lambda q_i^2, \quad \text{where} \quad q_i = \text{quantity and} \quad p^* = \text{price}. \]

- The market is organized as a uniform-price double auction, with observed liquidity supply \(S \).
 - Each trader \(i \) submits a demand schedule \(x_i(p) \).
 Trader \(i \) is willing to buy \(x_i(p) \) units at the price of \(p \).
 - The market-clearing price \(p^* \) satisfies
 \[\sum_{i=1}^{n} x_i(p^*) = S. \]
An ex post equilibrium

Solution concept: “ex post equilibrium”—Traders are happy with their ex ante strategies even if they observe others’ signals ex post.
An ex post equilibrium

Solution concept: “ex post equilibrium”—Traders are happy with their ex ante strategies even if they observe others’ signals ex post.

Proposition

Suppose that $n\alpha > 2$. There exists an ex post equilibrium in which trader i submits the demand schedule

$$x_i(p) = \frac{n\alpha - 2}{\lambda(n-1)} (s_i - p) + \frac{1 - \alpha}{n-1} S,$$

and the equilibrium price is

$$p^* = \frac{1}{n} \sum_{i=1}^{n} s_i - \frac{(n\alpha - 1)}{n(n\alpha - 2)} \lambda S.$$

Ex post optimality is much stronger than Bayesian optimality.
An ex post equilibrium and interpretation

- In the ex post equilibrium, the distribution of signals \((s_1, s_2, ..., s_n)\) is irrelevant. If transparency only affects (beliefs about) distribution of signals, then the (ex post) equilibrium outcome is independent of transparency regimes.
An ex post equilibrium and interpretation

- In the ex post equilibrium, the distribution of signals \((s_1, s_2, ..., s_n)\) is irrelevant. If transparency only affects (beliefs about) distribution of signals, then the (ex post) equilibrium outcome is independent of transparency regimes.

- But transparency may change \(\lambda\).
 e.g. \(\lambda = a \text{Var}(v_i \mid s_i, \text{display}) + b\) funding costs.

 - How much information is displayed: Visible ≥ Iceberg ≥ Hidden
 - Uncertainty about \(\{v_i\}\): Hidden ≥ Iceberg ≥ Visible
 - \(\lambda\) is weakly increasing in opacity: \(\lambda_{hid} \geq \lambda_{ice} \geq \lambda_{lit}\).
 - If \(\lambda_{hid} \approx \lambda_{ice} \approx \lambda_{lit}\), then there is no observable difference across transparency regimes.
3.4 Market quality: Information Efficiency

Model: The equilibrium price

\[
p^* = \frac{1}{n} \sum_{i=1}^{n} s_i - \frac{(n\alpha - 1)}{n(n\alpha - 2)} \lambda S.
\]

If \(\mathbb{E}(S) = 0 \), then \(\mathbb{E}(p^*) = \sum_i s_i / n \) in all three regimes.

Experiment: Info efficiency is similar across transparency regimes.

Consistent
3.5 Trading profits

Model: Liquidity orders have a price impact proportional to λS. Their loss is proportional to λS^2. More opaque, more uninformed loss.
3.5 Trading profits

Model: Liquidity orders have a price impact proportional to λS. Their loss is proportional to λS^2. More opaque, more uninformed loss.

Experiment: Profits(hidden) $>$ profits(visible) for high-value info, otherwise not significantly different.

Consistent, up to statistical power.
3.3 Market quality: Liquidity

Model: Recall $x_i(p; s_i) = \frac{n^{\alpha-2}}{\lambda(n-1)} (s_i - p) + \frac{1-\alpha}{n-1} S$. Aggregate depth at price p is

$$\left| \frac{\partial \sum_i x_i(p)}{\partial p} \right| = \frac{n(n\alpha - 2)}{(n-1)} \cdot \lambda^{-1}.$$

Price impact, $\partial p/\partial x_i$, is proportional to λ.

Effective bid-ask spread is proportional to price impact (and to λ).

More opacity, higher λ, higher effective spread, and higher price impact.
3.3 Market quality: Liquidity

Model: Recall $x_i(p; s_i) = \frac{n^{\alpha-2}}{\lambda(n-1)} (s_i - p) + \frac{1-\alpha}{n-1} S$. Aggregate depth at price p is

$$\left| \frac{\partial \sum_i x_i(p)}{\partial p} \right| = \frac{n(n\alpha - 2)}{(n-1)} \cdot \lambda^{-1}.$$

Price impact, $\partial p/\partial x_i$, is proportional to λ.

Effective bid-ask spread is proportional to price impact (and to λ).

More opacity, higher λ, higher effective spread, and higher price impact.

Experiment: Bid-ask spread and price impact do not vary with opacity. Consistent, up to statistical power.

Depths are larger in opaque markets. Inconsistent, but how about “serious”, closer-to-mid depth in the data? (If I can manage orders as price moves, I don’t have to post many orders away from the mid.)
3.1 Who use nondisplayed orders?
3.2 Who supplies or demands liquidity?

The model has limited predictions for these questions.

Experiment:
- Informed traders respond more to changes in transparency.
- Total number of limit orders submitted does not vary significantly with transparency.
- Submission rates, fill rates, and taking rates vary (mildly) with transparency.
3.1 Who use nondisplayed orders?
3.2 Who supplies or demands liquidity?

The model has limited predictions for these questions.

Experiment:
- Informed traders respond more to changes in transparency.
- Total number of limit orders submitted does not vary significantly with transparency.
- Submission rates, fill rates, and taking rates vary (mildly) with transparency.

Questions:
- What determines traders’ choices between lit/dark orders? e.g. Why would informed submit any visible order in the hidden regime?
- Plot the schedule of limit orders by informed and uninformed traders?
Summary

- Conclusion: Market outcomes vary little with transparency regimes.
- Provocative (and natural) results, fresh insights on dark trading.
- A model that “explains” the results?
- Would richer order types “offset” market structure changes?