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Abstract

In a modern financial system the importance of a given institution
depends on both its individual characteristics as well as the nature of its
relationships with other financial institutions. In this paper we examine
the network defined by the credit controls in the Canadian Large Value
Transfer System (LVTS). We provide a ranking with respect to the pre-
dicted liquidity holdings. We define these liquidity holdings as functions
of the network structure defined by the credit controls in LVTS. An in-
stitution is deemed most important if, based on our network analysis, it
is predicted to hold the most liquidity. In addition we provide a unique
measure of how fast an institution is in terms of processing its payments.

JEL classification: C11, E50, G20,
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“Why do I rob banks? Because that’s where the money is.” – Willie Sutton

PRELIMINARY

1 Introduction

Recently, economists have argued that the importance of banks within the

financial system cannot be determined in isolation. In addition to its individual
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characteristics, the position of a bank within the banking network matters.1

In this paper we examine the payments network defined by credit controls

in the Canadian Large Value Transfer System (LVTS). We provide a ranking

with respect to predicted liquidity holdings, which we derive from the network

structure. A bank is deemed most important if, based on our network analysis,

it is predicted to hold the most liquidity.

We focus on the Tranche 2 component of the LVTS.2 In this component,

participants set bilateral credit limits (BCLs) with each other that determine,

via these limits and an associated multilateral constraint, the maximum amount

of money any one participant can transfer to any other without offsetting funds.

Because banks start off the day with zero outside balances, these credit lim-

its define the initial liquidity holdings of banks.3 However, as payments are

made and received throughout the day the initial liquidity holdings are shuffled

around in ways that need not conform to the initial allocation. Banks with high

credit limits may not be major holders of liquidity throughout the day if they

make payments more quickly than they receive them. Likewise, banks that

delay in making payments may tie up large amounts of liquidity even though

they have a low initial allocation. Hence, knowledge of the initial distribution

alone does not tell us how liquidity is allocated throughout the day, nor does

it provide us with the desired ranking.

1Allen and Gale (2000) analyze the role network structure plays in contagion of bank
failures caused by preference shocks to depositors in a Diamond-Dybvig type model and find
more complete networks are more resilient. Bech and Garratt (2007) explore how the network
topology of the underlying payment flow among banks affects the resiliency of the interbank
payment system.

2See Arjani and McVanel (2006) for an overview of the Canadian LVTS.
3This is not the case in all payment systems. In Fedwire opening balances are with the

exception of discount window borrowing and a few accounting entries equal to yesterday’s
closing balance. In CHIPS each participant has a pre-established opening position require-
ment, which, once funded via Fedwire funds transfer to the CHIPS account, is used to settle
payment orders throughout the day. The amount of the initial prefunding for each partic-
ipant is calculated weekly by CHIPS based on the size and number of transactions by the
participant. A participant cannot send or receive CHIPS payment orders until it transfers
its opening position requirement to the CHIPS account.
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In order to predict the allocation of liquidity in the LTVS we apply a well

known result from Markov chain theory, known as the Perron-Frobenius theo-

rem. This theorem outlines conditions under which the transition probability

matrix of a Markov chain has a stationary distribution.

In the present application, we define a transition probability matrix for the

LVTS using the normalized BCL vectors for each bank. This approach is based

on the premise that money flows out of a bank in the proportions given by

the BCLs the bank has with the other banks. We also allow the possibility

that banks will hold on to money. This is captured by a positive probability

that money stays put. Assuming money flows through the banking system in

a manner dictated by our proposed transition probability matrix, the values

of its stationary vector represent the fraction of time a dollar spends at each

location in the network. The bank with the highest value in the stationary

vector is predicted to hold the most liquidity and is thus the most “central”

bank.

An attractive feature of our application of Markov chain theory is that it

allows us to estimate an important, yet unobservable characteristic of banks,

namely, their relative waiting times for using funds. The Bank of Canada

observes when payments are processed by banks, but does not know when the

underlying payment requests arrive at the banks. We are able to estimate these

wait times using a Bayesian framework. We find that processing speed plays

a significant factor in explaining the liquidity holdings and causes the ranking

of banks in terms of predicting liquidity holdings to be different from initial

distribution of liquidity.

Once we have estimates for the wait times we are able to see how well the

daily stationary distributions match the daily observed distributions of liquid-

ity. We find that they match closely. This validates our approach and suggests

that Markov analysis could be a useful tool for examining the impact of changes
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in credit policies (for example a change in the system wide percentage) by the

central bank on the distribution of liquidity in the LVTS and for examining the

effects of changes in the credit policies of individual banks.4

Our approach has much in common with Google’s PageRank procedure,

which was developed as a way of ranking web pages for use in a search engine

by Sergey Brin and Larry Page.5 In the Google PageRank system, the rank-

ing of a web page is given by the weighted sum of the rankings of every other

web page, where the weights on a given page are small if that page points to

a lot of places. The vector of weights associated with any one page sum to

one (by construction), and hence the matrix of weights is a transition proba-

bility matrix that governs the flow of information through the world wide web.

Google’s PageRank ranking is the stationary vector of this matrix (after some

modifications which are necessary for convergence).

The potential usefulness of Markov theory for examining money flows was

proposed by Borgatti (2005). He suggests that the money exchange process

(between individuals) can be modelled as a random walk through a network,

where money moves from one person to any other person with equal probabil-

ity. Under Borgatti’s scenario, the underlying transition probability matrix is

symmetric. Hence, as he points out, “the limiting probabilities for the nodes

are proportional to degree.” The transition probability matrix defined by the

BCLs and the patience parameters of banks is not symmetric and hence, this

proportionality does not hold in our application.

Others have looked at network topologies of banking systems defined by

observed payment flows. Boss, Elsinger, Summer, and Thurner (2004) used

Austrian data on liabilities and Soramäki, Bech, Arnold, Glass, and Beyeler

4Progress along these lines will require a model of how banks choose credit limits. We are
working on such a model.

5The PageRank method has also been adapted by the founders of Eigenfactor.org to rank
journals. See Bergstrom (2007)
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(2006) used U.S. data on payment flows and volumes to characterize the topol-

ogy of interbank networks. These works show that payment flow networks share

structural features (degree distributions, clustering etc.) that are common to

other real world networks and, in the latter case, discuss how certain events

(9/11) impact this topology. In terms of methodology our work is completely

different from these works. We prespecify a network based on fixed parameters

of the payment system and use this network to predict flows. The other papers

provide a characterization of actual flows in terms of a network.

2 Data

The data set used in the study consists of all tranche 2 transactions in the

LVTS from October 1st 2005 to October 1st 2006. This data set consists of

272 days in which the LVTS was running.

The participants in the sample consist of members of the LVTS and the

Bank of Canada. For the purposes of this study we exclude the Bank of Canada

since it does not send any significant payments in tranche 2.6

2.1 Credit Controls

The analysis uses data on daily cyclical bilateral credit limits set by the fourteen

banks over the sample period. Sample statistics for the daily cyclical limits are

presented in Table 1. BCLs granted by banks vary by a large amount (at least

an order of magnitude). The BCLs are fairly symmetric since the min through

the 50th percentile of absolute differences of the BCLs between pairs of banks

are zero and even the 75 percentile of the cyclical is only 16 million compared

to the average cyclical BCL of 699 million. While it is not evident from table

1, BCLs vary across pairs of banks by a large amount (at least an order of

6We discuss implications of this in section 3.
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BCLs abs diff
min 0.00 0.00
25 percentile 50.00 0.00
median 200.00 0.00
mean 417.33 59.47
75 percentile 698.64 16.33
max 2464.68 1201.10
std. dev. 495.81 182.50

Table 1: Daily cyclical limits in millions of dollars

magnitude) in some instances.

3 Initial Versus Average Liquidity Holdings

Let Wt denote the array of Tranche 2 debt caps (or BCLs) in place at time t,

where element wijt denotes the BCL bank j has granted to bank i on date t.

The initial distribution of liquidity is determined by the bilateral debt caps that

are in place when the day begins. By taking the row sum of the matrix Wt, we

obtain the sum of bilateral credit limits granted to bank i. However, a bank’s

initial payments cannot exceed this amount times the system wide percentage,

which is currently 24%. Using the notation from Arjani and McVanel (2006),

let

T2NDCit = .24 ∗
∑

j

wijt, (1)

denote the tranche 2 multilateral debit cap of bank i on date t. Since we are

summing over the BCLs that each bank j 6= i has granted to bank i, this is

the conventional measure of the status (a lá Katz) of bank i as determined

by the “opinions” of all the other banks. The BCL bank j grants to i defines

i’s ability to send payments to j. Hence, in terms of the weighted, directed

network associated with Wt, wijt is the weight on the directed link from i to j.

Hence, T2NDCit/.24 is also the (weighted) outdegree centrality of bank i on

date t.
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The multilateral debt caps specified in (1) represent the amount of liquidity

available to each bank for making payments at the start of the day. Thus, the

initial distribution of liquidity on date t is dt = (d1t, ..., dnt), where

dit =
T2NDCit∑n

j=1
T2NDCjt

, i = 1, ..., n.

During the day, however, the liquidity holdings of bank i changes to reflect

payments made and received. The average amount of liquidity that bank i holds

on date t, denoted Yit, is the time weighted sum of their balance in tranche 2

and the maximum cyclical T2NDC on date t. To compute this we divide the

day into T (not necessarily equal) time intervals, where T is the number of

transactions that occurred that day. Then

Yit =
T∑

j=1

bitjδj,j+1 + T2NDCit (2)

where δj,j+1 is the length of time between transaction j and j + 1 and bitj is

i’s aggregate balance of incoming and outgoing payments on date t following

transaction j.

In a closed system the aggregate payment balances at any point must sum

to zero across all participants. Therefore the total potential liquidity in the

system is the sum of the T2NDCs. In practice this is not quite true since the

Bank of Canada is also a participant in the LVTS and acts as a drain of liquidity

in tranche 2. Specifically, the Bank of Canada receives payments on behalf of

various other systems (e.g. Continuous Linked Settlement (CLS) Bank pay-

ins). Therefore, in practice the summation of net payments across participants

sums to a negative number; since the Bank of Canada primarily uses tranche

1 for outgoing payments. To account for this drain, we use as our definition of

liquidity in the system at any one time the summation, across all banks, of (2).
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Figure 1: Initial versus average liquidity holdings.

Thus, the average share of total liquidity that i has on date t is equal to

yit =
Yit∑
14

i=1
Yit

. (3)

The vector yt = (y1t, .., ynt) is our measure of the observed date t distribution

of money holdings for the n banks.

A comparison of the initial distribution of liquidity, dt, to the observed

daily liquidity holdings, yt, over the 272 days of the sample period is shown in

Figure 1. Each point in the figure represents a matching initial and observed

value (the former is measured on the horizontal axis and the latter is measured

on the vertical axis) for a given bank on a given day. Hence, there are 272×14 =

3808 points on the graph. If the two distributions matched exactly all the points

would lie on the 45 degree line.

We will present a formal (statistical) comparison of the two distributions

in a future revision. For now, we point out that the worst match between the

two distributions occurs for the points on the far right. This vertical clustering
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below the 45 degree line reflects the fact that for some banks the value in the

initial distribution is almost always greater than the observed liquidity holdings

over the day. This occurs because, as we shall see in section 5, these banks, in

particular bank 11, are speedy payment processors.

4 Markov Analysis

We begin with the weighted adjacency matrix W defined from the BCLs in

Section 3 and normalize the components so that the rows sum to one. That is,

we define the stochastic matrix WN = [wN
ij ], where

wN
ij =

wij∑
j wij

. (4)

Row i of WN is a probability distribution over the destinations of a dollar

that leaves bank i that is defined using the vector of BCLs granted to bank

i from all the other banks. Conditional on the fact that a dollar leaves bank

i, its movement is described by the matrix WN . However, we need to make

an important modification to address the fact that banks sometimes delay in

processing payment requests.

Delay is accounted for by (i) specifying delay probabilities θi for each bank

i and (ii) re-scaling the off-diagonal elements of WN to make these the appro-

priate conditional probabilities. Specifically, we create a new stochastic matrix

B = [bij], where

bii = θi, i = 1, ..., n, and bij = (1 − θi)w
N
ij for i 6= j. (5)

The delay parameters θi can be interpreted as the probability that bank i sends

a payment to itself. These are allowed to differ across banks.

By the Perron-Frobenius theorem (see, for example, Seneta (1981, chap-
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ter 1) we know that the power method applied to the matrix B converges to

a unique, positive stationary vector from any starting point so long as B is

stochastic, irreducible and aperiodic. These conditions are met by construction

and because of the high degree of connectedness of banks in the LVTS.7 Given a

vector of delay parameters θ = (θ1, ..., θn), the desired stationary vector, which

we denote by x(θ), is the leading (left) eigenvector of B:

xT (θ) = xT (θ)B.

Where do the θi’s come from? Unfortunately data is available on when

payment requests are processed, but not on when they were first received by

the bank. Hence, we do not have data on the delay tendencies of each bank.

Consequently we estimate the delay parameters using our assumption that on

average the distribution of liquidity in the system throughout the day achieves

the stationary distribution that corresponds to the transition probability matrix

B.

5 Estimation of the Delay Parameters

Let t denote day t in the sample period. Then, for each day of the sample we

can compute:

xT
t (θ) = xT

t (θ)Bt. (6)

We want to choose the vector θ so that over the sample period the eigenvectors

defined by (6) are as close as possible to the observed distributions of liquidity.

7In the case of Google, many pages exist which do not link to other pages and hence
the transition probability matrix constructed from the world wide web using links is only
substochastic. Moreover, this hyperlink matrix, as it is called in Langville and Meyer (2006),
is neither irreducible nor aperiodic. Hence, modifications of the initial hyperlink matrix are
required to derive the Google rankings.
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5.1 Bayesian Estimation Procedure

Our model of the observable distribution of liquidity is

yit = xit(θ) + ǫit, (7)

where θ is the vector of unknown diagonal parameters of B, yit is the observed

amount of liquidity being held by bank i on date t, xit(θ) is the stationary

amount of liquidity held by i on date t according to (6), and ǫit is the forecast

error, which has a mean zero symmetric distribution.

In this preliminary exploration we are interested in explaining mean levels

of liquidity as opposed to the forecast errors. Therefore, for the moment we

assume a simple distribution of errors that is independent across observations.8

The process of finding the unobservable θs can be done either via a GMM

estimation or via a Bayesian framework; the latter is described below.

The family of distributions used for the forecast error is the normal family

with precision τ .9 In this case the likelihood for an observation is

L(yit|θ,Bt, τ) = N(yit|xit(θ), τ).

Assuming independence of the errors, a likelihood for the whole sample is

L({yit}
T
t=1|θ, {Bt}

T
t=1, τ) =

T∏

t=1

n∏

i=1

L(yit|θ,Bt, τ).

We assume a flat uniform prior on the θs and a diffuse Gamma prior on

the precision with a shape parameter of 1/2 and a scale parameter of 2. The

former distribution embodies our lack of information about the θs and the

8A plausible next step would be to include the correlations between the errors on a given
data t induced by the fact that yit][s have to sum to one. Given the difficulty in estimating
the mean parameters estimating these covariance parameters will be left for a later exercise.

9The precision is just the inverse of the variance.
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latter distribution embodies our lack of information of the error term, and also

exploits the conjugacy of the normal-gamma likelihood.

The MCMC algorithm used to calculate the above model is a Metropolis-

in-Gibbs. The first block is a draw of τ (conditional on the current realization

of the θs) from its posterior distribution of Gamma with the scale parameter

of 1/2+nT where nT is the total number observations, and a shape parameter

of 1 + SSE where SSE is the sum of squared errors (i.e the sum of squared

differences between the cash distribution and the stationary distribution). The

second block is a random walk Metropolis-Hastings step to draw a realization

of the θs conditional on the current realization of τ . The proposal density is a

multivariate normal distribution with mean of the current θs and a covariance

matrix tuned so that the acceptance probability is approximately 25%-30%.

The drawing procedure consists of simultaneously drawing the mean of the

θs, which is denoted θ̄, and then drawing deviations of this mean, which are

denoted θǫ,i. An individual θ is then defined as

θi = θ̄ + θǫ,i,

i = 1, ..., n. This allows good movement along the likelihood surface as de-

scribed by Gelman and Hill (2007).

6 Empirical Results

The algorithm was started at θi equal to 0.5 for all banks except for bank

eleven which was set at (roughly) 0.3. After this, the MCMC algorithm was

run for 530,000 iterations and a posterior sample was collected.10 The first

30,000 iterations were discarded as a burn-in phase. Total computing time was

roughly 84 hours.

10The identification problems discussed below necessitate the large amount of iterations.
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Bank θi Lower 95% HPD Upper 95% HPD
1 0.3126 0.2396 0.4538
2 0.2285 0.0178 0.4632
3 0.3305 0.2580 0.4682
4 0.3251 0.2344 0.4677
5 0.4220 0.0357 0.7454
6 0.3815 0.0809 0.6019
7 0.1992 0.0921 0.3671
8 0.3348 0.2611 0.4721
9 0.4131 0.3400 0.5359
10 0.4154 0.3504 0.5369
11 0.0778 0.0021 0.2649
12 0.3591 0.2867 0.4923
13 0.4158 0.3222 0.5438
14 0.4962 0.4287 0.6015

Table 2: Posterior Averages

The posterior sample averages and the 95% HPDs are presented in Table 2.

Precise estimates of θ have a fairly large amount of uncertainty to them. This

is due to an identification problem in how the θs are defined. This comes from

the fact that if all θs are identical (say zero) then the stationary distribution

that comes from this set of θs will be the same as that from any other identical

vector of θs. This holds for the case when all θs are identical and not equal to

one. Another issue is that the surface of the likelihood is very flat in certain

directions (e.g. the direction of the unit vector) and falls off rapidly in other

directions. Because of this the sampler can only move slowly around the surface

of the likelihood.11

The most striking feature is the degree of heterogeneity among the esti-

mates. Looking at the ratio of estimates for banks 14 and 11, for instance,

we see that bank 14 is over 6 times more likely to delay in making a payment

than bank 11. We do not, at this point, attempt to explain the variation in the

θs. However, we do note that there does seem to exist a negative relationship

11This is a problem of the likelihood not the method. In a classical exercise, like GMM,
the optimizer would get stuck at non-optimal points since as the optimizer gets close to (for
example) the unit vector it will stop moving (or slow down in its movements) due to the
flatness.
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Figure 2: Average stationary distribution of liquidity for each bank along with
bar-indicators at 2 standard deviations above and below each mean value.

between delay tendencies and initial liquidity holdings. Classical ordinary least

squares regression of the average initial distribution on the θis provides esti-

mates of .4056 for the intercept (standard deviation equals 0.0472) and -0.9669

for the slope (standard deviation equals 0.5442). This suggests that banks with

higher liquidity holdings delay less, however this is not quite significant at the

10% confidence level (The p-value of the slope of the trend line is .1009).

Figure 2 shows a plot of the average stationary distribution of liquidity

for each bank along with bar-indicators at 2 standard deviations above and

below each mean value (As a benchmark, note that in case of the normal

distribution these bars would include about 95% of the observations used to

compute the mean). In terms of ranking frequencies, bank 1 has the highest

predicted liquidity on 260 of 272 days and in contrast the similarly sized bank

11 is the highest on 5 days.

Insight into the differences between bank 1 and 11 can be seen by looking

at Table 2. Bank 11 has a delay parameter of only .0778 compared to .3126

for bank 1. Hence, despite its relatively lower level of initial liquidity bank 1

is over 4 times more likely to hold onto liquidity sent to it than bank 11, and

hence bank 1 holds more liquidity over the course of the day. The difference

between average liquidity according to the initial and stationary distributions

14



Bank Difference
1 0.0025
2 0.0012
3 -0.0018
4 -0.0002
5 -0.0006
6 -0.0008
7 0.0086
8 -0.0023
9 -0.0103
10 -0.0140
11 0.0428
12 -0.0053
13 -0.0059
14 -0.0140

Table 3: Difference between average initial and average stationary distributions.

for all banks are shown in Table 3.

6.1 Comparison of the stationary distribution to the ob-

served distribution of liquidity.

Figure 3 shows the daily stationary distributions (using the posterior means for

the θ vector) and the daily observed liquidity distributions over the 272 days of

the sample period.12 Each point in the figure represents a matching stationary

distribution value and observed value (the former is measured on the horizontal

axis and the latter is measured on the vertical axis) for a given bank on a given

day. Hence, as in Figure 1, there are 3808 points on the graph and if the two

distributions matched exactly all the points would lie on the 45 degree line.

Different colors represent different banks.

Compared to Figure 1, which involves the initial distribution of liquidity,

there is improved clustering around the 45 degree line. In particular, the cluster

of points associated with the fastest processor, bank 11, (magenta) is centered

12An animated presentation of the data is available at
http://www.econ.ucsb.edu/∼garratt/daily.m1v.
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Figure 3: Actual liquidity and the stationary distribution at the posterior av-
erage values of θ.

closely on the 45 degree line. In figure 1 bank 11 was one of the several banks

which contributed to the vertical clustering below the forty-five degree line.

This was due to the fact that in figure 1 the speed with which bank 11 (among

others) processes payments was not taken into account. Again, formal statisti-

cal analysis will follow.

7 Conclusion

In this paper we have developed an empirical measure of which banks in the

Canadian LVTS payment system are likely to be holding the most liquidity

at any given time. This measure is based on the implicit network structure

defined by the BCLs that LVTS members grant each other.

Our measure of predicted liquidity is based on the idea that credit limits are

a good indicator of likely liquidity flows. This idea is born out by comparing

predicted liquidity with the realized average liquidity. One crucial parameter

that we estimate is an unobserved processing speed parameter. We then show
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that when processing speed is taken into account our measure of predicted

liquidity is a good predictor of average daily liquidity.

While we estimate a constant unobserved processing speed parameter it is

probable that the processing speed varies by day.13 In future work we plan to

estimate a daily processing speed per bank and compare this to our constant

parameter.
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