Exchange Rates and Price Misalignment: Evidence on Long-Horizon Predictability

Wei Dong¹ Deokwoo Nam²

¹Bank of Canada ²City University of Hong Kong

THE VIEWS EXPRESSED ARE THOSE OF THE AUTHORS. NO RESPONSIBILITY FOR THEM

SHOULD BE ATTRIBUTED TO THE BANK OF CANADA.

Introduction

- The failure of open-economy macro theory to explain exchange rate behavior using economic fundamentals has prevailed in the international economics literature since the seminal papers by Meese and Rogoff (1983).
- A number of studies have found evidence of greater predictability of economic exchange rate models at longer horizons (Mark, 1995).
 Econometric issues questioned: Kilian (1999), Berkowitz and Giorgianni (2001), Cheung, Chinn and Pascual (2005).
- Short-horizon forecasting: Gourinchas and Rey (2007), Molodtsova and Papell (2008), Engel, Mark and West (2007).

Important caveats: Rogoff and Stavrakeva (2008).

Introduction

- Forecasting nominal exchange rates remains a remarkably difficult task, despite the development of more sophisticated econometric tests.
- However, most practitioners and policymakers do not believe that the random walk model is the true model (Engel and West, 2005). The model is simply used as a dummy for a frame of reference to measure the forecast accuracy of the structural model.

Dual Role of Exchange Rates

- Most exchange rate movements in the short run seem to reflect changes in expectations about future monetary or real conditions.
- When prices are sticky, however, nominal exchange rate movements directly have impacts on terms of trade.
- When exchange rate changes are primarily forward-looking, relative prices would be forced to incorporate these expectation effects, and the terms of trade or other international prices may be badly misaligned in the short run (Devereux and Engel, 2006, 2007).

Exchange Rates and Price Misalignments

- The relative price misalignment has welfare implications as it would trigger adjustment in consumption and employment.
- It may also help to predict subsequent re-evaluation of the nominal exchange rate.
- If a currency is overvalued, it would cause the relative price of goods in the domestic country to be more expensive than foreign in the short term. When there is a tendency for the currency to depreciate, such price misalignment might be useful to predict the subsequent depreciation.

This Paper

- This paper studies whether price misalignments arising from this dual role of exchange rates have predictive power for future exchange rate movements.
- Previous studies have shown weak predictability at the aggregate level of price misalignments (PPP fundamentals). However, there is significant heterogeneity for prices at the good level.
- We collect good-level price data across borders to construct deviations from the Law of One Price (LOOP) as a measure of price misalignments at disaggregated level, with which we examine their predictive power for several bilateral exchange rates.
 - U.S. dollar and Japanese Yen rate: 1973:03 2009:08, 67 goods
 - U.S. dollar and British pound rate: 1987:01 2009:08, 48 goods

This Paper

- In-sample and out-of-sample forecasting analysis for nominal exchange rate changes:
 - In-sample empirical work gives us some sense whether ex post price misalignments are essential indicators.
 - With out-of-sample analysis, we can study whether there are evidence to support that they are in fact indicators with *ex ante* predictive power.
- Test of superior predictive ability (Hansen, 2005): to correct for data mining by comparing the mean square prediction error (MSPE) under the null model (random walk with or without drift) to the MSPE under alternative models (price misalignment models).

Preliminary Results

- U.S. dollar/Japanese Yen Rate:
 - Estimates of the slope coefficient is positive over all horizons for almost all goods. The bias-adjusted slope coefficients and R-squares both increase with the forecast horizon.
 - The out-of-sample SPA tests suggest that our price mislignment model generally outperforms random walks either with or without drift at the five percent level of significance over long horizons (12 months).
- U.S. dollar/UK pound Rate:
 - Estimates of the slope coefficient is positive over all horizons for almost all goods. The bias-adjusted slope coefficients and R-squares both increase with the forecast horizon.
 - Only a few good-level price misalignment shows out-of-sample predictability either at short or long horizon, possibly related to the limited length of UK data.

Econometric Methodology

 Our empirical analysis centers on the following simple forecasting regression over a k-period horizon:

$$\mathbf{s}_{t+k} - \mathbf{s}_t = \alpha_k + \beta_k \mathbf{z}_{i,t} + \mathbf{u}_{t,t+k}$$

 s_t — log the nominal exchange rate defined as the U.S. dollar per foreign currency. $z_{i,t}$ — deviation from LOOP for an individual good *i*, $z_{i,t} \equiv p_{i,t} - p_{i,t}^* - s_t$.

Bootstrapping

 We rely on bootstrapping for small sample inferences in long horizon regressions to mitigate size distortions.

The data generating process (DGP) under the null hypothesis that the exchange rate is unpredictable is as follows:

$$\Delta \mathbf{s}_t = \mathbf{c}_s + \varepsilon_{s,t}$$

$$\mathbf{z}_{i,t} = \mathbf{c}_z + \phi_1 \mathbf{z}_{i,t-1} + \dots + \phi_p \mathbf{z}_{i,t-p} + \varepsilon_{z,t}$$

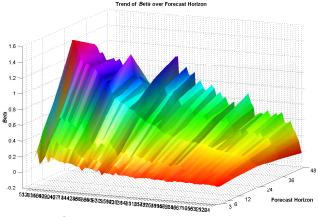
- When performing out-of-sample analysis against the random walk model without drift, we restrict the estimate of the drift term in the equation for s_t (i.e. c_s) to zero in generating a sequence of pseudo observations.
- When the equation for $z_{i,t}$ is estimated, the small-sample bias correction is taken into account (Shaman and Stine, 1988).
- Robustness check: bootstrapping under the restricted Vector Error Correction Model (VECM) of s_t and $z_{i,t}$ as the null DGP (Kilian, 1999).

Data

- US: monthly good-level price data are obtained from the Bureau of Labor Statistics. Price indexes are available for major groups of consumer expenditures (food and beverages, housing, apparel, transportation, medical care, recreation, education and communications, and other goods and services).
- Japan: the source of Japanese data is from the Japan Statistics Bureau. Goods and services are classified so that each item encompasses similar products in terms of usage, function, etc., and prices within each item are expected to move parallel with each other for long spells.
- UK: good-level price data are obtained from the Office for National Statistics. The data set includes details on all consumer spending on goods and services by members of UK households.
- The monthly U.S. dollar per Japanese Yen and U.S. dollar per British pound exchange rates are obtained from the DRI (Global Insight) Database.

Description of Goods - U.S. and Japan

A 111		A 111	a .
Good No.	Good	Good No.	Good
Good 01	Beef and veal	Good 35	Repair of household Goods
Good 02	Pork chops	Good 36	Electricity
Good 03	Poultry	Good 37	Water and sewerage maintenance
Good 04	Bacon, breakfast sausage, and related products	Good 38	Utility (piped) gas service
Good 05	Ham	Good 39	Fuel oil and other fuels
Good 06	Frozen fish and seafood	Good 40	Domestic services
Good 07	Fresh fish and seafood	Good 41	Household cleaning products
Good 08	Canned fish and seafood	Good 42	Household paper products
Good 09	Fresh whole milk	Good 43	Bedroom furniture
Good 10	Butter	Good 44	Floor coverings
Good 11	Cheese and related products	Good 45	Window coverings
Good 12	Ice cream and related products	Good 46	Other linens
Good 13	Other dairy and related products	Good 47	Major appliances
Good 14	Eggs	Good 48	Clocks, lamps, and decorator Goods
Good 15	White bread	Good 49	Dishes and flatware
Good 16	Fresh biscuits, rolls, muffins	Good 50	Nonelectric cookware and tableware
Good 17	Rice, pasta, cornmeal	Good 51	Tools, hardware and supplies
Good 18	Flour and prepared flour mixes	Good 52	Women's apparel
Good 19	Bananas	Good 53	Men's apparel
Good 20	Juices and non-alcoholic drinks	Good 54	Infants' and toddlers' apparel
Good 21	Tomatoes	Good 55	Women's footwear
Good 22	Lettuce	Good 56	Men's footwear
Good 23	Canned fruits	Good 57	Boys' and girls' footwear
Good 24	Canned vegetables	Good 58	Laundry and dry cleaning services
Good 25	Sugar and sweets	Good 59	New vehicles
Good 26	Margarine	Good 60	Gasoline (all types)
Good 27	Other fats and oils including peanut butter	Good 61	Tires
Good 28	Coffee	Good 62	Motor vehicle maintenance and repair
Good 29	Other beverage materials including tea	Good 63	Motor vehicle insurance
Good 30	Spices, seasonings, condiments, sauces	Good 64	State and local registration and license
Good 31	Full service meals and snacks	Good 65	Parking and other fees
Good 32	Food at employee sites and schools	Good 66	Intracity transportation
Good 33	Rent of primary residence	Good 67	Airline fare
Good 34	Tenants' and household insurance		


Empirical Results

U.S. dollar/Japanese Yen Rate

In-sample Regression Results

- Estimates of the slope coefficient is positive over all horizons for almost all goods.
- Both the estimate of the slope coefficient and the R-square tend to increase with the forecast horizon for most of goods.
- t-statistic is based on the Newey-West's (1987) HAC covariance matrix estimator with Andrew's (1991) procedure for selecting a truncation lag; the p-value is derived from the bootstrap distribution.
- Among 67 goods considered, there are 24, 24, 22, 36, 43, and 33 goods at the 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, for which the estimates of the slope coefficient is statistically significant at the 10% level.

In-sample Regression Coefficient β

Beta at the 24-month horizon)

In-sample Regressions - 36 months

Good 01 0.344 0.183 2.535 0.159 Good 35 0.528 0.400 5.831 0.048 Good 02 0.596 0.299 3.300 0.054 Good 35 0.528 0.400 5.831 0.048 Good 03 0.752 0.319 2.890 0.143 Good 37 0.452 0.235 2.542 0.101 Good 04 1.160 0.586 11.393 0.003 Good 38 0.466 0.178 3.180 0.012 Good 05 0.807 0.426 4.768 0.034 Good 41 0.716 11.008 0.006 Good 07 0.426 4.768 0.024 0.831 0.756 10.655 0.027 3.771 10.042 Good 08 0.280 0.161 1.799 0.001 Good 42 0.831 0.768 13.178 0.005 Good 10 0.292 0.276 3.499 0.064 Good 42 0.831 0.752 11.911 0.005 0.066 0.442	Goods	R-sq	Beta	Tr(A)	p-(A)	Goods	R-sq	Beta	Tr(A)	p-(A)
Good 02 0.596 0.299 3.300 0.054 Good 36 0.476 6.051 0.023 Good 03 0.752 0.319 2.890 0.143 Good 37 0.452 0.235 2.542 0.101 Good 04 1.160 0.886 11.393 0.003 Good 38 0.452 0.235 3.701 0.086 Good 05 0.807 0.426 4.768 0.034 Good 39 0.486 0.178 3.180 0.102 Good 06 0.894 0.626 4.768 0.034 Good 41 0.786 1.585 10.655 0.004 Good 08 0.280 0.161 1.795 0.170 Good 42 0.831 0.768 1.572 3.771 0.042 Good 10 0.292 0.176 3.349 0.064 Good 44 0.201 6.572 11.911 0.005 Good 11 0.486 0.244 4.594 0.071 Good 440 0.270 3.580 0.172 Good 14	Good 01	0.344	0.183	2,535	0.159	Good 35	0.528	0.400	5.831	0.048
Good 03 0.752 0.319 2.890 0.143 Good 37 0.452 0.235 2.542 0.101 Good 04 1.160 0.586 11.393 0.003 Good 38 0.532 0.335 3.701 0.068 Good 05 0.807 0.426 4.788 0.003 Good 39 0.486 0.178 3.180 0.006 Good 06 0.894 0.368 3.530 0.075 Good 41 0.786 0.486 0.585 10.685 0.004 Good 08 0.280 0.161 1.795 0.170 Good 41 0.786 0.354 0.327 3.771 0.042 Good 10 0.292 0.176 3.369 0.077 Good 44 0.920 0.657 11.648 0.006 Good 11 0.428 0.284 4.594 0.071 Good 45 0.379 0.572 11.911 0.006 Good 14 0.441 0.742 2.590 0.102 Good 47 0.283 0.270 3.580										
Good 04 1.160 0.586 11.393 0.003 Good 38 0.532 0.335 3.701 0.086 Good 05 0.807 0.426 4.768 0.034 Good 39 0.486 0.178 3.180 0.0102 Good 06 0.894 0.368 3.530 0.075 Good 40 1.132 0.715 11.008 0.006 Good 07 1.180 0.738 14.994 0.001 Good 41 0.786 1.858 10.655 0.004 Good 09 0.524 0.276 3.449 0.064 Good 42 0.551 10.652 0.277 10.042 Good 10 0.292 0.176 3.499 0.064 Good 42 0.572 11.911 0.005 Good 11 0.486 0.244 4.594 0.077 Good 440 0.292 0.657 11.911 0.005 Good 12 0.597 11.730 0.006 Good 46 0.272 2.455 0.429 Good 16 0.710 0.425 <td></td>										
Good 06 0.894 0.368 3.530 0.075 Good 410 1.132 0.715 11.008 0.006 Good 07 1.180 0.738 14.994 0.001 Good 41 0.746 0.585 10.655 0.004 Good 08 0.280 0.161 1.795 0.170 Good 42 0.831 0.768 13.178 0.006 Good 10 0.292 0.276 3.369 0.064 Good 43 0.554 0.327 11.911 0.005 Good 11 0.486 0.244 3.391 0.080 Good 45 0.739 0.577 11.911 0.005 Good 13 0.922 0.597 11.730 0.006 Good 46 0.739 0.577 11.911 0.005 Good 14 0.441 0.172 Good 46 0.283 0.270 3.560 0.172 Good 15 0.405 0.183 3.151 0.092 Good 48 0.361 0.272 2.455 0.429 Good 16 0.710						Good 38				
Good 06 0.894 0.368 3.530 0.075 Good 410 1.132 0.715 11.008 0.006 Good 07 1.180 0.738 14.994 0.001 Good 41 0.718 10.655 0.004 Good 08 0.280 0.161 1.795 0.170 Good 42 0.831 0.768 13.178 0.005 Good 10 0.292 0.176 3.349 0.064 Good 43 0.554 0.327 3.771 0.042 Good 11 0.486 0.244 3.391 0.080 Good 45 0.739 0.572 11.911 0.005 Good 12 0.598 0.284 4.594 0.006 Good 47 0.283 0.270 3.560 0.172 Good 14 0.441 0.174 Cadd 47 0.283 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.429 0.421 0.429	Good 05	0.807	0.426	4,768	0.034	Good 39	0.486	0.178	3,180	0.102
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Good 06	0.894	0.368	3.530	0.075	Good 40	1.132	0.715	11.008	0.006
Good 09 0.524 0.276 3.949 0.064 Good 43 0.554 0.327 3.771 0.042 Good 10 0.292 0.176 3.369 0.077 Good 44 0.820 0.657 11.648 0.005 Good 11 0.486 0.244 3.391 0.071 Good 44 0.420 0.657 11.941 0.005 Good 12 0.598 0.284 4.594 0.071 Good 46 0.497 0.218 2.126 0.285 Good 14 0.441 0.174 2.590 0.102 Good 47 0.283 0.270 3.560 0.172 Good 15 0.405 0.183 3.151 0.092 Good 51 1.281 0.793 9.196 0.007 Good 15 0.432 0.238 2.681 0.090 Good 53 0.356 0.201 1.081 0.433 0.255 Good 14 0.432 0.233 2.681 0.090 Good 55 0.283 0.211 0.606 1.0181	Good 07	1.180	0.738	14.994	0.001	Good 41	0.786	0.585	10.655	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Good 08	0.280	0.161	1.795	0.170	Good 42	0.831	0.768	13.178	0.005
Good 11 0.486 0.244 3.391 0.080 Good 45 0.739 0.572 11.911 0.005 Good 12 0.598 0.284 4.554 0.071 Good 46 0.497 0.218 2.126 0.265 Good 13 0.922 0.597 11.730 0.006 Good 47 0.283 0.270 3.580 0.172 Good 14 0.441 0.174 2.590 0.102 Good 48 0.361 0.272 2.455 0.429 Good 15 0.405 0.183 3.151 0.092 Good 49 0.211 0.067 4.107 0.102 Good 15 0.425 0.224 3.592 0.049 Good 51 1.281 0.793 9.196 0.007 Good 17 0.432 0.238 2.681 0.090 Good 53 0.356 0.201 2.064 0.418 0.007 Good 20 1.114 0.732 10.506 0.008 Good 53 0.356 0.201 1.064 0.0140										
Good 12 0.598 0.284 4.594 0.071 Good 46 0.497 0.218 2.126 0.285 Good 13 0.922 0.597 11.730 0.006 Good 47 0.283 0.270 3.580 0.172 Good 14 0.441 0.174 2.590 0.102 Good 48 0.361 0.272 2.455 0.429 Good 15 0.405 0.183 3.151 0.092 Good 50 0.781 0.3667 4.107 0.102 Good 17 0.455 0.224 3.592 0.049 Good 51 1.781 0.367 4.107 0.102 Good 16 0.412 0.681 0.238 2.2681 0.090 Good 52 0.169 0.108 1.363 0.255 Good 19 0.418 0.084 2.561 0.086 Good 54 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 55 0.283 0.217 1.771 0.181										
Good 13 0.922 0.597 11.730 0.006 Good 47 0.283 0.270 3.580 0.172 Good 14 0.441 0.174 2.590 0.102 Good 48 0.361 0.270 3.580 0.172 Good 15 0.405 0.183 3.151 0.092 Good 49 0.211 0.060 1.061 0.412 Good 16 0.710 0.492 5.528 0.036 Good 51 1.281 0.781 0.367 4.107 0.102 Good 17 0.455 0.224 3.592 0.049 Good 52 0.169 0.108 1.363 0.255 Good 19 0.418 0.084 2.661 0.151 Good 53 0.356 0.201 2.064 0.140 Good 21 1.141 0.732 10.506 0.008 Good 55 0.283 0.172 2.064 0.140 Good 21 0.203 0.085 2.099 0.174 Good 55 0.283 0.172 2.062 0.143 <										
Good 14 0.411 0.174 2.590 0.102 Good 48 0.361 0.272 2.455 0.429 Good 15 0.405 0.183 3.151 0.092 Good 49 0.211 0.600 1.061 0.412 Good 16 0.710 0.492 5.528 0.036 Good 50 0.781 0.367 4.107 0.102 Good 17 0.455 0.224 3.592 0.049 Good 51 1.281 0.367 4.107 0.102 Good 18 0.412 0.681 0.016 Good 52 0.169 0.108 1.363 0.255 Good 19 0.418 0.084 2.561 0.050 Good 54 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 56 0.223 0.211 1.771 0.181 Good 23 0.734 0.515 10.448 0.008 Good 57 0.324 0.229 2.303 0.119 Good 24										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
Good 16 0.710 0.492 5.528 0.036 Good 50 0.781 0.367 4.107 0.102 Good 17 0.455 0.224 3.592 0.049 Good 51 1.281 0.793 9.196 0.007 Good 18 0.432 0.238 2.681 0.090 Good 52 0.169 1.018 1.383 0.255 Good 19 0.418 0.084 2.561 0.151 Good 53 0.356 0.201 2.064 0.140 Good 21 0.203 0.085 2.009 0.174 Good 55 0.283 0.217 1.771 0.181 Good 22 0.020 0.194 0.068 Good 56 0.223 0.211 2.092 1.433 Good 23 0.734 0.515 10.448 0.008 Good 57 0.324 0.229 2.303 0.119 Good 24 0.439 0.156 1.842 0.217 Good 58 1.107 0.657 9.726 0.009 Good 25										
Good 17 0.455 0.224 3.592 0.049 Good 51 1.281 0.793 9.196 0.007 Good 18 0.432 0.238 2.681 0.090 Good 52 0.169 0.108 1.363 0.255 Good 19 0.418 0.084 2.561 0.151 Good 53 0.356 0.201 2.064 0.140 Good 20 1.114 0.732 10.506 0.008 Good 54 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 55 0.223 0.172 1.771 0.181 Good 22 0.092 0.026 1.946 0.082 Good 56 0.323 0.211 2.092 0.143 Good 23 0.734 0.515 1.0448 0.008 Good 57 0.324 0.229 2.303 0.119 Good 25 0.439 0.156 1.842 0.217 Good 59 0.668 0.345 0.118 0.015 <										
Good 18 0.432 0.238 2.681 0.090 Good 52 0.169 0.108 1.863 0.255 Good 19 0.418 0.084 2.561 0.151 Good 53 0.356 0.201 2.064 0.140 Good 20 1.114 0.732 10.506 0.008 Good 55 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 55 0.223 0.211 2.092 1.771 0.181 Good 23 0.734 0.515 10.448 0.008 Good 56 0.232 0.211 2.092 2.033 0.119 Good 24 0.734 0.515 10.448 0.008 Good 57 0.324 0.219 2.303 0.119 Good 25 0.439 0.156 1.842 0.217 Good 58 1.107 0.657 9.726 0.009 Good 26 0.439 0.559 9.672 0.010 Good 60 0.346 0.134 2.328										
Good 19 0.418 0.084 2.561 0.151 Good 53 0.356 0.201 2.064 0.140 Good 20 1.114 0.732 10.506 0.008 Good 54 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 55 0.283 0.172 1.771 0.181 Good 23 0.734 0.515 1.0448 0.008 Good 56 0.323 0.217 2.092 0.143 Good 23 0.734 0.515 10.448 0.006 Good 57 0.324 0.229 2.303 0.119 Good 24 0.988 0.687 11.413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 24 0.450 0.203 3.161 0.107 Good 50 0.668 0.345 5.018 0.015 Good 25 0.439 0.559 9.672 0.010 Good 61 0.345 0.205 2.895 0.016										
Good 20 1.114 0.732 10.506 0.008 Good 54 0.425 0.331 4.464 0.018 Good 21 0.203 0.085 2.009 0.174 Good 55 0.283 0.172 1.771 0.181 Good 22 0.092 0.026 1.946 0.082 Good 55 0.283 0.172 2.092 0.143 Good 23 0.734 0.515 10.448 0.006 Good 56 0.323 0.211 2.092 0.143 Good 24 0.988 0.687 1.413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 25 0.439 0.156 1.842 0.217 Good 59 0.668 0.345 5.018 0.015 Good 26 0.439 0.559 9.672 0.010 Good 61 0.346 0.134 2.328 0.150 Good 27 0.943 0.559 9.672 0.010 Good 62 0.492 2.798 0.073 Good 28										
Good 21 0.203 0.085 2.009 0.174 Good 55 0.283 0.172 1.771 0.181 Good 22 0.092 0.026 1.946 0.082 Good 56 0.323 0.217 1.771 0.181 Good 23 0.734 0.515 10.448 0.008 Good 56 0.323 0.211 2.092 2.033 0.119 Good 24 0.988 0.687 1.413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 24 0.450 0.203 3.161 0.107 Good 59 0.668 0.134 5.018 0.015 Good 26 0.450 0.203 3.161 0.107 Good 60 0.346 0.134 2.328 0.150 Good 27 0.943 0.559 9.672 0.010 Good 612 0.345 0.203 0.457 Good 28 0.477 0.208 3.255 0.116 Good 62 0.262 2.985 0.024 Good 29										
Good 22 0.092 0.026 1.946 0.082 Good 56 0.323 0.211 2.092 0.143 Good 23 0.734 0.515 10.448 0.008 Good 57 0.324 0.229 2.303 0.119 Good 24 0.988 0.687 11.413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 25 0.439 0.156 1.842 0.217 Good 58 1.107 0.657 9.726 0.009 Good 26 0.439 0.156 1.842 0.217 Good 58 1.046 0.345 5.018 0.015 Good 27 0.943 0.559 9.672 0.010 Good 60 0.346 0.134 2.328 0.064 Good 28 0.472 0.208 3.255 0.116 Good 62 0.426 0.192 2.798 0.073 Good 29 1.042 0.881 9.181 0.010 Good 64 0.625 0.399 5.612 0.054 <										
Good 23 0.734 0.515 10.448 0.008 Good 57 0.324 0.229 2.303 0.119 Good 24 0.988 0.687 1.1413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 25 0.439 0.156 1.842 0.217 Good 58 1.107 0.657 9.726 0.009 Good 26 0.4439 0.203 3.161 0.107 Good 60 0.346 0.134 2.328 0.150 Good 27 0.943 0.559 9.672 0.010 Good 61 0.345 0.205 2.895 0.150 Good 28 0.472 0.203 3.161 0.107 Good 62 0.262 2.895 0.160 Good 29 1.042 0.681 9.181 0.010 Good 63 0.225 0.002 0.335 0.437 Good 30 0.709 0.342 5.116 0.027 Good 65 0.743 0.534 1.786 0.002 Good 31										
Good 24 0.988 0.687 11.413 0.006 Good 58 1.107 0.657 9.726 0.009 Good 25 0.439 0.156 1.842 0.217 Good 59 0.668 0.345 5.018 0.015 Good 26 0.450 0.203 3.161 0.107 Good 60 0.346 0.134 2.328 0.150 Good 27 0.943 0.559 9.672 0.010 Good 61 0.345 0.134 2.328 0.150 Good 28 0.472 0.208 3.255 0.116 Good 62 0.422 0.192 2.798 0.073 Good 29 1.042 0.681 9.181 0.010 Good 62 0.262 0.192 2.798 0.073 Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.054 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 <										
Good 25 0.439 0.156 1.842 0.217 Good 59 0.668 0.345 5.018 0.015 Good 26 0.450 0.203 3.161 0.107 Good 60 0.346 0.134 5.018 0.015 Good 27 0.943 0.559 9.672 0.010 Good 61 0.346 0.134 2.328 0.050 Good 27 0.943 0.559 9.672 0.010 Good 62 0.262 2.192 2.798 0.073 Good 28 0.472 0.208 3.255 0.116 Good 62 0.262 0.192 2.398 0.073 Good 30 0.709 0.342 5.116 0.027 Good 63 0.025 0.002 0.335 0.437 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 1.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Good 26 0.450 0.203 3.161 0.107 Good 60 0.346 0.134 2.328 0.150 Good 27 0.943 0.559 9.672 0.010 Good 61 0.345 0.205 2.895 0.094 Good 28 0.472 0.208 3.255 0.116 Good 62 0.262 0.192 2.798 0.073 Good 29 1.042 0.681 9.181 0.010 Good 63 0.025 0.092 0.335 0.437 Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.054 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 32 1.232 0.664 8.307 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 27 0.943 0.559 9.672 0.010 Good 61 0.345 0.205 2.885 0.094 Good 28 0.472 0.208 3.255 0.116 Good 62 0.262 0.192 2.798 0.073 Good 29 1.042 0.681 9.181 0.010 Good 64 0.625 0.092 0.335 0.437 Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.064 Good 31 1.180 0.730 9.493 0.096 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 32 1.232 0.664 8.307 0.029 Good 66 0.714 0.409 5.267 0.012 Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 28 0.472 0.208 3.255 0.116 Good 62 0.262 0.192 2.798 0.073 Good 29 1.042 0.681 9.181 0.010 Good 63 0.025 0.002 0.335 0.437 Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.054 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 29 1.042 0.681 9.181 0.010 Good 63 0.025 0.002 0.335 0.437 Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.054 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 32 0.438 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 30 0.709 0.342 5.116 0.027 Good 64 0.625 0.399 5.612 0.054 Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 31 1.180 0.730 9.493 0.009 Good 65 0.743 0.534 11.785 0.002 Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 32 1.232 0.664 8.307 0.013 Good 66 0.714 0.409 5.267 0.012 Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
Good 33 0.484 0.316 3.720 0.029 Good 67 0.253 0.070 1.341 0.248										
GUUU 34 1.017 0.041 0.102 0.010						6000 67	0.255	0.070	1.341	0.240
	6000 34	1.017	0.341	0.102	0.015					

Out-of-sample Tests of Predictability

- We report the results from the out-of-sample analysis of the regression model against two alternatives: (1) the Random Walk (RW) without drift and (2) the RW with drift.
- t-statistic is computed using Clark and West (2006)'s procedure, and is based on Newey-West's (1987) HAC covariance matrix estimator with Andrew's (1991) procedure for selecting a truncation lag so as to account for serial correlations arising from the forecast horizon being more than one period.

Out-of-sample Tests of Predictability - 36 months

	RW w/	o Drift	RW wit	h Drift		RW w/o Drift		RW with Drift		
Goods	CW(A)	p-(A)	CW(A)	p-(A)	Goods	CW(A)	p-(A)	CW(A)	p-(A)	
Good 01	2.063	0.064	3.458	0.016	Good 35	0.734	0.401	0.055	0.469	
Good 02	2.981	0.023	3.332	0.026	Good 36	2.828	0.031	2.835	0.037	
Good 03	3.242	0.023	2.941	0.029	Good 37	2.871	0.024	2.607	0.042	
Good 04	0.982	0.363	3.190	0.157	Good 38	1.933	0.080	2.282	0.058	
Good 05	3.674	0.038	1.723	0.177	Good 39	3.267	0.024	2.043	0.101	
Good 06	4.356	0.005	1.913	0.082	Good 40	1.412	0.302	4.046	0.113	
Good 07	1.547	0.299	3.206	0.161	Good 41	0.901	0.370	0.899	0.383	
Good 08	-0.985	0.696	1.203	0.155	Good 42	1.691	0.315	4.330	0.025	
Good 09	2.127	0.061	2.574	0.052	Good 43	0.082	0.419	2.271	0.047	
Good 10	1.075	0.162	1.890	0.090	Good 44	1.623	0.289	2.642	0.191	
Good 11	0.042	0.438	1.709	0.090	Good 45	1.014	0.349	1.046	0.343	
Good 12	1.079	0.175	1.685	0.100	Good 46	-0.367	0.506	0.887	0.373	
Good 13	1.074	0.357	1.292	0.359	Good 47	0.386	0.413	-0.572	0.522	
Good 14	2.153	0.059	2.478	0.051	Good 48	0.588	0.371	3.036	0.069	
Good 15	2.714	0.036	2.289	0.066	Good 49	-0.201	0.491	0.953	0.359	
Good 16	1.687	0.312	4.151	0.027	Good 50	0.380	0.426	1.304	0.338	
Good 17	0.602	0.297	1.852	0.077	Good 51	2.062	0.283	4.879	0.017	
Good 18	-0.135	0.465	1.652	0.092	Good 52	-0.967	0.700	-0.679	0.600	
Good 19	1.833	0.073	2.978	0.023	Good 53	-0.570	0.582	1.856	0.070	
Good 20	1.493	0.298	3.866	0.121	Good 54	0.916	0.204	2.444	0.047	
Good 21	1.982	0.070	1.879	0.085	Good 55	-0.857	0.653	1.499	0.111	
Good 22	1.808	0.098	1.878	0.102	Good 56	-0.726	0.622	2.093	0.054	
Good 23	1.043	0.346	1.004	0.347	Good 57	-0.815	0.647	2.232	0.047	
Good 24	1.425	0.306	3.566	0.133	Good 58	1.267	0.319	3.030	0.162	
Good 25	4.361	0.005	1.774	0.099	Good 59	1.488	0.114	2.755	0.037	
Good 26	2.155	0.070	2.135	0.081	Good 60	4.300	0.005	1.541	0.117	
Good 27	1.123	0.335	1.537	0.289	Good 61	1.347	0.114	2.632	0.040	
Good 28	1.409	0.126	2.588	0.047	Good 62	0.766	0.239	2.238	0.055	
Good 29	1.345	0.324	3.663	0.122	Good 63	1.836	0.065	0.117	0.365	
Good 30	2.569	0.039	2.103	0.064	Good 64	1.247	0.324	1.238	0.318	
Good 31	1.462	0.297	4.600	0.094	Good 65	1.051	0.362	0.849	0.382	
Good 32	1.890	0.276	5.065	0.059	Good 66	1.793	0.068	2.790	0.029	
Good 33	1.348	0.115	2.507	0.042	Good 67	2.332	0.042	1.132	0.157	
Good 34	1.081	0.357	2.330	0.221						

Out-of-sample Tests of Predictability

- There are 16, 9, 5, 18, 22, and 8 goods over the 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, that perform better than the RW with no drift at the 10% level of significance.
- There are 13, 10, 7, 23, 41, and 30 goods over the 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, that perform better than the RW with drift at the 10% level of significance.

RW with or without Drift

RW without drift model seems to be a better representation of the U.S. dollar per Japanese Yen rate than RW with drift model over longer horizons.

The Ratio of RMSPE for RW without Drift to RMSPE for RW with Drift

Starting Date	First Forecast	3-month	6-month	12-month	24-month	36-month	48-month
1973.03	1983.01	1.003	1.004	1.006	0.997	0.987	0.983
1977.12	1983.01	1.000	0.998	0.992	0.970	0.944	0.924
1978.01	1983.01	1.000	0.998	0.993	0.971	0.945	0.925
1980.01	1994.10	0.980	0.956	0.895	0.831	0.727	0.510
1997.12	2003.10	0.994	0.984	0.985	0.907	0.849	0.966

Testing for Superior Predictive Ability (SPA)

- Since we are simultaneously testing multiple out-of-sample hypotheses in terms of different goods prices, the inference based on conventional p-values is likely to be contaminated. As a result of an extensive specification search, data mining is likely to take place.
- Hansen (2005): test of superior predictive ability (SPA).
- The SPA test examines the composite null hypothesis that the benchmark model is not inferior to any of the alternatives against the alternative hypothesis that at least one of the linear economic models has superior predictive ability.

SPA Test Groups

Case	Group of Goods	Observations	Sample used for out-of-sample analysis	Date of First Forecast
1	25 goods	first observation at 1973:03	All available	1983.01
2	13 goods	first observation at 1977:12	All available	1983.01
3	26 goods	first observation at 1997:12	All available	2003.10
4	38 goods	group 1 and 2	All available	1983.01
5	64 goods	group 1, 2 and 3	All available	2003.10
6	64 goods	group 1, 2 and 3	from 1997:12 and onwards	2003.10

SPA Test Results

.

	Case 6: 64 goods										
		Benc	Benchmark model: RW without Drift				Benchmark model: RW with Drift				
Horizon		Stat.	p-value	5% C.V.	1% C.V.	Stat.	p-value	5% C.V.	1% C.V.		
3	Lower Consistent	3.026	0.022 0.025 0.025	2.646 2.720 2.720	3.311 3.376 3.376	3.292	0.014 0.014 0.015	2.673 2.712 2.744	3.396 3.406 3.426		
6	Upper Lower Consistent Upper	3.354	0.025 0.009 0.009 0.009	2.624 2.653 2.653	3.376 3.295 3.305 3.305	3.889	0.015 0.002 0.002 0.002	2.744 2.725 2.738 2.738	3.426 3.321 3.328 3.328		
12	Lower Consistent Upper	4.312	0.003 0.001 0.001 0.001	2.581 2.623 2.658	3.330 3.330 3.332	3.884	0.002 0.003 0.003	2.706 2.706 2.725	3.311 3.354 3.379		
24	Lower Consistent Upper	6.044	0.000 0.000 0.000	2.573 2.576 2.576	3.264 3.264 3.264	6.133	0.000 0.000 0.000	2.662 2.680 2.680	3.367 3.367 3.367		
36	Lower Consistent Upper	4.981	0.000 0.000 0.000	2.506 2.518 2.518	3.153 3.153 3.153	6.047	0.000 0.000 0.000	2.659 2.665 2.665	3.328 3.333 3.333		
48	Lower Consistent Upper	4.223	0.000 0.000 0.001	2.281 2.431 2.538	2.989 3.082 3.208	3.888	0.002 0.002 0.002	2.427 2.493 2.539	3.182 3.221 3.248		

_

_

SPA Test Results

- We can reject the null of RW either with or without drift at the 5% level of significance over long horizons (12 months and above) for all cases.
- The SPA test results indicate that at least one of our price misalignment models has superior predictive ability in the long run over the RW model both with and without drift.

Discussion: Which Good Price Misalignment Can Predict Exchange Rate Changes?

Horizon	Good Description	Horizon	Good Description
3	Frozen fish and seafood Fresh fish and seafood Juices and non-alcoholic drinks Canned vegetables Other beverage materials including tea Full service meals and snacks Food at employee sites and schools Electricity Domestic services Laundry and dry cleaning services	24	Pork chops Ham Frozen fish and seafood Spices, seasonings, condiments, sauces Rent of primary residence Electricity Utility (piped) gas service New vehicles Intracity transportation
6	Frozen fish and seafood Spices, seasonings, condiments, sauces Food at employee sites and schools Electricity Utility (piped) gas service Intracity transportation	36	Pork chops Frozen fish and seafood Fresh whole milk White bread Spices, seasonings, condiments, sauces Electricity Utility (piped) gas service Intracity transportation
12	Frozen fish and seafood Electricity	48	Eggs Bananas Electricity

Discussion

Only tradable good price misalignments across countries have predictive power for future exchange rate movements?

No! electricity, utility gas service, intracity transportation.

• The price dispersions of goods with more sticky prices are better at forecasting nominal exchange rates?

No!

Good	Mean duration between price changes				
Pork chops	1.5				
Fish (excl canned)	1.8				
Fresh whole milk	2.4				
White bread	3.4				
Salt and other seasonings and spices	5.2				
Lettuce	1.0				
Electricity	1.8				
Utility natural gas service	1.0				
Intercity bus fare	4.4				
Weighted Statistics: Median 4.3 Mean 3.3					
Source: Bils and Klonow (2004)					

Frequency of Price Changes

Source: Bils and Klenow (2004).

U.S. dollar/UK pound Rate

In-sample Regression Results

- Estimates of the slope coefficient is positive over all horizons for almost all goods.
- Both the estimate of the slope coefficient and the R-square tend to increase with the forecast horizon for most of goods.
- Among 48 goods considered, there are 21, 18, 18, 25, 13, and 22 goods at the 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, for which the estimates of the slope coefficient is statistically significant at the 10% level.

In-sample Regressions - 24 months

Goods	R-sq	Beta	Tr(A)	p-(A)	Goods	R-sq	Beta	Tr(A)	p-(A)
Good 01	0.234	0.445	3.153	0.196	Good 25	0.240	0.698	4.225	0.020
Good 02	0.161	0.432	3.595	0.088	Good 26	0.142	0.330	2.436	0.184
Good 03	0.487	1.025	6.819	0.005	Good 27	0.224	0.804	3.020	0.185
Good 04	0.284	0.410	3.584	0.091	Good 28	0.304	0.726	5.502	0.053
Good 05	0.458	1.037	5.957	0.036	Good 29	0.081	0.215	1.496	0.326
Good 06	0.142	0.540	1.948	0.312	Good 30	0.414	1.069	6.605	0.019
Good 07	0.341	0.712	3.894	0.077	Good 31	0.127	0.330	2.287	0.185
Good 08	0.112	0.207	1.504	0.305	Good 32	0.243	0.412	2.869	0.347
Good 09	0.254	0.689	3,795	0.073	Good 33	0.407	0.782	4.656	0.076
Good 10	0.185	0.446	3.339	0.054	Good 34	0.460	0.781	6.407	0.011
Good 11	0.265	0.383	3.112	0.259	Good 35	0.342	0.760	4.795	0.053
Good 12	0.525	1.414	6.483	0.030	Good 36	0.431	0.793	7.178	0.010
Good 13	0.385	0.646	4.621	0.076	Good 37	0.023	0.117	1.106	0.347
Good 14	0.121	0.221	1.777	0.315	Good 38	0.091	0.225	2.176	0.226
Good 15	0.277	0.407	3.321	0.051	Good 39	0.096	0.349	2.588	0.206
Good 16	0.163	0.224	2.144	0.184	Good 40	0.116	0.338	2.237	0.247
Good 17	0.359	0.589	4.036	0.088	Good 41	0.020	0.076	1.044	0.366
Good 18	0.322	0.795	4.636	0.026	Good 42	0.379	0.828	6.095	0.029
Good 19	0.661	1.145	5.567	0.057	Good 43	0.068	0.075	1.249	0.481
Good 20	0.086	0.243	2.152	0.259	Good 44	0.638	1.136	5.137	0.069
Good 21	0.167	0.477	2.824	0.220	Good 45	0.001	0.008	0.241	0.686
Good 22	0.489	0.650	7.597	0.009	Good 46	0.199	0.465	3.026	0.123
Good 23	0.206	0.399	2.700	0.168	Good 47	0.500	0.803	7.861	0.010
Good 24	0.440	0.406	5.534	0.018	Good 48	0.404	0.800	6.653	0.071

Out-of-sample Tests of Predictability

- We report the results from the out-of-sample analysis of the regression model against two alternatives: (1) the Random Walk (RW) without drift and (2) the RW with drift.
- The results suggest that:
 - There are 4, 1, 1, 1, 2, 0 and 0 goods over the 1, 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, that perform better than the RW with no drift at the 10% level of significance.
 - There are 7, 2, 1, 1, 5, 1 and 4 goods over the 1, 3, 6, 12, 24, 36, and 48-month forecast horizons, respectively, that perform better than the RW with drift at the 10% level of significance.
- Data length might be an issue: price misalignment data starts from 1987:01 or 1999:12 in some cases, date of first forecast at 1998:04 or 2003:10.

Conclusion

- This paper studies whether price misalignments arising from the dual role of exchange rates have predictive power for future exchange rate movements.
- We use good-level price data to construct deviations from the Law of One Price and examine several bilateral nominal exchange rates. To account for small sample bias and data mining issues, inference is drawn from bootstrap distributions and tests of superior predictive ability (SPA) are performed.
- Our results suggest that the bias-adjusted slope coefficients and R-squares increase with the forecast horizon, and for the U.S. dollar/Japanese Yen rate, our price misalignment model generally outperforms random walks either with or without drift at the five percent level of significance over long horizons.