Discussion: Information Asymmetries and Spillover Risk in Settlement Systems, by Elizabeth Foote

Steve Williamson
Washington University in St. Louis
Federal Reserve Bank of Richmond Federal Reserve Bank of St. Louis

November 17, 2011

Basic Ideas

- Spillover of bad events across payments systems because of an information friction.
- Policy Conclusions: better dissemination of information, liquidity-saving mechanisms.

Model

- Two strategic players, bank A (participates in both systems) and bank D (participates only in one system)
- A is column player, D is row player
- Simplify the game: some of the details are irrelevant for the results
- $p=$ probability that A and D are playing the bad game
- $1-p=$ probability that A and D are playing the good game
- A knows what game they are playing; D does not.

Payoffs

Bad Game

	E	L
E	$(-a,-b)$	$(0,-d)$
L	$(-d,-f)$	$(-d,-d)$

Good Game

	E	L
E	$(0,0)$	$(0,-d)$
L	$(-d, 0)$	$(-d,-d)$

Key Assumptions:

$$
\begin{aligned}
& b<d \\
& a>d \\
& f>d \\
& p a<d
\end{aligned}
$$

Results

- When A knows the state:
- playing early is a dominant strategy in the good game.
- mixed strategy equilibrium in the bad game.
- When A is uninformed:
- A and D play early in both states.
- Conclusion: Information friction implies spillover, delay can be a good thing.

Comments

- Could I reverse engineer the problem and issues from description of the game?
- Is it useful to think about payments systems and policy without:
- asset prices
- an explicit treatment of central banking and central bank intervention
- an explicit treatment of the role played by collateral
- an explicit description of the assets and liabilities of the actors in the model
- an explicit description of actual payments

