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Abstract

A dynamic competitive equilibrium model in this paper incorporates illiquidity

of assets due to asymmetric information about asset quality. In the model, both a

negative productivity shock and an increase in the degree of asymmetric information

can cause a simultaneous deterioration of illiquidity of assets and the market price

of assets. Illiquidity of assets leads to liquidity transformation by banks, and banks

finance part of their assets through public equities (bank capital) to prevent a bank run

in equilibrium. The capital-asset ratio of banks increases in illiquidity of bank assets

and the volatility of the market price of bank assets.
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1 Introduction

This paper presents a dynamic competitive equilibrium model in which illiquidity of assets

arises due to asymmetric information about asset quality. There are two main results. First,

it is shown that both a negative productivity shock and a rise in the degree of asymmetric

information can cause an increase in illiquidity of assets and a drop in the market price

of assets, as occurred during the financial crisis since 2007. Second, the model shows that

illiquidity of assets leads to financial intermediation for liquidity transformation. It is found

that liquidity-transforming banks are necessarily susceptible to a self-fulfilling bank run due

to illiquidity of bank assets and need to finance part of their assets through public equities

(bank capital) to prevent a bank run. The equilibrium capital-asset ratio of banks increases

in illiquidity of bank assets and the volatility of the market price of bank assets.

The model is a version of the AK model, where only a part of agents can produce new

capital from goods due to an idiosyncratic shock to each agent. Call the agents who can

produce new capital as ‘productive’ and those who cannot as ‘unproductive’. Agents are

anonymous and cannot borrow against future income. In the model, the number of the

productive is so small that the amount of goods produced from the productive’s own capital

is short of the efficient level of aggregate investment in new capital. The productive sell their

used capital to obtain goods from the unproductive for maximizing their investments in new

capital.

The competitive market for capital, however, is contaminated by adverse selection, since

every unit of used capital depreciates at its own rate and the depreciation rate is private

information for the holder of the unit of used capital. The adverse selection lowers the

market price of capital, leading to a market’s undervaluation of the average quality of used

capital held by each agent. Thus, used capital held by each agent is illiquid as a whole. In

this paper, illiquidity is defined as undervaluation in the market.
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The degree of illiquidity of capital fluctuates in response to shocks. There are two types of

shocks in the model; a productivity shock and a change in the range of possible depreciation

rates of capital. It is shown that both types of shocks can cause an increase in illiquidity of

capital and a decline in the market price of capital, as occurred during the financial crisis

since 2007. First, a negative productivity shock reduces the market price of capital, since

a decline in agents’ income lowers aggregate spending on capital. A decline in the market

price of capital in turn discourages agents from selling high-quality capital, which increases

illiquidity of capital due to worsened adverse selection. Second, an expansion of the range

of possible depreciation rates of capital increases the degree of asymmetric information in

the market for capital. This effect of the shock worsens adverse selection, and a resulting

increase in illiquidity of capital lowers the market price of capital.

Illiquidity of capital also explains why financial intermediation is necessary for the econ-

omy. Banks can supply liquid securities to agents by holding illiquid capital and financing

the cost through bank deposits. Since idiosyncratic depreciation rates of capital held by

banks cancel each other out, the average quality of each bank’s assets becomes public infor-

mation, which makes bank deposits issued against bank assets free from illiquidity. Agents

can increase investments in new capital by storing wealth through bank deposits when they

are unproductive and selling them when they are productive.

It is found that liquidity-transforming banks would be susceptible to a self-fulfilling bank

run if they issued bank deposits up to the true value of bank assets, since repayable bank

deposits would exceed the liquidation value of bank assets due to illiquidity of capital.1 To

prevent a bank run, banks need to finance the difference between the true value and the

liquidation value of their assets through public equities (bank capital).

The dynamic analysis of the model identifies two factors that determine the minimum

capital-asset ratio for banks to prevent a bank run. First, to eliminate the possibility of a

1This is the same type of the panic-based bank run as analyzed by Diamond and Dybvig (1983).

3



bank run, banks must limit the repayable amount of bank deposits to the liquidation value

of their assets in the next possible recession. This factor drives the minimum capital-asset

ratio of banks to be pro-cyclical, since the true value of bank assets increases during booms,

while the limit on bank deposits remains equal to the liquidation value of bank assets during

recessions. Second, when negative shocks hit the economy, illiquidity of capital increases

due to worsened adverse selection, as explained above. This factor enlarges the difference

between the true value and the liquidation value of bank assets, which drives the minimum

capital-asset ratio of banks to be counter-cyclical. Overall, the capital-asset ratio of banks

increases in illiquidity of bank assets and the volatility of the market price of bank assets, and

the relative balance between these two factors determines the cyclicality of the capital-asset

ratio of banks. In the numerical examples of the dynamics of the model, the capital-asset

ratio of banks is pro-cyclical when business cycles are driven by productivity shocks and it

is counter-cyclical when business cycles are driven by changes in the degree of asymmetric

information (i.e., changes in the range of possible depreciation rates of capital).

The most related paper to this paper is Kiyotaki and Moore (2005). They introduce

a resaleability constraint on capital in a dynamic competitive equilibrium model. This

constraint is interpreted as controlling for the effectiveness of financial intermediation that

alleviates asymmetric information by bunching assets with idiosyncratic qualities. This paper

formalizes this interpretation and endogenizes the dynamics of liquidity of assets and bank

capital requirements. Also, this paper contributes to the literature on dynamic competitive

equilibrium models of banking, in which banks are usually either entrepreneurs whose bank

capital is their internal net-worth or firms that earn zero profit and do not need to maintain

any bank capital.2 The model in this paper incorporates publicly-owned banks subject to

bank capital requirements, which arise from asymmetric information endogenously.

2For example, see Williamson (1987), Bernanke and Gertler (1989), Holmström and Tirole (1997), and
Chen (2001).
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The remainder of the paper is organized as follows. Section 2 describes the model. Section

3 derives aggregate equilibrium conditions. Section 4 analytically solves the model without

a banking sector. Section 5 analyzes liquidity transformation by banks in equilibrium and

the dynamics of the capital-asset ratio of banks. Section 6 concludes.

2 The model

2.1 The agent’s problem

There is a discrete-time economy with a continuum of infinite-lived agents and a represen-

tative bank in a competitive banking sector. Denote the set of agents in the economy by I

and the measure on the continuum of agents by µ.

Each agent can produce homogeneous goods from capital in the beginning of every period.

The production function for goods is:

yi,t = αtki,t−1, αt ∈ {ᾱ, α}, (1)

where i is an index for each agent, t denotes a time period, yi,t is output, ki,t−1 is capital

held at the end of the previous period, and αt is the productivity of capital common to all

the agents.

Capital is divisible and each infinitesimal unit of capital depreciates at its own rate after

production. Denote by ki,δ,t−1 the density of capital that is used by agent i and depreciates

at the rate of δ after the production in period t. Depreciation rates are independently and

identically distributed by a uniform distribution, such that:

δ ∼ U [δ̄ − ∆t, δ̄ + ∆t], ∆t ∈ {∆̄, ∆}, (2)

ki,δ,t−1 =
ki,t−1

2∆t

, (3)
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where δ̄ ∈ (0, 1). Note that (2∆t)
−1 is the density of the uniform distribution.

Each value of αt and ∆t is determined by a Markov process. For x = α, ∆ and for all t,

the conditional probability that xt+1 = xt = x̄ is η̄x (∈ [0, 1]) and the conditional probability

that xt+1 = xt = x is η
x

(∈ [0, 1]). Assume ᾱ, α > 0 and that ∆̄, ∆ ∈ (0, 1 − δ̄).

Assume that the depreciation rate of each infinitesimal unit of capital is private informa-

tion for the agent who uses the unit of capital for production in the beginning of each period.

The depreciation rate becomes public information when the capital is used for production

again in the next period, which reveals the depreciation rate through the amount of goods

produced by the capital.3

Call depreciated capital after production as ‘used capital’. Agents can trade used capital

in a competitive market, where a price is set to each infinitesimal unit of capital. Assume

that agents are anonymous and that the price of used capital in the market cannot be

contingent on the characteristics of the buyer or the seller. As a consequence, every unit

of capital is traded at an identical price in each period.4 By the law of large numbers, the

realized average depreciation rate of used capital bought by each buyer equals the average

depreciation rate of used capital sold in the market, which is denoted by δ̂t.
5

Only a part of agents can produce new capital from goods. The production function for

new capital is:

ii,t = φi,txi,t, φi,t ∈ {0, φ}, (4)

3After the revelation of depreciation rates, capital net depreciation becomes homogeneous once and then
each unit of capital depreciates at its own rate.

4If there are multiple competitive markets sorted by the amount of capital sold by each seller, then the
quantity of sold capital could signal the quality of the capital. Even in this case, anonymity of sellers would
let each seller split her sold capital in multiple lots and sell them in different markets to maximize the total
revenue from the sales. This paper abstracts from the interaction between competitive market prices and
this type of seller’s strategic behaviour.

5This is a common feature of competitive equilibrium models with adverse selection. See Gale (1992) and
Eisfeldt (2004) for example.
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where ii,t is newly produced capital and xi,t is the amount of goods invested in capital. The

productivity of investment, φi,t, is determined by an idiosyncratic Markov process for each

agent. The conditional probability that φi,t+1 = φi,t = φ is ρP (∈ [0, 1]) and the conditional

probability that φi,t+1 = φi,t = 0 is ρU (∈ [0, 1]) for all i and t. The new capital only

materializes in the beginning of the next period before the timing of production and cannot

be traded today.

Each agent maximizes expected utility from consumption every period. The agent’s

maximization problem is:

max
{ci,s, xi,s, ko

i,s, li,δ,s}
∞

s=0

Et

∞
∑

s=0

βs ln ci,s

s.t. ci,s + xi,s + Qsk
o
i,s + bi,s + (1 + ζ)Vssi,s

= αski,s−1 + Qs

∫ δ̄+∆s

δ̄−∆s

li,δ,s dδ + Rsbi,s−1 + (Ds + Vs)si,s−1,

ki,s = φi,sxi,s + (1 − δ̂s)k
o
i,s +

∫ δ̄+∆s

δ̄−∆s

(1 − δ) (ki,δ,s−1 − li,δ,s) dδ,

li,δ,s ∈ [0, ki,δ,s−1] ,

ci,s, xi,s, ko
i,s bi,s, si,s ≥ 0,

(5)

where β ∈ (0, 1) and ζ > 0.

The first constraint of the maximization problem (5) is a flow-of-fund constraint, where

ci,s is consumption, ko
i,t is the amount of used capital bought from the market, li,δ,t is the

density of used capital with a depreciation rate δ sold by the agent in the market, bi,s is the

amount of one-period bank deposits, si,s is the number of bank equities, Qs is the market

price of used capital, Rs is the ex-post deposit interest rate, Vs is the ex-dividend price of

bank equities, Ds is the amount of bank dividends per equity, and ζ is a marginal cost of

holding bank equities. The bank-equity holding cost is a reduced-form representation of costs

of managing equities, such as a transaction cost and a cost of monitoring that is necessary
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to make the bank to pay dividends.6 The existence of this cost will make agents require a

higher rate of returns on bank equities than bank deposits. Thus, equity financing becomes

costly for the bank. The flow-of-fund constraint also incorporates an assumption that agents

cannot borrow against their future income due to their anonymity that makes it difficult to

enforce their commitments.

The second constraint is the law of motion of capital. The third constraint means that

the sales of used capital must be non-negative and that the agent cannot sell more than the

amount of used capital the agent owns. The fourth constraint is a non-negativity constraint

on choice variables. Each agent takes as given the probability distribution of {Qs, Ds, Vs,

Rs, δ̂s, αs, ∆s, φi,s}
∞
s=0.

2.2 The bank’s problem

The representative bank in the competitive banking sector can buy used capital from the

market and sell bank equities and one-period bank deposits to agents. The implicit as-

sumption behind the difference in the ability to borrow (including equity financing) between

agents and the bank is that the bank is not anonymous, which makes it feasible to enforce

its commitments. In contrast, agents are anonymous and it is difficult to enforce their com-

mitments. Assume that writing contingent contracts that are enforceable by the court is still

costly, so that the bank can only issue deposits and equities.7

If there are equity holders of the bank, then the bank maximizes the value of the bank

for equity holders. In this case, the bank maximizes the value of (Dt + Vt)si,t−1 for each

agent every period, since the maximum of each agent’s utility function increases in the

agent’s wealth, given the probability distribution of exogenous variables for agents. Since

6The predetermined amounts of repayments to deposits are protected by laws. In contrast, equity holders
need to find the total cash flows for the bank and negotiate with the bank on the amount of dividends.

7Note that equities are not contingent contracts that specify contingent returns ex-ante. Instead, ex-post
negotiation on dividends must take place as if default on debt occurs every period. See Hart and Moore
(1994) for more details on the feature of equities as a financial contract.
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{si,t−1|i ∈ I} is predetermined, maximizing (Dt + Vt)si,t−1 for all i ∈ I is equivalent to

maximizing the total value of the bank for equity holders, (Dt+Vt)SB,t−1, where SB,t denotes

the number of bank equities issued by the bank. The total value of the bank for equity holders

is derived from a flow-of-fund constraint on the bank:

DtSB,t−1 + RtBB,t−1 + Qt(K
o
B,t − LB,t) = αtKB,t−1 + BB,t + Vt(SB,t − SB,t−1), (6)

where KB,t−1 is the amount of capital held at the end of the previous period, LB,t is the

amount of used capital sold by the bank, Ko
B,t is the amount of used capital bought from

the market, and BB,t is the amount of bank deposits issued by the bank. Note that the last

term on the right-hand side of the equation is the revenue from newly issued equities or the

expenditure on equity repurchase.

If the bank fulfills deposit contracts, then the ex-post deposit interest rate, Rt, is the

ex-ante non-contingent interest rate specified by deposit contracts in the previous period,

which is denoted by R̃t−1. If the bank defaults, then the ex-post deposit interest rate equals

the recovery rate of deposits. Assume that a bank run occurs if the repayable amount of

deposits exceeds the liquidation value of capital held by the bank.8 In this case, the bank

cannot roll over its deposits and must maximize the repayment to depositors by liquidating

all the capital it owns. Since the liquidation value of the bank’s capital is less than the

8As shown below, the present discounted value of future income generated by the bank’s capital exceeds
the liquidation value of the capital. Thus, if the bank can roll over deposits, the bank can avoid default.
But if all the depositors expect that the bank cannot roll over deposits in this case, then their expectations
are self-fulfilling.
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repayable amount of deposits, the bank must default and bank equities lose value. Thus:















BB,t, Dt, Vt, K
o
B,t = 0, LB,t = KB,t−1, Rt =

(αt+Qt)KB,t−1

BB,t−1
if R̃t−1BB,t−1 > (αt + Qt)KB,t−1,

Rt = R̃t−1 if R̃t−1BB,t−1 ≤ (αt + Qt)KB,t−1.

(7)

Note that the recovery rate of deposits, Rt, on the first line is determined by the flow-of-fund

constraint (6).

When maximizing (Dt+Vt)SB,t−1, the bank internalizes the price of bank equities, Vt, and

the ex-ante deposit interest rate, R̃t, the latter of which responds to the level of bank deposits

through the probability of a bank run in the next period. These prices are determined by

the first-order conditions for bank securities in the agent’s maximization problem (5):

(1 + ζ)Vt ≥ Et

[

βci,t(Dt+1 + Vt+1)

ci,t+1

]

, (8)

1 ≥ Et

[

βci,tRt+1

ci,t+1

]

. (9)

The first line is for bank equities and the second line for bank deposits. On each line, the left-

hand side of the weak inequality is the marginal cost of the bank security in terms of current

consumption and the right-hand side is the marginal return from the bank security. If the

strict inequality holds, then the agent does not hold the bank security. The equality holds

for the agent who has the largest value of the right-hand side term among agents. Denote

the indices of these agents for bank equities and bank deposits by iS,t and iB,t, respectively.
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The total value of the bank is determined by a recursive maximization problem such that:

(Dt + Vt)SB,t−1 = Ωt(KB,t−1, BB,t−1, R̃t−1) ≡

max
{Ko

B,t
,LB,t,BB,t,R̃t}

αtKB,t−1 + Qt(LB,t − Ko
B,t) − RtBB,t−1 + BB,t

+ Et

[

βci,tΩt+1(KB,t, BB,t, R̃t)

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

i = iS,t

]

,

s.t. 1 = Et





βci,t min
{

R̃t, (αt+1 + Qt+1)KB,t(BB,t)
−1
}

ci,t+1

∣

∣

∣

∣

∣

∣

i = iB,t



 ,

KB,t = (1 − δ̂t)K
o
B,t + (1 − δ̄)(KB,t−1 − LB,t),

LB,t ∈ [0, KB,t−1], Ko
B,t, BB,t ≥ 0,

the bank-run condition (7).

(10)

The bank takes as given the probability distribution of {Qs, δ̂s, αs, βci,s(ci,s+1)
−1 | i ∈

{iS,s, iB,s}}
∞
s=t. The value function, Ωt, is time-dependent since these exogenous variables for

the bank are time-varying. Note that the objective function is the flow-of-fund constraint

(6), where Vt is replaced with the first-order condition for bank equities held by the agent

iS,t.

The first constraint of the bank’s maximization problem (10) is the first-order condition

for the agent iB,t’s bank deposits, in which the definition of the ex-post interest rate in

Equation (7) is substituted.9 The bank internalizes the ex-ante deposit interest rate, R̃t,

through this constraint. The second constraint is the law of motion of capital for the bank.

It is assumed that bank does not know the depreciation rate of each infinitesimal unit of

capital the bank holds.10 Thus, the average depreciation rate of capital sold by the bank

9In the first constraint, KB,t(BB,t)
−1 is replaced with infinity if BB,t = 0.

10This assumption will ensure that the bank does not sell a low-quality fraction of used capital selectively in
equilibrium. If the bank also had private information, then the adverse selection problem could be worsened
by the existence of the bank since the bank does not have an opportunity of investment in new capital and
would sell only a low-quality fraction of used capital. Even in this case, the average quality of bank assets
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equals δ̄ by the law of large numbers. On the third line are a constraint that the bank

cannot sell used capital more than it owns and a non-negativity constraint on bank’s choice

variables. The last line is the bank-run condition described above.

If there is no equity holder for the bank (i.e., SB,t−1 = 0), then the bank maximizes the

profit from initial public offering of its equities and consumes the profit right away. The

profit equals the value of Ωt. Thus the maximization problem (10) covers this case.11

2.3 Definition of an equilibrium

For exposition purpose, this paper first shows the endogenous determination of illiquidity of

capital analytically by using the model without the bank and then introduce the bank to

the model to show that illiquidity of capital leads to liquidity transformation by the bank.

Each exercise needs to define an equilibrium.

Call a set of endogenous variables, {ci,s, xi,s, ki,s, ko
i,s, li,s, bi,s, si,s, KB,s, Ko

B,s, LB,s, BB,s,

SB,s, Qs, δ̂s, Ds, Vs, R̃s | i ∈ I}∞s=0, contingent on the realization of {αs, ∆s, φi,s | i ∈ I}∞s=0 as

a contingent plan. Given the set of parameter values, {δ̄, φ, β, ζ, ρP , ρU , ᾱ, α, η̄α, η
α
, ∆̄, ∆,

η̄∆, η
∆
}, and the initial condition on {ki,−1, bi,−1, si,−1, KB,−1, BB,−1, SB,−1, R̃−1 | i ∈ I}, an

equilibrium for the model with a banking sector is defined as a contingent plan characterized

by: the maximization problems (5) and (10) are solved; agents and the bank hold rational

expectations; the average depreciation rate of used capital sold in the market is determined

by

δ̂t =

∫

I

∫ δ̄+∆t

δ̄−∆t
δ li,δ,t dδ µ(di) + δ̄ LB,t

∫

I

∫ δ̄+∆t

δ̄−∆t
li,δ,t dδ µ(di) + LB,t

; (11)

and the markets for used capital, bank deposits and bank equities clear every period, such

would be public information, given that agents have rational expectations of bank behaviour.
11It can be shown that the bank’s profit from initial public offering becomes zero in equilibrium.
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that

∫

I

∫ δ̄+∆t

δ̄−∆t

ko
i,δ,t dδ µ(di) + Ko

B,t =

∫

I

∫ δ̄+∆t

δ̄−∆t

li,δ,t dδ µ(di) + LB,t, (12)

∫

I

bi,t µ(di) = BB,t, (13)

∫

I

si,t µ(di) = SB,t. (14)

An equilibrium for the model without a banking sector is a contingent plan characterized

by: the maximization problem (5) is solved with bi,t = si,t = 0 for all i and t; agents hold

rational expectations; and Equations (11) and (12) are satisfied with Ko
B,t = LB,t = 0 for all

t.

3 Aggregate equilibrium conditions

3.1 Shock processes

The dynamic analysis of the model with a banking sector will investigate business cycles

driven by each type of the two shocks, αt and ∆t. Set ∆̄ = ∆ when analyzing productivity-

driven business cycles, and set ᾱ = α, when analyzing information-driven business cycles.

With these assumptions, the number of possible states in the next period becomes two every

period, which will simplify the bank’s problem about whether the bank should take the risk

of a bank-run in the next period, or not.
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3.2 Agent’s behaviour

Call agents with φi,t = φ as ‘productive’ and those with φi,t = 0 as ‘unproductive’. Suppose

that the following conditions hold:

φ > (1 − δ̂t)Q
−1
t , (15)

1 > Et

[

βci,tRt+1

ci,t+1

∣

∣

∣

∣

φi,t = φ

]

, (16)

(1 + ζ)Vt > Et

[

βci,t(Dt+1 + Vt+1)

ci,t+1

∣

∣

∣

∣

φi,t = φ

]

, (17)

1 = Et

[

βci,tRt+1

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

, (18)

(1 + ζ)Vt = Et

[

βci,t(Dt+1 + Vt+1)

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

. (19)

The left-hand side of the first condition is the productivity of investment in new capital, and

the right-hand side is the quantity of capital net depreciation that an agent can purchase

from the market with a unit of goods. This condition implies that investment in new capital

is more profitable than purchasing used capital from the market. The other conditions imply

that the rate of returns on the productive’s investment into new capital dominates the rates

of returns on bank securities and that the unproductive are indifferent between consumption

and holding bank securities. With these conditions, it is possible to show that xi,t > 0 and

ko
i,t = bi,t = si,t = 0 for the productive, that xi,t = 0 for the unproductive, and that agents

iS,t and iB,t are unproductive. These conditions will be verified in the numerical examples

of equilibria considered below.

Each agent sells used capital if selling used capital has a higher rate of returns than
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keeping the used capital until the next period. Thus:

li,δ,t =















ki,δ,t−1, if Qt ≥ λi,t(1 − δ),

0, otherwise,

(20)

where λi,t is the shadow value of capital net depreciation at the end of period t (i.e., ki,t),

which is given by the Lagrange multiplier for the law of motion of capital in the maximization

problem (5).

It can be shown that, given xi,t > 0 for the productive, the productive’s shadow value of

capital net depreciation equals the marginal cost of producing new capital. Thus:

λP,t = φ−1, (21)

where λP,t denotes the shadow value of capital net depreciation, λi,t, for the productive.

On the other hand, the unproductive’s shadow value of capital net depreciation does not

necessarily equal the marginal acquisition cost of capital net depreciation from the market,

Qt(1 − δ̂t)
−1, since ko

i,t can be zero if the unproductive choose to store their wealth only

through bank securities. It can be shown that:















λU,t = Qt(1 − δ̂t)
−1, if ko

i,t > 0 for the unproductive,

ko
i,t = 0 for the unproductive, if λU,t < Qt(1 − δ̂t)

−1,

(22)

in equilibrium, where λU,t denotes the shadow value of capital net depreciation, λi,t, for the

unproductive. The second line implies that the unproductive choose ko
i,t = 0 if their shadow

value of capital net depreciation is lower than the marginal acquisition cost of capital net

depreciation.

Given Equation (20), the lower bound for the depreciation rate of used capital sold by
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each agent is determined by:

δ̃i,t = max

{

δ̄ − ∆t, min

{

δ̄ + ∆t, 1 −
Qt

λi,t

}}

. (23)

The maximum and the minimum operators in Equation (23) ensure that δ̃i,t is within the

range of the uniform distribution of δ. Denote the values of δ̃i,t for the productive and

the unproductive by δ̃P,t and δ̃U,t, respectively. Given Equations (21)-(23), these values are

defined as:

δ̃P,t = max
{

δ̄ − ∆t, min
{

δ̄ + ∆t, 1 − φQt

}}

, (24)

δ̃U,t = max

{

δ̄ − ∆t, min

{

δ̄ + ∆t, 1 −
Qt

λU,t

}}

. (25)

Apply the envelop theorem to the maximization problem (5) to find that:

λi,t = Et

[

βci,t

ci,t+1

(

αt+1 + λi,t+1

∫ δ̃i,t+1

δ̄−∆t+1

1 − δ

2∆t+1
dδ + Qt+1

∫ δ̄+∆t+1

δ̃i,t+1

1

2∆t+1
dδ

)]

. (26)

This dynamic optimization condition implies the following decision rule for each agent:

ci,t = (1 − β)wi,t, (27)

λi,tki,t + bi,t + (1 + ζ)Vtsi,t = βwi,t, (28)

where wi,t is the agent’s net-worth defined by

wi,t ≡

(

αt + λi,t

∫ δ̃i,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃i,t

1

2∆t

dδ

)

ki,t−1 + Rtbi,t−1 + (Dt + Vt)si,t−1.

(29)

In the definition of net-worth, the fraction of used capital sold by the agent is evaluated by
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the market price of used capital, Qt, while the fraction of used capital kept by the agent is

evaluated by the shadow value of capital net depreciation, λi,t, for the agent. In Equation

(28), capital net depreciation at the end of the period, ki,t, is also evaluated by the shadow

value of capital net depreciation for the agent.

Aggregation of Equation (28) for each type of agent leads to the following aggregate

decision rules:

KP,t

φ
= β

{[

αt +
1

φ

∫ δ̃P,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃P,t

1

2∆t

dδ

]

[ρP KP,t−1 + (1 − ρU)KU,t−1]

+(1 − ρU)[RtBU,t−1 + (Dt + Vt)SU,t−1]} , (30)

λU,tKU,t + BU,t + (1 + ζ)VtSU,t = β

{[

αt + λU,t

∫ δ̃U,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃U,t

1

2∆t

dδ

]

· [(1 − ρP )KP,t−1 + ρUKU,t−1] + ρU [RtBU,t−1 + (Dt + Vt)SU,t−1]} , (31)

where KP,t =
∫

{i|φi,t=φ}
ki,t µ(di), KU,t =

∫

{i|φi,t=0}
ki,t µ(di), BU,t =

∫

{i|φi,t=0}
bi,t µ(di), and

SU,t =
∫

{i|φi,t=0}
si,t µ(di).

Also, the law of motion of capital in the maximization problem (5) implies that:

φXP,t = KP,t −

∫ δ̃P,t

δ̄−∆t

1 − δ

2∆t

dδ [ρP KP,t−1 + (1 − ρU)KU,t−1] , (32)

(1 − δ̂t)K
o
U,t = KU,t −

∫ δ̃U,t

δ̄−∆t

1 − δ

2∆t

dδ [(1 − ρP )KP,t−1 + ρUKU,t−1] , (33)

where XP,t =
∫

{i|φi,t=φ}
xi,t µ(di) and Ko

U,t =
∫

{i|φi,t=0}
ko

i,t µ(di).
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3.3 Bank’s behaviour

The representative bank in the competitive banking sector solves the maximization problem

(10), given that the number of possible states in the next period is two every period as

assumed above. Denote the lower value of αt+1 +Qt+1 by ωt+1 and the higher value by ω̄t+1.

The solution to the maximization problem (10) implies the following proposition.

Proposition 3.1. ‘Prob(ω̄t+1)’ denotes the conditional probability that αt+1 + Qt+1 =

ω̄t+1, given the values of period-t variables. In equilibrium with Inequalities (15)-(17), the

total value of the bank for equity holders is given by:

Ωt(KB,t−1, BB,t−1, R̃t−1)

=















[

αt + λB,t(1 − δ̄)
]

KB,t−1 − R̃t−1BB,t−1, if R̃t−1BB,t−1 ≤ (αt + Qt)KB,t−1,

0, if R̃t−1BB,t−1 > (αt + Qt)KB,t−1,

(34)

where

λB,t = max{λ′
B,t, λ′′

B,t}, (35)

λ′
B,t = Et







βci,t

[

αt+1 + Qt+1

1−δ̂t+1

(1 − δ̄) − ωt+1

]

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0







+ Et

[

βci,t ωt+1

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

, (36)

λ′′
B,t = Prob(ω̄t+1)Et







βci,t

[

αt+1 + Qt+1

1−δ̂t+1

(1 − δ̄) − ω̄t+1

]

(1 + ζ)ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ω̄t+1







+ Et

[

βci,t (αt+1 + Qt+1)

ci,t+1

∣

∣

∣

∣

φi,t = 0

]

. (37)

18



Also:

R̃tBB,t = ωt+1KB,t, if λ′
B,t > λ′′

B,t, (38)

R̃tBB,t = ω̄t+1KB,t, if λ′
B,t < λ′′

B,t. (39)

Proof: See Appendix A.

Equation (34) implies that the total value of the bank for equity holders is determined

by the shadow value of capital net depreciation for the bank, which is denoted by λB,t.

Equations (35)-(39) indicate that, to maximize the shadow value of capital net depreciation,

the bank compares the payoffs from the two levels of bank deposits, R̃tBB,t = ωt+1KB,t and

R̃tBB,t = ω̄t+1KB,t, in equilibrium. The bank focuses on these two options, since it must pay

a higher rate of returns on bank equities than bank deposits due to the bank-equity holding

cost for agents, ζ , and prefers to finance its assets through bank deposits as much as possible.

The bank chooses R̃tBB,t = ωt+1KB,t, if increasing BB,t above this level would reduce the

price of bank equities too much by making a bank run possible in the next period. The value

of λB,t equals the larger value between λ′
B,t and λ′′

B,t, which are the shadow values of capital

net depreciation when R̃tBB,t = ωt+1KB,t and when R̃tBB,t = ω̄t+1KB,t, respectively.

It is possible to show that λB,t = Qt(1 − δ̂t)
−1 if Ko

B,t > 0 and that LB,t = 0 if δ̂t > δ̄

and Ko
B,t > 0 in equilibrium. See Appendix A for the proof of these results. The first

result implies that the shadow value of capital net depreciation for the bank must equal

the marginal acquisition cost of capital net depreciation if the bank buys used capital. The

second result implies that it is not profitable for the bank to sell the bank’s own used capital

without knowing the true quality of each unit of capital when the bank buys low-quality

used capital from the market. If LB,t = 0, then the law of motion of capital for the bank
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becomes:

KB,t = (1 − δ̂t)K
o
B,t + (1 − δ̄)KB,t−1. (40)

3.4 Aggregate equilibrium conditions

Hereafter, suppose that δ̂t > δ̄, λ′
B,t > λ′′

B,t, and λB,t = Qt(1−δ̂t)
−1, so that LB,t = 0, Ko

B,t > 0

and R̃tBB,t = ωt+1KB,t in equilibrium. Thus, the bank conducts liquidity transformation

and prevents a bank run by controlling the supply of bank deposits. These conditions will

be verified in equilibria considered below.

Given LB,t = 0, Equation (11) implies that the average depreciation rate of used capital

sold in the market, δ̂t, is determined by:

δ̂t =

∫ δ̄+∆t

δ̃P,t

δ
2∆t

dδ [ρP KP,t−1 + (1 − ρU)KU,t−1] +
∫ δ̄+∆t

δ̃U,t

δ
2∆t

dδ [(1 − ρP )KP,t−1 + ρUKU,t−1]
∫ δ̄+∆t

δ̃P,t

1
2∆t

dδ [ρP KP,t−1 + (1 − ρU)KU,t−1] +
∫ δ̄+∆t

δ̃U,t

1
2∆t

dδ [(1 − ρP )KP,t−1 + ρUKU,t−1]
.

(41)

Also, Equations (32)-(33) and (40) (the laws of motion of capital for the productive, the

unproductive, and the bank, in order) and Equation (12) (the market clearing condition for

used capital) imply that the aggregate law of motion of capital for the economy is:

KP,t + KU,t + KB,t = φXP,t + (1 − δ̄)(KP,t−1 + KU,t−1 + KB,t−1). (42)

Given Inequalities (15)-(17), λ′
B,t > λ′′

B,t and δ̂t > δ̄, the equilibrium dynamics of {KP,t,

XP,t, KU,t, Ko
U,t, BU,t, λU,t, (Dt + Vt)SU,t−1, VtSU,t, KB,t, Ko

B,t, Qt, Rt, R̃t, δ̂t, δ̃P,t, δ̃U,t} is
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sequentially determined by Equations (18)-(19), (24)-(25), (30)-(33), and (40)-(42), and:

(Dt + Vt)SU,t−1 =

[

αt +
Qt(1 − δ̄)

1 − δ̂t

]

KB,t−1 − R̃t−1BU,t−1, (43)

Qt

1 − δ̂t

= Et







βci,t

[

αt+1 + Qt+1

1−δ̂t+1

(1 − δ̄) − ωt+1

]

(1 + ζ)ci,t+1
+

βci,t ωt+1

ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0







, (44)

R̃tBU,t = ωt+1KB,t, (45)

Rt = R̃t−1. (46)

Equations (43), (44), (45), and (46) are derived from: Equation (34) and λB,t = Qt(1 −

δ̂t)
−1; Equations (35)-(36) and λB,t = Qt(1 − δ̂t)

−1; Equation (38); and Equation (7), in

order. The market clearing conditions for bank equities and bank deposits, SB,t = SU,t and

BB,t = BU,t, respectively, are substituted in Equations (43) and (45).

4 Endogenous illiquidity of assets

This section shows the closed form for the equilibrium dynamics of the model without a

banking sector to show endogenous determination of illiquidity of used capital analytically.

This is for exposition purpose, since the closed form for the dynamics of the model with a

banking sector cannot be obtained. The intuition behind the results of the model without a

banking sector is shared with the model with a banking sector. In this section, xi,t = 0 and

ko
i,t > 0 for the unproductive, since there is no supply of bank securities and the unproductive

can only store their wealth through buying used capital. Given Inequality (15), xi,t > 0 and

ko
i,t = 0 for the productive.

Aggregate equilibrium conditions are identical with the model with a banking sector

except that KB,t = BU,t = SU,t = 0 for all t. Given ko
i,t > 0 for the unproductive, Equation
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(22) implies that λU,t = Qt(1 − δ̂t)
−1. Then, Equations (24)-(25) lead to:

δ̃P,t = max
{

δ̄ − ∆t, 1 − φQt

}

< δ̃U,t = δ̂t, (47)

given Inequality (15).12

Given the values of αt, ∆t, KP,t−1 and KU,t−1 and that KB,t = BU,t = SU,t = 0 for all t,

Equations (31), (32) and (42) imply that the equilibrium values of δ̂t and Qt in each period

are determined by Equation (41) and:

g(δ̂t, Qt, αt, ∆t, θK,t−1) ≡
Qt

1 − δ̂t

[

(1 − δ̄)(1 + θK,t−1) − θK,t−1

∫ δ̃P,t

δ̄−∆t

1 − δ

2∆t

dδ

]

− β

(

αt +
Qt

1 − δ̂t

∫ δ̃U,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃U,t

1

2∆t

dδ

)

= 0, (48)

where

θK,t−1 ≡
ρP KP,t−1 + (1 − ρU)KU,t−1

(1 − ρP )KP,t−1 + ρUKU,t−1

, (49)

and the values of δ̃P,t and δ̃U,t are as shown in Equation (47). Then, the values of KP,t and

KU,t are determined by Equations (30)-(31), given λU,t = Qt(1− δ̂t)
−1 and BU,t = SU,t = 0 for

all t. The first term of the function g is the shadow value of aggregate capital net depreciation

that the unproductive must hold at the end of the period in equilibrium and the second term

is the fraction of the unproductive’s aggregate net-worth that is spent on used capital. Both

terms are normalized by the aggregate net-worth of the unproductive.

12Note that δ̃P,t < δ̂t ≤ δ̄ + ∆t.
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4.1 Illiquidity of capital due to adverse selection

The result that δ̃U,t = δ̂t indicates that the quality of used capital sold by the unproductive

is always worse than the average quality of used capital sold in the market. This is adverse

selection. In equilibrium, the adverse selection raises the average depreciation rate of used

capital sold in the market, δ̂t, which leads to δ̂t > δ̄. This result can be confirmed by

substituting δ̃U,t = δ̂t in Equation (41).

The result that δ̂t > δ̄ implies that each agent’s used capital as a whole is undervalued

in the market, which can be shown by substituting λU,t = Qt(1 − δ̂t)
−1 into Equation (26):

Qt = (1 − δ̂t)Et

[

βci,t

ci,t+1

(

αt+1 + λi,t+1

∫ δ̃i,t+1

δ̄−∆t+1

1 − δ

2∆t+1
dδ + Qt+1

∫ δ̄+∆t+1

δ̃i,t+1

1

2∆t+1
dδ

)
∣

∣

∣

∣

∣

φi,t = 0

]

.

(50)

This equation shows that the market price of used capital, Qt, depends on δ̂t. The true

average value of each agent’s used capital is obtained by replacing δ̂t with δ̄ on the right-

hand side of the equation, given λi,t+1 and Qt+1 in the next period. Thus, the result that

δ̂t > δ̄ implies that the market value of used capital is lower than the true average value of

used capital held by each agent.

In this paper, define illiquidity of an asset as undervaluation of the asset in the market.

The degree of illiquidity of each agent’s used capital as a whole is measured by the difference

between δ̂t and δ̄. Hereafter, take δ̂t as the indicator of illiquidity of used capital, since δ̄ is

fixed.

4.2 Response of illiquidity of capital to productivity shocks

Sections 4.2 and 4.3 will show that both a negative productivity shock and an increase in the

degree of asymmetric information can cause an increase in illiquidity of assets (used capital)
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represented by δ̂t and a decline in the market price of assets, Qt, as occurred during the

financial crisis since 2007.

Equations (41) and (48) have the following characteristics:

Lemma 4.1. Equation (48) is downward-sloping curves on the (Qt, δ̂t) plane, given the

values of αt, ∆t and θK,t−1. Equation (41) is also downward-sloping, if δ̃P,t = 1 − φQt, and

is a flat line, if δ̃P,t = δ̄ − ∆t. Equation (48) has a steeper slope than Equation (41) at the

intersection of the two curves, if β is sufficiently close to 1.

Proof: See Appendix B.

Figure 1 draws Equations (41) and (48) on the (Qt, δ̂t) plane and shows how a decline in

αt makes them shift.13 It is obvious that Equation (41) does not shift. Equation (48) shifts

inward, since a decline in αt reduces the aggregate income of the unproductive, which lowers

Qt through a decreased aggregate spending on used capital. If δ̃P,t = 1 − φQt in the new

equilibrium, then the equilibrium shifts along a downward-sloping part of Equations (41),

as shown in the figure. In this case, a decline in the market price of used capital, Qt, due

to a negative productivity shock discourages the productive from selling high-quality used

capital in the market (i.e., a rise in δ̃P,t), which increases the average depreciation rate of

used capital sold in the market, δ̂t.

4.3 Response of illiquidity of capital to shocks to the degree of asymmetric information

Figure 2 shows the effect of a rise in ∆t, which increases the degree of asymmetric information.

An increase in ∆t makes Equation (41) shift upward unambiguously, since an expanded range

of depreciation rates of used capital lets each agent sell the increased low-quality fraction of

used capital while keeping the increased high-quality fraction of used capital, which raises δ̂t

through worsened adverse selection.

13Due to the log utility function, Equations (41) and (48) are valid irrespective of the stochastic process
of the shocks in the model.
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On the other hand, the following lemma implies that the direction of the shift in Equation

(48) is ambiguous:

Lemma 4.2. ∂g

∂∆t
> 0, if δ̃P,t is sufficiently close to δ̂t.

∂g

∂∆t
< 0, if δ̃P,t ≤ δ̄.14

Proof: See Appendix C.

Since ∂g

∂Qt
> 0, Equation (48) shifts inward in the first case ( ∂g

∂∆t
> 0) and outward in the

second case ( ∂g

∂∆t
< 0), in response to an increase in ∆t.

15 The top panel of Figure 2 shows

the first case and the bottom panel shows the second case. In the first case, δ̂t increases

and Qt decreases. Since Equation (41) implies that δ̂t is close to δ̄ + ∆t if δ̃P,t is close to

δ̂t, this result indicates that an increase in the degree of asymmetric information causes a

simultaneous deterioration of illiquidity of used capital and the market price of used capital

if adverse selection in the asset market is so severe that the volume of trade in the market

is small.

5 Liquidity transformation and bank capital requirements

5.1 Liquidity transformation by the bank

This section analyzes the features of the model with a banking sector. The aggregate decision

rules specified by Equations (30)-(31) are useful to explain why agents hold bank securities.

14On the balanced growth path, δ̃P,t is close to δ̂t if ρP and 1− ρU are high, and δ̃P,t ≤ δ̄ if ρP and 1− ρU

are low. See Appendix D for more details.
15The intuition for this result is that, when ∂g

∂∆t
> 0, a rise in ∆t reduces the fraction of used capital

kept by the productive,
∫ δ̃P,t

δ̄−∆t
(1 − δ)/(2∆t) dδ, in the first term of the function g in Equation (48). As a

consequence, the unproductive must absorb a larger amount of used capital, which reduces the price of used
capital, Qt, given the value of δ̂t. When ∂g

∂∆t
< 0, a rise in ∆t increases the fraction of used capital kept by

the productive. Less supply of used capital leads to an increase in Qt, given the value of δ̂t. Also, in both
cases, a rise in ∆t increases the second term of the function g in Equation (48) (i.e., the aggregate net-worth
of the unproductive), since the unproductive benefit from more opportunities for adverse selection. This
effect would increase Qt. When ∂g

∂∆t
> 0, this effect is dominated by the effect of an increased supply of used

capital by the productive.

25



By substituting Equations (43) and (46), Equations (30)-(31) can be rewritten as:

KP,t

φ
= β

{[

αt +
1

φ

∫ δ̃P,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃P,t

1

2∆t

dδ

]

[ρP KP,t−1 + (1 − ρU)KU,t−1]

+(1 − ρU)

[

αt +
Qt(1 − δ̄)

1 − δ̂t

]

KB,t−1

}

, (51)

λU,tKU,t + BU,t + (1 + ζ)VtSU,t = β

{[

αt + λU,t

∫ δ̃U,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃U,t

1

2∆t

dδ

]

· [(1 − ρP )KP,t−1 + ρUKU,t−1] + ρU

[

αt +
Qt(1 − δ̄)

1 − δ̂t

]

KB,t−1

}

. (52)

Note that KU,t−1 is replaced with KB,t−1 as the unproductive shift their portfolio from

used capital to bank securities. Thus, comparing the coefficients to KU,t−1 and KB,t−1 clarifies

the benefit of holding bank securities. The following proposition holds.

Proposition 5.1. If Inequality (15) holds and δ̂t > δ̄, then:

Qt(1 − δ̄)

1 − δ̂t

>
1

φ

∫ δ̃P,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃P,t

1

2∆t

dδ. (53)

If δ̂t > δ̄ and λU,t = Qt(1 − δ̂t)
−1, then:

Qt(1 − δ̄)

1 − δ̂t

< λU,t

∫ δ̃U,t

δ̄−∆t

1 − δ

2∆t

dδ + Qt

∫ δ̄+∆t

δ̃U,t

1

2∆t

dδ. (54)

Proof: See Appendix E.

Inequality (53) implies that the value of the productive’s net-worth increases as KU,t−1

is replaced with KB,t−1. Thus, agents can increase investments in new capital by storing

wealth through bank securities when they are unproductive and selling them when they are

productive. Note that, when agents sell bank securities, they transfer a share of the whole
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used capital the bank holds. Since idiosyncratic depreciation rates of the bank’s whole used

capital cancel each other out, the value of the bank’s used capital that backs bank securities

becomes public information, which makes bank securities free from adverse selection. Hence,

as indicated by Equations (43), the value of bank securities reflects the shadow value of bank’s

whole used capital, i.e., [αt + Qt(1 − δ̂t)
−1(1 − δ̄)]KB,t−1, instead of the liquidation value of

the used capital, (αt+Qt)KB,t−1. Sellers of bank securities can obtain a fair amount of goods

for bank securities.

On the other hand, Inequality (54) indicates that there is a case where holding bank

securities is ex-post costly for the unproductive if they remain unproductive in the next

period, since they lose the opportunity to sell a low-quality fraction of used capital at an

overvalued market price. Overall, the unproductive hold bank securities if the expected

benefit of holding liquid bank securities for increasing investment into new capital dominates

the expected cost of losing the opportunity to sell low-quality used capital at an overvalued

market price.16

5.2 Comparative statics analysis of introduction of the bank to the economy

Figure 3 compares balanced growth paths with and without the bank. The figure is a

numerical example of comparative statics around a set of benchmark parameter values that

approximately replicates the post-war sample average of US data on the balanced growth

path with the bank.17 In the figure, the time index, t, is omitted from the notation of each

16If the probability for the unproductive to be productive in the next period, 1 − ρU , is sufficiently low,
then the unproductive do not hold bank securities and financial intermediation does not arise in equilibrium.

17The benchmark parameter values are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99, 0.02, 0.45, 0.55), ᾱ = α = 0.03,
and ∆̄ = ∆ = 0.09. Suppose the length of a period in the model is a year. For 1948-2007 in U.S., the average
real GDP growth rate is 3.4%, the average real interest rate on 3-month treasury bills is 3.9%, and the average
ratio of the bank credit of commercial banks to the fixed assets in the economy is 15.0%. These numbers are
approximately replicated by the growth rate of aggregate output (G− 1), R̃− 1, and KB/(KP +KU + KB),
in order. The capital-asset ratio of the bank is around 8% on the balanced growth path in the model, which
is the minimum requirement by the Basel agreement. The 10% annual depreciation rate of capital implied
by δ̄ is a standard assumption. Rouwenhoust (1995) reports that the equity premium on S&P 500 was 1.99%
on average for 1948-1992. The equity premium on bank equities in the model takes a similar value. The
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variable. The deposit interest rate, R̃, for the model without the bank is a hypothetical rate

with no supply of bank deposits. The figure shows balanced growth paths under various

values of ζ .

Figure 3 illustrates that, given parameter values, introduction of the bank to the economy

increases R̃. This result is consistent with the analytical result shown in Section 5.1, that

agents can increase investments in new capital by storing their wealth through bank securities

when they are unproductive and selling them when they are productive. Since bank securities

let agents suffer less from illiquidity of their assets when they are productive, the expected

consumption in the case of becoming productive increases, which leads to a decline in the

stochastic discount factor, βci,t(ci,t+1)
−1, for the unproductive and thus a rise in R̃.

Despite this positive effect of bank securities on the productive who used to be unpro-

ductive, Figure 3 shows that the gross rate of growth of aggregate output, which is denoted

by

Gt ≡
Yt

Yt−1

, where Yt ≡

∫

I

yi,t µ(di), (55)

does not necessarily increase with introduction of the bank to the economy in the long run.

Note that introduction of the bank to the economy leads to a decline in the market price of

used capital, Q, through a drop in the stochastic discount factor for the unproductive. A

decline in Q discourages agents from selling high-quality capital, which leads to a rise in δ̃P

and δ̃U through Equation (23). This effect raises δ̂. A resulting increase in illiquidity of used

capital reduces investments in new capital by the productive who continue to be productive

from the previous period, since these agents do not hold bank securities and have to suffer

from worsened undervaluation of used capital they hold. The figure shows that this negative

data sources for the first three sample averages are NIPA data from the BEA and financial data from the
Federal Reserve Board. Note that ρP = 1− ρU , which implies that the arrival of the opportunity to produce
new capital is i.i.d. for each agent. This assumption is set to reduce the dimension of the parameter space.
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effect on the productive who continue to be productive from the previous period dominates

the positive effect of bank securities on the productive who used to be unproductive, if the

marginal bank-equity holding cost, ζ , is sufficiently high. This is because the bank-equity

holding cost is incurred only by the unproductive and this cost reduces the net positive effect

of bank securities on the productive who used to be unproductive.

5.3 Bank capital requirements: dynamic analysis

Equations (19) and (43)-(45) imply that the capital-asset ratio of the bank is given by:

VtSB,t

BB,t + VtSB,t

=
Et

{

βci,t

(1+ζ)ci,t+1

[

αt+1 + Qt+1(1−δ̄)

1−δ̂t+1

− ωt+1

]
∣

∣

∣
φi,t = 0

}

KB,t

Qt(1 − δ̂t)−1KB,t

=
1 − δ̂t

Qt

Et

{

βci,t

(1 + ζ)ci,t+1

[

Qt+1(δ̂t+1 − δ̄)

1 − δ̂t+1

+ (αt+1 + Qt+1 − ωt+1)

]
∣

∣

∣

∣

∣

φi,t = 0

}

. (56)

Note that the denominator of the ratio, the value of bank assets, equals the total value of

liabilities, BB,t + VtSB,t, in the balance sheet of the bank.

The first line of Equation (56) shows that the capital-asset ratio of the bank depends on

the present discounted value of the difference between the shadow value of the bank’s used

capital, [αt+1 + Qt+1(1− δ̂t+1)
−1(1− δ̄)]KB,t, and the borrowing limit on bank deposits, i.e.,

the worst possible liquidation value of the bank’s used capital in the next period, ωt+1KB,t.

The present discounted value of this difference must be financed through public equities.

The second line of Equation (56) implies that the difference is positive and can be decom-

posed into two factors. First, illiquidity of capital causes a gap between the shadow value

and the realized liquidation value of the bank’s used capital, which appears as Qt+1(δ̂t+1 −

δ̄)(1 − δ̂t+1)
−1 in Equation (56). Note that this is positive by δ̂t+1 > δ̄. Second, since the

liquidation value of the bank’s used capital fluctuates, the realized liquidation value of the

bank’s used capital can be more than the worst possible liquidation value. The difference
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between the two appears as αt+1 + Qt+1 − ωt+1 in Equation (56). The present discounted

value of the difference is positive by the definition of ωt+1.

Call the first factor as ‘illiquidity factor’ and the second factor as ‘market-price factor’.

To illustrate the effects of these factors on equilibrium dynamics of the capital-asset ratio

of the bank, Figures 4 and 5 show sample paths of the dynamics of the model driven by

changes in αt and ∆t, respectively. See Appendix F for the numerical solution method. The

stochastic process of αt is set so that the growth rate of output is around 4% in booms and

around 2% in recessions, on average. The stochastic process of ∆t is set so that ∆t fluctuates

symmetrically around the benchmark value specified in Section 5.2 and its upper value (∆̄)

takes the maximum value that makes the lower bound of the range of depreciation rates

equal to zero. For both processes, the transition probabilities of the shocks are set so that

the expected durations of booms and recessions are 4 years, given that the length of a period

in the model is interpreted as a year.18 The parameters except for the shock parameter in

each figure take the benchmark values specified in Section 5.2. Each figure shows the sample

path when the shock parameter keeps changing its value every 4 periods for a sufficiently

long time.

Figure 4 indicates that the capital-asset ratio of the bank is pro-cyclical when business

cycles are driven by productivity shocks. This result is due to the market-price factor. When

a positive productivity shock hits the economy, the expected income from used capital in-

creases since the shock is persistent. This effect raises the expected value of Qt+1 through

Equation (44) while positive productivity shocks hit the economy. This effect in turn in-

creases the gap between the expected realized liquidation value of bank’s used capital and

its worst possible value in the next period. Thus, the capital-asset ratio of the bank rises

during booms. It falls during recessions by the same mechanism that works in the opposite

18In Figure 4, ᾱ = 0.0306, α = 0.0294 and ∆̄ = ∆ = 0.09. In Figure 5, ∆̄ = 0.1, ∆ = 0.08 and
ᾱ = α = 0.03. For both figures, ηx̄ = ηx = 0.75 for x = α, ∆.
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direction. Hence, the capital-asset ratio of the bank becomes pro-cyclical.

Note that the indicator of illiquidity of used capital, δ̂t, is counter-cyclical in Figure

4. This is because the pro-cyclical fluctuations in Qt induce the productive to sell high-

quality capital (i.e., a decline in δ̃P,t) during booms and to keep it (i.e., a rise in δ̃P,t) during

recessions. Even though this illiquidity factor drives the capital-asset ratio of the bank to

be counter-cyclical, the market-price factor dominates the illiquidity factor in the numerical

example shown in the figure.

In contrast, Figure 5 indicates that the capital-asset ratio of the bank is counter-cyclical

when business cycles are driven by changes in the degree of asymmetric information (changes

in ∆t). In this case, a decline in ∆t reduces adverse selection in the market for used capital,

which lowers δ̂t and thus illiquidity of used capital. As a consequence, the capital-asset

ratio of the bank drops. At the same time, a decline in illiquidity of used capital facilitates

the transfer of goods from the unproductive to the productive in exchange for used capital,

raising the growth rate of output. By a similar mechanism, an increase in ∆t causes an

increase in the capital-asset ratio of the bank and a decline in the growth rate of output.

Hence, the capital-asset ratio of the bank becomes counter-cyclical. While the counter-

cyclical movements of δ̂t cause pro-cyclical movements of Qt through Equation (44), which

drives the capital-asset ratio of banks to be pro-cyclical, the illiquidity factor dominates the

market-price factor in the numerical example shown in the figure.

6 Conclusion

This paper presents a dynamic competitive equilibrium model in which illiquidity of assets

arises endogenously due to asymmetric information about asset quality. It is shown that

both a negative productivity shock and an increase in the degree of asymmetric information

can cause a simultaneous deterioration of illiquidity of assets and the market price of assets,
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as occurred during the financial crisis since 2007. The model also shows that illiquidity of

assets leads to liquidity transformation by banks and that banks must maintain positive

bank capital to prevent a self-fulfilling bank run due to illiquidity of bank assets.

The dynamic analysis of the model indicates that, to prevent a bank run, the capital-asset

ratio of banks should be linked to illiquidity of bank assets and the volatility of the market

price of bank assets. The numerical examples suggest that the equilibrium capital-asset ratio

of banks is pro-cyclical during regular business cycles driven by productivity shocks and that

it is counter-cyclical when business cycles are driven by changes in the degree of asymmetric

information.

While the equilibrium capital-asset ratio of banks in the model is market discipline im-

posed by rational agents, it can be seen as a benchmark for dynamic bank-capital regulation,

since one of the purposes of the regulation is to achieve financial stability by preventing bank

runs. Formal analysis of optimal dynamic bank-capital regulation, including the optimal bal-

ance between market discipline and regulation, is left for future research.
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Appendices

A Proof of Proposition 3.1

Suppose that Equations (34)-(37) are true. Note that Equation (34) satisfies the bank-run

condition (7).

To verify Equation (34), split the constraint set of the maximization problem (10) into

three regions: R̃tBB,t ≤ ωt+1KB,t; R̃tBB,t ∈ (ωt+1KB,t, ω̄t+1KB,t]; and R̃tBB,t > ω̄t+1KB,t.

First of all, any point in the third region, R̃tBB,t > ω̄t+1KB,t, is weakly dominated by the

supremum in the second region, since the constraint sets become identical between the two

cases, but the value of Ωt+1 is always 0 in the third region while it can be positive in the

second region. Thus, the third region can be ignored.

Use the Lagrange method to solve the maximization problem in the first and the second

regions and compare the maximum values of the value function between the two regions,

given Ωt+1 defined by Equation (34). To make the second region closed, consider the clo-

sure of the region as the constraint set and suppose that Ωt+1 takes the limit value when

R̃tBB,t = ωt+1KB,t. This makes the function Ωt+1 differentiable in each region. This is just

for formality, since it will be shown that R̃tBB,t = ω̄t+1KB,t at optimum in the second region.

It can be shown that R̃tBB,t equals the upper bound at optimum in each region:

Lemma A.1. Suppose that Ωt+1 is defined by Equation (34). Then, in equilibrium,

R̃tBB,t equals ωt+1KB,t at optimum in the first region of the maximization problem (10) and

ω̄t+1KB,t at optimum in the second region.

Proof: In the first region, R̃t is determined solely by the first constraint of the max-

imization problem (10) and can be taken as exogenous for the bank. The first constraint

implies that R̃t must be positive, since agents never choose zero consumption with the time-

separable log utility function in equilibrium. The first-order condition with respect to BB,t
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is:

1 −
1

1 + ζ
Et

[

βci,tR̃t

ci,t+1

∣

∣

∣

∣

∣

φi,t = 0

]

− θ̄rgn1,tR̃t = 0, (57)

where θ̄rgn1,t is the Lagrange multiplier for the upper bound of the first region (R̃tBB,t ≤

ωt+1KB,t). Thus, θ̄rgn1,t = ζ(1 + ζ)−1(R̃t)
−1 > 0, given ζ > 0 and R̃t > 0. Hence, R̃tBB,t =

ωt+1KB,t at optimum in the first region.

For the second region, if KB,t = 0, then the claim is automatically satisfied since the first

constraint of the maximization problem (10) implies that BB,t must be 0. Hereafter suppose

KB,t > 0 in the second region. In equilibrium, Qt is alway positive and thus ωt > 0 for all

t, since otherwise each agent would demand an infinite amount of used capital, which would

violate the market clearing condition for used capital. In the second region, KB,t > 0 and

ωt+1 > 0 implies that BB,t > 0 and R̃t > 0, since BB,t must be non-negative by assumption.

The first-order conditions with respect to BB,t and R̃t in the second region are, respectively:

1 −
Prob(ω̄t+1)

1 + ζ
Et

[

βci,tR̃t

ci,t+1

∣

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)R̃t

− θPC,tProb(ωt+1)Et

[

βci,tωt+1KB,t

ci,t+1B
2
B,t

∣

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ωt+1

]

= 0, (58)

−
Prob(ω̄t+1)

1 + ζ
Et

[

βci,tBB,t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ω̄t+1

]

+ (θrgn2,t − θ̄rgn2,t)BB,t

+ θPC,tProb(ω̄t+1)Et

[

βci,t

ci,t+1

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ω̄t+1

]

= 0, (59)

where θ̄rgn2,t is the Lagrange multiplier for the upper bound of the second region (R̃tBB,t ≤

ω̄t+1KB,t), θrgn2,t is the Lagrange multiplier for the lower bound of the second region (R̃tBB,t ≥

ωt+1KB,t), and θ̄PC,t is the Lagrange multiplier for the first constraint of the maximization
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problem (10), which is the participation constraint for depositors. The two conditions imply

that θPC,t = BB,t. Substituting this into Equation (58) leads to:

(θ̄rgn2,t − θrgn2,t)R̃t =
ζ · Prob(ω̄t+1)

1 + ζ
Et

[

βci,tR̃t

ci,t+1

∣

∣

∣

∣

∣

φi,t = 0, αt+1 + Qt+1 = ω̄t+1

]

, (60)

which in turn indicates that θ̄rgn2,t > 0 and θrgn2,t = 0, given ζ > 0 and R̃t > 0. Thus,

R̃tBB,t = ω̄t+1KB,t at optimum in the second region. �

Denote the maximum values of the objective function of the maximization problem (10)

in the first region and the second regions by Ω′
t and Ω′′

t , respectively. By Lemma A.1,

R̃tBB,t = ωt+1KB,t and R̃tBB,t = ω̄t+1KB,t at optimum in the first and the second regions,

respectively. Also, the first constraint of the maximization problem (10) implies:

BB,t = Et





βci,t min
{

R̃tBB,t, (αt+1 + Qt+1)KB,t

}

ci,t+1

∣

∣

∣

∣

∣

∣

φi,t = 0



 . (61)

Substituting these equations into the objective function of the maximization problem

(10) with Ωt+1 defined by Equation (34) leads to:

Ω′
t = αtKB,t−1 + Qt(LB,t − Ko

B,t) + λ′
B,tKB,t − RtBB,t−1, (62)

Ω′′
t = αtKB,t−1 + Qt(LB,t − Ko

B,t) + λ′′
B,tKB,t − RtBB,t−1. (63)

Note that the values of Ω′
t and Ω′′

t are maximized with the constraints on Ko
B,t and LB,t in

the maximization problem (10):

KB,t = (1 − δ̂t)K
o
B,t + (1 − δ̄)(KB,t−1 − LB,t), (64)

LB,t ∈ [0, KB,t−1), Ko
B,t ≥ 0. (65)
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Since these constraints are identical between the first and the second regions, Ωt = Ω′
t if

λ′
B,t ≥ λ′′

B,t and Ωt = Ω′′
t if λ′

B,t ≤ λ′′
B,t. Given this result, the maximization problem (10)

can be rewritten as:

Ωt = max
{Ko

B,t
,LB,t}

αtKB,t−1 + Qt(LB,t − Ko
B,t) + λB,tKB,t − RtBB,t−1,

s.t. KB,t = (1 − δ̂t)K
o
B,t + (1 − δ̄)(KB,t−1 − LB,t),

LB,t ∈ [0, KB,t−1), Ko
B,t ≥ 0,

the bank-run condition (7),

(66)

where λB,t = max{λ′
B,t, λ′′

B,t}. Note that the first constraint of the maximization problem

(10) is already incorporated in Equations (62)-(63).

The maximization problem (66) implies that the equilibrium value of λB,t satisfies:

λB,t















































= Qt(1 − δ̂t)
−1, if Ko

B,t > 0,

= Qt(1 − δ̄)−1, if LB,t ∈ (0, KB,t−1)

≤ Qt(1 − δ̄)−1, if LB,t = KB,t−1

∈ [Qt(1 − δ̄)−1, Qt(1 − δ̂t)
−1], if Ko

B,t = 0 and LB,t = 0.

(67)

Note that this equation indicates that LB,t = 0 if Ko
B,t > 0 and that Ko

B,t = 0 if LB,t > 0,

when δ̂t > δ̄. Also, if LB,t = KB,t−1, then KB,t = 0 and Ωt = (αt + Qt)KB,t−1 − RtBB,t−1.

Without loss of generality, set λB,t = Qt(1 − δ̄)−1 for this case. Note that if δ̂t = δ̄, then

λB,t = Qt(1 − δ̄)−1 in any case. With this definition of λB,t, substituting the bank-run

condition (7), Equation (64), and Equation (67) for each case of the values of Ko
B,t and LB,t

into the objective function of the maximization problem (66) verifies the proposition.
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B Proof of Lemma 4.1

Denote implicit functions for δ̂t implied by Equations (41) and (48) as δ̂t = h(Qt, αt, ∆t, θK,t−1)

and δ̂t = ℓ(Qt, αt, ∆t, θK,t−1), respectively.

There are two cases to consider. In the first case, δ̃P,t = 1 − φQt at the intersection of

the two curves. In the second case, δ̃P,t = δ̄ − ∆t at the intersection.

In the first case, it can be shown that:

∂h(Qt, αt, ∆t, θK,t−1)

∂Qt

= −
θK,t−1φδ̂t(1 − δ̃P,t)

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

, (68)

∂ℓ(Qt, αt, ∆t, θK,t−1)

∂Qt

= −

βαt(1−δ̂t)

Q2
t

+
θK,t−1φ(1−δ̃P,t)

2∆t

β
(

αt

Qt
+ δ̄+∆t−δ̂t

2∆t

) , (69)

which are always strictly negative. This result proves that the implicit functions h and ℓ exist

by the implicit function theorem and that Equations (41) and (48) are downward-sloping on

the (Qt, δ̂t) plane.

It can be shown that
∂ℓ(Qt, αt, ∆t, θK,t−1)

∂Qt
−

∂h(Qt, αt, ∆t, θK,t−1)

∂Qt
has the same sign with:

−

[

βαt(1 − δ̂t)

Q2
t

+
θK,t−1φ(1 − δ̃P,t)

2∆t

]

[

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

]

+ θK,t−1φδ̂t(1 − δ̃P,t)β

(

αt

Qt

+
δ̄ + ∆t − δ̂t

2∆t

)

(70)

= −
βαt(1 − δ̂t)

Q2
t

[

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

]

− θK,t−1φ(1 − δ̃P,t)

[

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

2∆t

− δ̂tβ

(

αt

Qt

+
δ̄ + ∆t − δ̂t

2∆t

)]

. (71)
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At the intersection of Equations (41) and (48), it holds that:

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

2∆t

− δ̂tβ

(

αt

Qt

+
δ̄ + ∆t − δ̂t

2∆t

)

=
θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

2∆t

−
δ̂t

1 − δ̂t

[

θK,t−1

∫ δ̄+∆t

δ̃P,t

1 − δ

2∆t

dδ +

∫ δ̄+∆t

δ̂t

1 − δ

2∆t

dδ + (1 − β)

∫ δ̂t

δ̄−∆t

1 − δ

2∆t

dδ

]

=

[

θK,t−1(δ̄ + ∆t − δ̃P,t) + δ̄ + ∆t − δ̂t

2∆t

]

(

1 − δ̂t

)

−
δ̂t(1 − β)

1 − δ̂t

∫ δ̂t

δ̄−∆t

1 − δ

2∆t

dδ. (72)

The first equality is obtained by substituting Equation (48), and the second equality is

obtained by substituting Equation (41). Note that:

δ̂t

1 − δ̂t

≤
δ̄ + ∆t

1 − (δ̄ + ∆t)
, (73)

∫ δ̂t

δ̄−∆t

1 − δ

2∆t

dδ ≤ 1 − δ̄, (74)

by δ̂t ≤ δ̄ + ∆t. Thus, the last term on the last line of Equation (72) goes to 0 as β goes

to 1. This result proves that
∂ℓ(Qt, αt, ∆t, θK,t−1)

∂Qt
<

∂h(Qt, αt, ∆t, θK,t−1)

∂Qt
at the intersection of

Equations (41) and (48) for the first case (i.e., δ̃P,t = 1 −Qtφ), if β is sufficiently close to 1.

For the second case (i.e., δ̃P,t = δ̄ − ∆t), Equation (41) implies that δ̂t is constant. Also,

it can be shown that:

∂ℓ(Qt, αt, ∆t)

∂Qt

= −

αt(1−δ̂t)
Q2

t

αt

Qt
+ δ̄+∆t−δ̂t

2∆t

< 0. (75)

Thus, the implicit functions h and ℓ exist, and Equation (48) has a steeper slope than

Equation (41) on the (Qt, δ̂t) plane.
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C Proof of Lemma 4.2

Take the partial derivative:

∂g(δ̂t, Qt, αt, ∆t, θK,t−1)

∂∆t

=
Qt

1 − δ̂t

{

−θK,t−1[1 − (δ̄ − ∆t)]

2∆t

+ θK,t−1

∫ δ̃P,t

δ̄−∆t

1 − δ

2(∆t)2
dδ

− β

[

1 − (δ̄ − ∆t)

2∆t

−

∫ δ̂t

δ̄−∆t

1 − δ

2(∆t)2
dδ +

1 − δ̂t

2∆t

− (1 − δ̂t)

∫ δ̄+∆t

δ̂t

1

2(∆t)2
dδ

]}

. (76)

It can be shown that:

−[1 − (δ̄ − ∆t)]

2∆t

+

∫ δ̃P,t

δ̄−∆t

1 − δ

2(∆t)2
dδ















< 0, if δ̃P,t ≤ δ̄,

> 0, if δ̃P,t is sufficiently close to δ̄ + ∆t,

(77)

given ∆t ∈ (0, 1 − δ̄) and δ̄ ∈ (0, 1).

Also, it can be shown that:

−

[

1 − (δ̄ − ∆t) −

∫ δ̂t

δ̄−∆t

1 − δ

∆t

dδ + 1 − δ̂t − (1 − δ̂t)

∫ δ̄+∆t

δ̂t

1

∆t

dδ

]

≤ 0, (78)

given δ̂t ∈ [δ̄, δ̄ + ∆t] by Equation (41), where equality holds if and only if δ̂t = δ̄ + ∆t.

Note that Equation (41) implies that δ̂t is sufficiently close to δ̄ + ∆t if δ̃P,t is sufficiently

close to δ̄ + ∆t. Thus, substituting Inequalities (77) and (78) in Equation (76) proves the

proposition.

D Comparative statics in the model without a banking sector

Equations (30), (31) and (41) indicate that the distribution of net-worth among agents

determines the value of δ̂t. Figure 6 highlights this point by showing comparative statics

around the benchmark parameter values specified in Section 5.2.
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To simplify the parameter space of the model, suppose that the arrival of the opportunity

to produce new capital is i.i.d. for each agent, i.e., ρU = 1 − ρP . The figure illustrates that

the steady state value of δ̂t depends on the value of ρP , given that ρU = 1 − ρP . Note

that the value of ρP determines the fraction of the productive in the economy and thus the

distribution of net-worth between the productive and the unproductive. The figure shows

that the change in δ̂t is non-monotonic.

There are two effects behind the determination of δ̂t. First, δ̂t depends on the productive’s

share of supply of used capital in the market, since the productive sells better used capital

than the unproductive, as implied by δ̃P,t < δ̃U,t. Thus, a drop in ρP increases δ̂t, since the

distribution of supply of used capital among agents is proportional to the distribution of net-

worth among agents, as shown by Equations (30) and (31). Second, the value of Qt increases

in the aggregate net-worth of the unproductive, since the unproductive are the buyers of

used capital and a rise in their aggregate net-worth increases the aggregate spending on used

capital, as implied by Equation (31). If δ̃P,t = 1−φQt, then an increase in Qt in turn lowers

δ̃P,t by inducing the productive to sell better used capital, which reduces the value of δ̂t in

the market. In the second effect, a drop in ρP lowers δ̂t.

These two effects work in each other’s opposite direction. In Figure 6, a drop in ρP lowers

δ̂t through the second effect until δ̃P,t hits the lower bound, δ̄ − ∆t. After this point, the

second effect disappears, and a drop in ρP increases δ̂t through the first effect.
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E Proof of Proposition 5.1

First, prove Inequality (53). It is obvious that Inequality (53) holds when δ̃P,t = δ̄ − ∆ or

δ̃P,t = δ̄ + ∆, given δ̂t > δ̄ and Inequality (15). When δ̃P,t = 1 − φQt:

Qt(1 − δ̄)

1 − δ̂t

−

(

∫ δ̃P,t

δ̄−∆t

(1 − δ)

φ · 2∆t

dδ +

∫ δ̄+∆t

δ̃P,t

Qt

2∆t

dδ

)

=
1

φ

{

x(1 − δ̄)

1 − δ̂t

−
1 − x − y − (1−x)2

2
+ y2

2

z − y
−

x[z − (1 − x)]

z − y

}

, (79)

where

x ≡ φQt, y ≡ δ̄ + ∆, z ≡ δ̄ − ∆. (80)

Given the value of δ̂t, the right-hand side of Equation (79) can be rewritten as a quadratic

function of x. Note that x ∈ [1 − z, 1 − y] by the definition of δ̃P,t given by Equation

(23). Since the coefficient of x2 is negative, the right-hand side takes the minimum value for

x ∈ [1 − z, 1 − y] when x = 1 − z or x = 1 − y. It can be shown that the right-hand side is

positive in either case, given δ̂t > δ̄ and Inequality (15).

Next, prove Inequality (54). Note that, by Equation (23), δ̃U,t = δ̂t if λU,t = Qt(1− δ̂t)
−1.

Given δ̂t > δ̄, if λU,t = Qt(1 − δ̂t)
−1, then:

Qt(1 − δ̄)

1 − δ̂t

−

(

∫ δ̃U,t

δ̄−∆t

λU,t(1 − δ)

2∆t

dδ +

∫ δ̄+∆t

δ̃U,t

Qt

2∆t

dδ

)

=
Qt(1 − δ̄)

1 − δ̂t

−

(

∫ δ̂t

δ̄−∆t

Qt(1 − δ)

(1 − δ̂t)2∆t

dδ +

∫ δ̄+∆t

δ̂t

Qt

2∆t

dδ

)

>
Qt(1 − δ̄)

1 − δ̂t

− Qt > 0. (81)
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F A numerical solution method for the equilibrium dynamics of the model with

a banking sector

The dynamic equilibrium is approximated by the following projection method:

Step 0. It can be shown that the dynamic equilibrium in each period is homogeneous

of degree 1 with respect to KP,t−1, KU,t−1 and KB,t−1. Set grid points on the

state space for KP,t−1, KU,t−1 and the shock parameter (αt or ∆t). The value of

KB,t−1 is set to 1−KP,t−1 −KU,t−1 on each grid point. Guess the equilibrium

values of endogenous variables on each grid point, including ω̄t+1 and ωt+1.

Call this correspondence between state variables and endogenous variables as

a ‘candidate array’.

Step 1. Suppose the candidate array returns equilibrium values in the next period for

each set of KP,t, KU,t and the shock parameter. The equilibrium values on a

point between the grid points in the state space are approximated by linear

interpolation. Given this, derive the candidate array for the current period

through the aggregate equilibrium conditions.

Step 2. Compare the candidate arrays for the current period and for the next period.

If the ratio of each element between the two arrays becomes sufficiently close to

1, then take the candidate array as an equilibrium correspondence. Otherwise,

update the candidate array for the next period by a linear combination of the

two arrays and go back to Step 1.

In the numerical examples in this paper, I set grid points on the ± 5% range of the

deterministic steady state values of KP,t−1 and KU,t−1. The number of grid points are 20 for
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these endogenous state variables. Note that the shock parameter only takes two values by

assumption. The convergence criterion in Step 2 is 1e-03. In updating the candidate array in

Step 2, the weight on the candidate array for the current period is 0.001. The initial guess in

Step 0 is obtained through homotopy from the case where deterministic steady state values

for each value of the shock parameter are a successful initial guess of the candidate array

that leads to convergence.

The equilibrium conditions are checked for each element of the converged candidate

array. For each figure, random simulations of the dynamics for 5000 periods confirm that

the equilibrium dynamics move within the grid points that satisfy the equilibrium conditions.
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Figure 1: Dynamic equilibrium without the bank: the effect of a decline in αt
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Eq. (48)
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Notes: For all the curves in the figure, KP,t−1 and KU,t−1 take the deterministic steady state values.
Parameter values used for deriving the deterministic steady state are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99,
0.02, 0.45, 0.55), ᾱ = α = 0.03, and ∆̄ = ∆ = 0.09. The solid lines are Equations (41) and (48) with
αt = 0.03 and the dashed lines are these equations with αt = 0.027.
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Figure 2: Dynamic equilibrium without the bank: the effect of an increase in ∆t

(a)
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Notes: KP,t−1 and KU,t−1 take the deterministic steady state values. Parameter values used for deriving the
deterministic steady state are: (δ̄, φ, β, ζ) = (0.1, 4.75, 0.99, 0.02), ᾱ = α = 0.03 and ∆̄ = ∆ = 0.09 for both
panels; (ρP , ρU ) = (0.45, 0.55) for the top panel; and (ρP , ρU ) = (0.2, 0.8) for the bottom panel. In each
panel, the solid lines are Equations (41) and (48) with ∆t = 0.09 and the dashed lines are these equations
with ∆t = 0.099.
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Figure 3: Comparative statics: with and without the bank
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Notes: The horizontal axis is the value of ζ. The solid lines represent the model with the bank and the
dashed lines represent the model without the bank. Parameter values are (δ̄, φ, β, ρP , ρU ) = (0.1, 4.75,
0.99, 0.45, 0.55), ᾱ = α = 0.03 and ∆̄ = ∆ = 0.09. Each panel of the figure shows the value of the variable
in the title on the balanced growth path.
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Figure 4: Dynamic equilibrium with the bank: business cycles driven by αt
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Notes: Parameter values are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99, 0.02, 0.45, 0.55), (ᾱ, α) = (0.0306,
0.0294), ηᾱ = ηα = 0.75, and ∆̄ = ∆ = 0.09. The figure shows a sample path when αt keeps changing its
value every 4 periods for a sufficiently long time. Ko

U,t = 0 for all the periods.
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Figure 5: Dynamic equilibrium with the bank: business cycles driven by ∆t
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Notes: Parameter values are (δ̄, φ, β, ζ, ρP , ρU ) = (0.1, 4.75, 0.99, 0.02, 0.45, 0.55), ᾱ = α = 0.03, (∆̄, ∆)
= (0.1, 0.08), and η∆̄ = η∆ = 0.75. The figure shows a sample path when ∆t keeps changing its value every
4 periods for a sufficiently long time. Ko

U,t = 0 for all the periods.
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Figure 6: Comparative statics without the bank: net-worth distribution and illiquidity of
capital (for Appendix D)
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Notes: The horizontal line of each panel is ρP , given ρP = 1 − ρU . Parameter values are (δ̄, φ, β ζ) = (0.1,
4.75, 0.99, 0.02), ᾱ = α = 0.03, and ∆̄ = ∆ = 0.09. Each panel of the figure shows the value of the variable
in the title on the balanced growth path.
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