Mo	tivation

Bond Premium in a DSGE Model

EZ Preferences

Long-Run Risks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions o

The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks

Glenn D. Rudebusch Eric T. Swanson

Economic Research Federal Reserve Bank of San Francisco

Conference on Fixed Income Markets Bank of Canada September 13, 2008

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
Outline				

2 The Bond Premium in the Standard New Keynesian Model

- 3 Epstein-Zin Preferences
- 4 Long-Run Risks
- 5 Conclusions

Motivation ●0000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
The Bor	nd Premium Puzzle	e		

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

(ロ) (同) (三) (三) (三) (○) (○)

Motivation ●0000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
The Bor	nd Premium Puzz	le		

The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

(日) (日) (日) (日) (日) (日) (日)

Motivation ●0000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
The Bor	nd Premium Puzz	le		

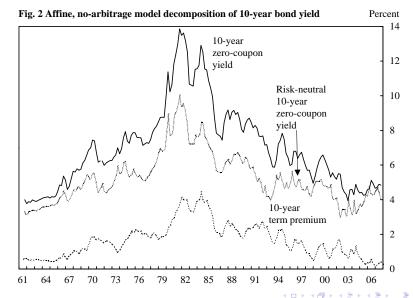
The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The bond premium puzzle: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:

• Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably

(日) (日) (日) (日) (日) (日) (日)



୍ରର୍ତ

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Why Stu	udy the Term Prem	ium?		

The term premium is important:

• DSGE models increasingly used for policy analysis; total failure to explain term premium may signal flaws in the model

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 many empirical questions about term premium require a structural DSGE model to provide reliable answers

Motivation 00●00	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ೦೦೦೦೦೦೦	Conclusions o
Why Stu	udy the Term Prem	ium?		

The term premium is important:

- DSGE models increasingly used for policy analysis; total failure to explain term premium may signal flaws in the model
- many empirical questions about term premium require a structural DSGE model to provide reliable answers

The equity premium has received more attention in the literature, but the term premium:

- provides an additional perspective on the model
- tests nominal rigidities in the model
- only requires modeling short-term interest rate process, not dividends

applies to a larger volume of U.S. securities

Motivation Bo	ond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
00000				

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
00000				

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
00000				

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

(日) (日) (日) (日) (日) (日) (日)

- Piazzesi-Schneider (2007)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
00000				

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model
- Piazzesi-Schneider (2007)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

We examine to what extent the Piazzesi-Schneider results generalize to the DSGE case

Motivation 0000●	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
Related	Strands of the Lit	erature		

The Bond Premium in a DSGE Model:

 Backus-Gregory-Zin (1989), Donaldson-Johnson-Mehra (1990), Den Haan (1995), Rudebusch-Swanson (2008)

Epstein-Zin Preferences and the Bond Premium in an Endowment Economy:

 Piazzesi-Schneider (2006), Colacito-Croce (2007), Backus-Routledge-Zin (2007), Gallmeyer-Hollifield-Palomino-Zin (2007), Bansal-Shaliastovich (2008)

Epstein-Zin Preferences in a DSGE Model:

 Tallarini (2000), Croce (2007), Levin-Lopez-Salido-Nelson-Yun (2008)

Epstein-Zin Preferences and the Bond Premium in a DSGE Model:

• van Binsbergen-Fernandez-Villaverde-Koijen-Rubio-Ramirez (2008)

Motivation

Bond Premium in a DSGE Model

EZ Preferences

Long-Run Risks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusions o

The Term Premium in a Standard DSGE Model

The Bond Premium in the Standard New Keynesian Model

- Define Standard New Keynesian DSGE Model
- Review Asset Pricing
- Solve the Model
- Results with the Standard Model

Motivation 00000	Bond Premium in a DSGE Model ●ooooooo	EZ Preferences	Long-Run Risks	Conclusions o
New Ke	ynesian Model (Ve	ery Standa	lrd)	

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation 00000	Bond Premium in a DSGE Model ●ooooooo	EZ Preferences	Long-Run Risks	Conclusions o
New K	evnesian Model (V	erv Standa	rd)	

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

standard model: $h_t \equiv bC_{t-1}$

Motivation	Bond Premium in a DSGE Model ●ooooooo	EZ Preferences	Long-Run Risks	Conclusions o
New Ke	ynesian Model (Ve	ery Standa	rd)	

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

standard model: $h_t \equiv bC_{t-1}$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta (C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Motivation	Bond Premium in a DSGE Model ●ooooooo	EZ Preferences	Long-Run Risks	Conclusions o
New Ke	ynesian Model (Ve	ery Standa	.rd)	

$$\max E_t \sum_{t=0}^{\infty} \beta^t \left(\frac{(c_t - h_t)^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \right)$$

standard model: $h_t \equiv bC_{t-1}$

Stochastic discount factor:

$$m_{t+1} = \frac{\beta (C_{t+1} - bC_t)^{-\gamma}}{(C_t - bC_{t-1})^{-\gamma}} \frac{P_t}{P_{t+1}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Parameters: β = .99, b = .66, γ = 2, χ = 1.5

Motivation	Bond Premium in a DSGE Model o●oooooo	EZ Preferences	Long-Run Risks	Conclusions o
N				

New Keynesian Model (Very Standard)

Continuum of differentiated firms:

- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t \bar{k}^{1-\alpha} I_t^{\alpha}$
- have firm-specific capital stocks
- face aggregate technology $\log A_t = \rho_A \log A_{t-1} + \varepsilon_t^A$

Parameters $\theta = .2$, $\rho_A = .9$, $\sigma_A^2 = .01^2$

Perfectly competitive goods aggregation sector

Mo	tivation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

New Keynesian Model (Very Standard)

Government:

- imposes lump-sum taxes G_t on households
- destroys the resources it collects

•
$$\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \overline{G} + \varepsilon_t^G$$

Parameters $\bar{G} = .17 \bar{Y}$, $\rho_G = .9$, $\sigma_G^2 = .004^2$

Mo	tivation

New Keynesian Model (Very Standard)

Government:

- imposes lump-sum taxes G_t on households
- destroys the resources it collects

•
$$\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \varepsilon_t^G$$

Parameters $\bar{G} = .17 \bar{Y}$, $\rho_G = .9$, $\sigma_G^2 = .004^2$

Monetary Authority:

$$i_t = \rho_i i_{t-1} + (1 - \rho_i) [1/\beta + \pi_t + g_y(y_t - \bar{y}) + g_\pi(\bar{\pi}_t - \pi^*)] + \varepsilon_t^i$$

Parameters $\rho_i = .73$, $g_y = .53$, $g_{\pi} = .93$, $\pi^* = 0$, $\sigma_i^2 = .004^2$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Motivation 00000	Bond Premium in a DSGE Model ○○○●○○○○	EZ Preferences	Long-Run Risks	Conclusions o
Asset P	ricing			

Asset pricing:

 $p_t = d_t + E_t[m_{t+1}p_{t+1}]$

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Asset F	Pricing			

Asset pricing:

$$p_t = d_t + E_t[m_{t+1}p_{t+1}]$$

Zero-coupon bond pricing:

$$p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}]$$
$$i_t^{(n)} = -\frac{1}{n}\log p_t^{(n)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Notation: let $i_t \equiv i_t^{(1)}$

Motivation

Bond Premium in a DSGE Model

EZ Preferences

Long-Run Risks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Conclusions o

The Term Premium in the Standard NK Model

Motivation	

Bond Premium in a DSGE Model

EZ Preferences

Long-Run Risks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusions o

The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free consol,

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	00000000			

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	00000000			

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	00000000			

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

Risk-neutral consol price:

$$\widehat{p}_t^{(n)} = 1 + \delta_c \, e^{-i_t} E_t \widehat{p}_{t+1}^{(n)}$$

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	00000000			

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays \$1, δ_c , δ_c^2 , δ_c^3 , ... (nominal)

Price of the consol:

$$\widetilde{p}_t^{(n)} = 1 + \delta_c \, E_t m_{t+1} \widetilde{p}_{t+1}^{(n)}$$

Risk-neutral consol price:

$$\widehat{oldsymbol{
ho}}_t^{(n)} = oldsymbol{1} + \delta_c \, oldsymbol{e}^{-i_t} oldsymbol{E}_t \widehat{oldsymbol{
ho}}_{t+1}^{(n)}$$

Term premium:

$$\psi_t^{(n)} \equiv \log\left(\frac{\delta_c \widetilde{p}_t^{(n)}}{\widetilde{p}_t^{(n)} - 1}\right) - \log\left(\frac{\delta_c \widehat{p}_t^{(n)}}{\widehat{p}_t^{(n)} - 1}\right)$$

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
Solving	the Model			

The standard NK model above has a relatively large numer of state variables: C_{t-1} , A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^i

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivation	Bond Premium in a DSGE Model ○○○○○●○○	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Solving	the Model			

The standard NK model above has a relatively large numer of state variables: C_{t-1} , A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^i

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o		
Solving	Solving the Model					

The standard NK model above has a relatively large numer of state variables: C_{t-1} , A_{t-1} , G_{t-1} , i_{t-1} , Δ_{t-1} , $\bar{\pi}_{t-1}$, ε_t^A , ε_t^G , ε_t^i

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a *third*-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes *n*th order approximations

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
Results				

In the standard NK model:

- mean term premium: 1.4 bp
- unconditional standard deviation of term premium: 0.1 bp

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Motivation 00000	Bond Premium in a DSGE Model ○○○○○○●○	EZ Preferences	Long-Run Risks	Conclusions o
Results				

In the standard NK model:

- mean term premium: 1.4 bp
- unconditional standard deviation of term premium: 0.1 bp

Intuition:

• shocks in macro models have standard deviations pprox .01

- 2nd-order terms in macro models $\sim (.01)^2$
- 3rd-order terms $\sim (.01)^3$

Motivation 00000	Bond Premium in a DSGE Model ○○○○○○●○	EZ Preferences	Long-Run Risks	Conclusions o
Results				

In the standard NK model:

- mean term premium: 1.4 bp
- unconditional standard deviation of term premium: 0.1 bp

Intuition:

- shocks in macro models have standard deviations \approx .01
- 2nd-order terms in macro models $\sim (.01)^2$
- 3rd-order terms $\sim (.01)^3$

To make these higher-order terms important,

need "high curvature" modifications from finance literature

(日) (日) (日) (日) (日) (日) (日)

• or shocks with standard deviations $\gg .01$

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	0000000			

Additional Robustness Checks

This basic finding is extremely robust:

- Campbell-Cochrane habits: $\bar{\psi}^{(10)} =$ 2.4 bp, sd($\psi^{(10)}$) = 0.1 bp
- "best fit" parameters:
- Iarger models (CEE):
- models with investment
- internal habits
- markup shocks
- nominal wage rigidities
- real wage rigidities
- time-varying π_t^* (long-run risk)

 $\bar{\psi}^{(10)} = 10.6$ bp, sd($\psi^{(10)}$) = 1.3 bp

$$ar{\psi}^{(10)} =$$
 1.0 bp, sd $(\psi^{(10)}) =$ 0.1 bp

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
	0000000			

Additional Robustness Checks

This basic finding is extremely robust:

- Campbell-Cochrane habits: $\bar{\psi}^{(10)} =$ 2.4 bp, sd($\psi^{(10)}$) = 0.1 bp
- "best fit" parameters:
- Iarger models (CEE):
- models with investment
- internal habits
- markup shocks
- nominal wage rigidities
- real wage rigidities
- time-varying π_t^* (long-run risk)

Basic problem: even if agents in these habit-based models are very risk averse, in a DSGE setting they are able to offset the risk that they hate (high-frequency variation in *C*)

 $\bar{\psi}^{(10)} = 10.6 \text{ bp, sd}(\psi^{(10)}) = 1.3 \text{ bp}$

$$ar{\psi}^{(10)} =$$
 1.0 bp, sd($\psi^{(10)}) =$ 0.1 bp

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences ●000	Long-Run Risks	Conclusions o
Epstein	-Zin Preferences			

Modify the standard NK model to incorporate Epstein-Zin preferences.

The model then has three key ingredients:

- Intrinsic nominal rigidities
 - makes bond pricing interesting
- 2 Epstein-Zin preferences
 - makes households risk averse
- Long-run risk (productivity or inflation)
 - introduces a risk households cannot offset

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

makes bonds risky

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
00000		o●oo	0000000	o
Epsteir	-Zin Preferences			

 $V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1}$

Motivation	Bond Premium in a DSGE Model	EZ Preferences o●oo	Long-Run Risks 0000000	Conclusions o
Epstein	-Zin Preferences			

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, l_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Epstein	-Zin Preferences			

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Note:

• need to impose $u \ge 0$

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Epstein	-Zin Preferences			

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, l_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Note:

- need to impose $u \ge 0$
- or $u \le 0$ and $V_t \equiv u(c_t, l_t) \beta (E_t(-V_{t+1})^{1-\alpha})^{1/(1-\alpha)}$

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks 0000000	Conclusions o
Epstein	-Zin Preferences			

$$V_t \equiv u(c_t, I_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, I_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}$$

Note:

• need to impose $u \ge 0$

• or
$$u \leq 0$$
 and $V_t \equiv u(c_t, l_t) - \beta \left(E_t (-V_{t+1})^{1-\alpha} \right)^{1/(1-\alpha)}$

We'll use standard NK utility kernel:

$$u(c_t, l_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation	Bond Premium in a DSGE Model	EZ Preferences ○○●○	Long-Run Risks 0000000	Conclusions o
Epstein	-Zin Preferences			

Household optimality conditions with EZ preferences:

$$\mu_{t} u_{1}|_{(c_{t}, h)} = P_{t} \lambda_{t}$$

$$-\mu_{t} u_{2}|_{(c_{t}, h)} = w_{t} \lambda_{t}$$

$$\lambda_{t} = \beta E_{t} \lambda_{t+1} (1 + r_{t+1})$$

$$\mu_{t} = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_{0} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences oo●o	Long-Run Risks	Conclusions o
Epstein	-Zin Preferences			

Household optimality conditions with EZ preferences:

$$\mu_{t} u_{1}|_{(c_{t}, l_{t})} = P_{t} \lambda_{t}$$

$$-\mu_{t} u_{2}|_{(c_{t}, l_{t})} = w_{t} \lambda_{t}$$

$$\lambda_{t} = \beta E_{t} \lambda_{t+1} (1 + r_{t+1})$$

$$\mu_{t} = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_{0} = 1$$

Stochastic discount factor:

$$m_{t,t+1} \equiv \frac{\beta u_1 \big|_{(c_{t+1}, l_{t+1})}}{u_1 \big|_{(c_t, l_t)}} \left(\frac{V_{t+1}}{\left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)}} \right)^{\alpha} \frac{P_t}{P_{t+1}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences ○○○●	Long-Run Risks	Conclusions o
Results				

Table 2: Empirical and Model-Based Unconditional Moments

Variable	U.S. Data	EU Preferences	"best fit" EZ Preferences
sd[<i>C</i>]	1.19	1.42	2.53
sd[<i>L</i>]	1.71	2.56	2.21
sd[w ^r]	0.82	2.08	1.52
$sd[\pi]$	2.52	2.25	2.71
sd[<i>i</i>]	2.71	1.90	2.27
sd[<i>i</i> ⁽¹⁰⁾]	2.41	0.54	1.03
mean[$\psi^{(10)}$]	1.06	.010	1.05
$sd[\psi^{(10)}]$	0.54	.000	.184
mean[<i>i</i> ⁽¹⁰⁾ – <i>i</i>]	1.43	047	0.99
sd[<i>i</i> ⁽¹⁰⁾ - <i>i</i>]	1.33	1.43	1.33
mean[$x^{(10)}$]	1.76	.015	1.04
sd[x ⁽¹⁰⁾]	23.43	6.56	9.02
memo: quasi-CRRA		2	75

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions o
Long-R	un Risks			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

4 Long-Run Risks

- Long-Run Inflation Risk
- Long-Run Real Risk

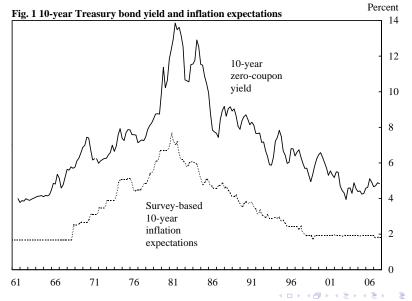
Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ●oooooo	Conclusions o
Long-R	un Inflation Risk			

Introduce long-run inflation risk to make long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary

(日) (日) (日) (日) (日) (日) (日)

Long-Run Inflation Risk



~ ^ < ~

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks oo●oooo	Conclusions o
Long-F	Run Inflation Risk			

Suppose:

$$\pi_t^* = \rho_\pi^* \pi_{t-1}^* + \varepsilon_t^{\pi^*}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks oo●oooo	Conclusions o
Long-R	un Inflation Risk			

Suppose:

$$\pi_t^* = \rho_\pi^* \pi_{t-1}^* + \varepsilon_t^{\pi^*}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Then:

- inflation is volatile, but not risky
- in fact, long-term bonds act like insurance: when π^{*} ↑, then C ↑ and p⁽¹⁰⁾ ↓
- result: term premium is *negative*

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ०००●०००	Conclusions o
Long-R	un Inflation Risk			

Consider instead:

$$\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi^*} (\overline{\pi}_t - \pi_t^*) + \varepsilon_t^{\pi^*}$$

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ०००●०००	Conclusions o
Long-R	Iun Inflation Risk			

Consider instead:

$$\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi^*} (\overline{\pi}_t - \pi_t^*) + \varepsilon_t^{\pi^*}$$

- θ_{π^*} describes pass-through from current π to long-term π^*
- Gürkaynak, Sack, and Swanson (2005) found evidence for $\theta_{\pi^*} > 0$ in U.S. bond response to macro data releases
- makes long-term bonds act less like insurance: when technology/supply shock, then π ↑, C ↓, and p⁽¹⁰⁾ ↓ supply shocks become very costly
- The term premium is *positive*, closely associated with θ_{π*}

(日) (日) (日) (日) (日) (日) (日)

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ○○○○●○○	Conclusions o
Results				

Table 4: Model-Based Moments with Long-Run Inflation Risk

Variable	U.S. Data	EU Preferences & LR Risk	EZ Prefs & LR Risk
sd[C]	1.19	1.92	1.86
sd[<i>L</i>]	1.71	3.33	1.73
sd[w ^r]	0.82	2.55	1.45
$sd[\pi]$	2.52	5.00	3.22
sd[<i>i</i>]	2.71	4.74	2.99
sd[<i>i</i> ⁽¹⁰⁾]	2.41	3.32	1.94
mean[$\psi^{(10)}$]	1.06	.002	.748
$sd[\psi^{(10)}]$	0.54	.001	.431
mean[<i>i</i> ⁽¹⁰⁾ – <i>i</i>]	1.43	062	.668
sd[<i>i</i> ⁽¹⁰⁾ − <i>i</i>]	1.33	1.60	1.11
mean[x ⁽¹⁰⁾]	1.76	.003	.737
$sd[x^{(10)}]$	23.43	16.96	11.83
memo: quasi-CRRA		2	65

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ○○○○●○	Conclusions o
Long-R	un Productivity Ris	sk		

Following Bansal and Yaron (2004), introduce long-run real risk to make the economy more risky:

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Assume productivity follows:

$$\log A_t^* = \rho_{A^*} \log A_{t-1}^* + \varepsilon_t^{A^*}$$
$$\log A_t = \log A_t^* + \varepsilon_t^A$$
where $\rho_{A^*} = .98$, $\sigma_{A^*} = .002$, and $\sigma_A = .005$.

- makes the economy much riskier to agents
- increases volatility of stochastic discount factor

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks ○○○○○●	Conclusions o
Results				

Table 3: Model-Based Moments with Long-Run Productivity Risk

Variable	U.S. Data	EU Preferences & LR Risk	EZ Prefs & LR Risk
sd[C]	1.19	0.92	2.95
sd[<i>L</i>]	1.71	1.03	1.32
sd[w ^r]	0.82	1.43	1.90
$sd[\pi]$	2.52	1.12	3.14
sd[<i>i</i>]	2.71	1.17	2.88
sd[<i>i</i> ⁽¹⁰⁾]	2.41	0.65	1.84
mean[$\psi^{(10)}$]	1.06	.005	.872
$sd[\psi^{(10)}]$	0.54	.000	.183
mean[<i>i</i> ⁽¹⁰⁾ – <i>i</i>]	1.43	018	.758
sd[<i>i</i> ⁽¹⁰⁾ - <i>i</i>]	1.33	0.64	1.15
mean[x ⁽¹⁰⁾]	1.76	.005	.859
sd[x ⁽¹⁰⁾]	23.43	4.39	11.59
memo: quasi-CRRA		2	35

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions •	
Conclu	Conclusions				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The term premium in standard NK DSGE models is very small, even more stable

Motivation	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions
Conclus	sions			

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk

(ロ) (同) (三) (三) (三) (○) (○)

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions •			
Conclusions							

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework:

agents are risk-averse and cannot offset long-run real or nominal risks

(ロ) (同) (三) (三) (三) (○) (○)

Motivation 00000	Bond Premium in a DSGE Model	EZ Preferences	Long-Run Risks	Conclusions			
Conclusions							

- The term premium in standard NK DSGE models is very small, even more stable
- Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk
- Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or

nominal risks

Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments

・ロト・日本・モト・モー ショー ショー