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1 Introduction

Bundesbank involved in disaggregated Euro area projection exercises (BMPE) to-
gether with European Central Bank (ECB) and other National Central Banks of the
Eurosystem

In BMPE, Bundesbank has to provide forecasts for German GDP and inflation

Forecasts are monitored by other Eurosystem central banks and the public

— There is always the need to be up-to-date with forecasting techniques



Presentation today part of bigger Bundesbank project on development of a range of

nowcast and forecast models

Techniques are still under evaluation, not implementend yet in regular forecast exer-

cises



Outline of presentation:

1. What is nowcasting?

2. Difficulties of now- and forecasting GDP

3. Discussion of three factor models that can tackle unbalanced data

4. MIDAS projection with factors as regressors: FACTOR-MIDAS

5. Empirical now- and forecast comparison

6. Conclusions



2 What is nowcasting?

Decision makers regularly request information on the current state of the economy

GDP is an important business cycle indicator, but sampled at quarterly frequency only
and published with considerable delay

Economist’s task: Estimate current quarter GDP using all information which is
currently available

Example: in April, German GDP is available only for the fourth quarter of the previous
year. To obtain a pnd quarter GDP nowcast, we have to make a projection with
forecast horizon of two quarters from the end of the GDP sample.



3 Difficulties of now- and forecasting GDP

There are many difficulties in real-world applications, we discuss two:

1. GDP is quarterly data, many important indicators are sampled at monthly or
higher frequency - mixed-frequency problem

2. Indicators for nowcasting are available with different publication lags — leads to
the so-called ragged edge of multivariate datasets, Wallis (1986)

Question here: How to nowcast quarterly GDP with factors estimated from a large
set of monthly indicators?



4 Factor now- and forecasting: Two-step procedure

Boivin and Ng (2005) IJCB: In the single-frequency case, factor forecasting is often
a two-step procedure

1. Estimation Step: Estimate factors
2. Forecast step: Factor-augmented (V)AR model

We follow the same strategy in the mixed-frequency case with ragged-edge data



b Factor estimation with ragged-edge data

Monthly observations have a factor structure

Xty = AFy, + & (1)
with factors Fy,, = (f1; ..., fi.4, )", loadings A, idiosyncratic components §;
If data X = (X4, ... ,XTm)’ is balanced, there are different ways to estimate F'

1. PCA as in Stock and Watson (2002) JBES

2. Dynamic PCA according to Forni et al. (2005) JASA

3. Subspace algorithms, Marcellino and Kapetanios (2006) CEPR WP



We consider three factors models for ragged-edge data:

1. Vertical realignment of the data and dynamic PCA, Altissimo et al. (2006) CEPR
WP (New Eurocoin)

2. EM algorithm plus PCA, Stock and Watson (2002) JBES appendix, Bernanke
and Boivin (2003) JME, Schumacher and Breitung (2006) BBK DP

3. Kalman smoother estimation using a large state-space factor model with PCA
providing initial values, see Doz, Giannone and Reichlin (2006) ECB WP



5.1 Vertical realignment of the data and dynamic PCA

Altissimo et al. (2006) CEPR WP

Variable 7 is released with k; months of publication lag — in period T}y, the final
observation available is in period Ty, — k;

Balancing by ‘vertical’ realignment

Ti Ty = T To—k; (2)

Applying this procedure for each series and harmonising at the beginning of the sam-
ple, yields a balanced data set X,

Factor estimation from X; by Dynamic PCA, Forni et al. (2005) JASA



5.2 EM algorithm and static PCA

Stock and Watson (2002) JBES appendix, Schumacher and Breitung (2006) BBK
DP

We want a full data column vector X; = (x; 1, ... ,CCi7Tm)/, due to the ragged-edge
problem we observe only X?bs

relationship between observed and unobserved

X = AX; (3)

where A; is a matrix that can tackle missing values or mixed frequencies



EM algorithm:

1. Initial (naive) guess of observations /Xgo)w yields a balanced dataset X () static
PCA provides initial monthly factors F(0) and loadings A0)

2. E-step: Expectation of X, conditional on observations ngs, factors FU—1) and

: ~(7—1 : : :
loadings A,gj ) from the previous iteration

/Xz(‘j) _ ]?‘(j—l)_fx?(;j—l) 4 A,’L-(A;;Ai)_l (qubs _ Aif‘(j_l)_f\gj_l)) (4)

3. M-step: Repeat the E-step for all ¢z providing again a balanced dataset. Reesti-
mate F(7) and AU) by PCA, and go to step 2 until convergence



5.3 Kalman smoother estimates in a large state-space model

Doz et al. (2006) ECB WP

Model:

Xtm — Ath -+ £tm
W(Lm)th — BTItm

—~~
S O
~— —

VAR for factors with W(Ly,) = 30 _; W,L: and Lmaxt, = ¢ _1, g-dimensional
vector 1), contains dynamic shocks that drive factors, identification matrix B is
(r X g)-dimensional

Model has state-space representation with factors as states

Estimation ‘trick’: Coefficients estimated outside state-space model, no iterative ML



QML to estimate the factors:
1. Estimate th using PCA as an initial estimate

2. Estimate A by regressing X . on the estimated factors ﬁtm The covariance
of the idiosyncratic components §; = X;  — AF; , denoted as 25 is also
estimated

3. Estimate factor VAR(p) on the factors th yielding V(L) and the residual
covariance of ¢y, = W(L )th, denoted as 3¢

4. To obtain an estimate for B, apply an eigenvalue decomposition of ig

5. State-space is fully specified numerically — The Kalman smoother provides es-
timates of factors



5.4 Discussion

VA-DPCA: easy to use, but

e availability of data determines dynamic cross-correlations between variables!

e statistical release dates for data are not the same over time, for example due to
major revisions — dynamic correlations within the data change and factors can
change over time

EM-PCA

e interpolation of missing values in line with factor model



e no dynamics

e sometimes convergence problems (‘partial factors’, large r)

KFS-PCA

e optimality properties of Kalman filter/smoother

e explicit dynamics of the factors

e assumptions on idiosyncratic components often not fulfilled

e more (dynamic) structure, more auxiliary parameters to fix and perhaps subject
to misspecification, see Boivin and Ng (2005) [JCB



6 Factor forecasting: MIDAS-basic

Ghysels, Sinko, Valkanov (2007) EctrRev

Our contribution: Clements and Galvdo (2007) WP use single macro variables, we
use factors — FACTOR-MIDAS

Three ways:
1. MIDAS-basic
2. MIDAS-smooth

3. Unrestricted MIDAS



6.1 Factor forecasting: MIDAS-basic

Ghysels, Sinko, Valkanov (2007) EctrRev, Clements and Galvdo (2007) WP

MIDAS Model with one factor f;  for forecast horizon hq quarters (hg = hm/3):

3

Yty+hy = Bo + B1b(Lm, H)ﬁ(m) + Etmthm (7)

K 2

01k + 0>k
HL0) = 3 clk 0Lk, clh,0) = 2RO g,

k=0 Z exp(601k + Q2]€2)
k=0

Quarterly GDP Yt +hg is directly related to the monthly factor ﬁ(i) and lags, where

ﬁ(i) Is a skip-sampled version of ftm



Estimation by nonlinear least squares (NLS)

Device for direct forecasting depending on h, see Marcellino, Stock, Watson (2006)

YT, +he|T, = Bo + B1b(Lm, 0) fr,, (9)



6.2 The projection in New Eurocoin: MIDAS-smooth

Altissimo et al. (2006) CEPR WP

Projection:
~ -~ S—1 ~
YT, tho|T, = B+ | Dyp(hm) x '] x B, (10)
t is GDP sample mean, f]F Is sample covariance of factors

~

3. F(k) is cross-covariance between smoothed GDP and factors with k lags

1 H . .
> a(w;)S,F(w;j)e™i® (11)

with a(w;) = 1V ‘wj‘ < 7 /6 and zero otherwise, and cross-spectral matrix éyF(wj)



If we disregard smoothing and use

1 Lm

S (3)/
= =1 tm=M+1

in(k) —
where T* = floor[(T/m — (M + 1))/3] in

~ S S—1 -
YT, +hoT, = B+ |Zyr(hm) x | x Fr, (13)

— Both in basic MIDAS and New Eurocoin: f]yF(k) can be estimated consistently
although y¢, and th have different sampling frequencies

— Projection in New Eurocoin and basic MIDAS projection follow the same idea!



6.3 Unrestricted MIDAS

Unrestricted lag order model

Yt +hy = Po+ D(Lm)ng) T €tim+hm (14)
where D(Ly,) = Z?:o D, LE is an unrestricted lag polynomial of order K.
Estimation of D(L,) and Bg by OLS
We consider fixed lag orders with kK =0 and £ =1

Note that for kK = 0, we consider only t,,-dated factors for forecasting — case k = 0
is like MIDAS-smooth without smoothing



7/ Empirical now- and forecast comparison

7.1 Data

German quarterly GDP from 19921 until 2006Q)3
111 monthly indicators
Data: No real-time, we generate ragged-edge vintages from final data

Solution: Missing values at the end of the full, final sample are used to identify missing
values in pseudo real-time subsamples, see Banbura and Riinstler (2007) ECB WP



7.2 Forecast design

Recursive design with increasing sample size
Evaluation sample from 199814 until 200603

Each month, we compute new now- and forecasts with monthly horizon h;,, =
1,2,...,9

Models are estimated using fixed specification in terms of numbers of factors r and
q, and using information criteria, see Bai and Ng (2002, 2007)



7.3 Empirical results

Results based on fixed specifications for r =1, 2

relative MSE to variance of GDP, number of factors r = 1

nowcast forecast forecast
current quarter 1 quarter 2 quarters

horizon h, 1 2 3 4 5 0 7 3 0
1.a. MIDAS-UQ VA-DPCA 071 086 089 090 105 098 105 1.09 1.12
EM-PCA 058 065 072 092 093 0.79 1.10 1.10 1.05
KFS-PCA 068 085 080 095 101 093 1.08 1.09 1.06

1.b. Ranking VA-DPCA 3 3 3 1 3 3 1 2 3

EM-PCA 1 1 1 2 1 1 3 3 1

KFS-PCA 2 2 2 3 2 2 2 1 2
2. Benchmarks AR 1.02 117 1.17 1.17 108 108 1.08 1.08 1.08
in-sample mean 1.03 104 104 104 105 105 105 1.06 1.06




relative MSE to variance of GDP, number of factors r =2, ¢ =1

nowcast forecast forecast
current quarter 1 quarter 2 quarters
horizon A, 1 2 3 4 5 0 7 38 0

4.a. MIDAS-UO VA-DPCA 0./ 082 087 078 101 094 128 113 1.15
EM-PCA 0.66 107 085 098 096 073 1.26 1.00 2.30
KFS-PCA 071 106 087 094 09 069 117 1.11 1.52

4.b. Ranking VA-DPCA 3 1 2 1 3 3 3 3 1
EM-PCA 1 3 1 3 1 2 2 1 3
KFS-PCA 2 2 3 2 2 1 1 2 2

6. Benchmarks AR 1.02 11r 1.1r 1.1v 108 1.08 1.08 1.08 1.08

in-sample mean 1.03 1.04 104 104 105 105 1.05 1.06 1.06




relative MSE to variance of GDP, number of factors r = 1

nowcast forecast forecast
current quarter 1 quarter 2 quarters
horizon h., 1 2 3 4 5 ¢ 7 38 9
1.a. VA-DPCA MIDAS-basic 071 101 106 094 1.18 105 1.16 124 1.30
MIDAS-smooth 069 092 087 095 1.10 120 1.18 1.12 1.19
MIDAS-UO 071 086 089 090 105 098 105 109 1.12
1.b. Ranking MIDAS-basic 3 3 3 2 3 2 2 3 3
MIDAS-smooth 1 2 1 3 2 3 3 2 2
MIDAS-UQ 2 1 2 1 1 1 1 1 1
2.a. EM-PCA MIDAS-basic 0.62 069 078 107 099 101 130 1.09 1.05
MIDAS-smooth 0.70 0.73 084 094 095 100 105 109 1.13
MIDAS-UQ 058 065 072 092 093 079 1.10 1.10 1.05
2.b. Ranking MIDAS-basic 2 2 2 3 3 3 3 1 1
MIDAS-smooth 3 3 3 2 2 2 1 2 3
MIDAS-UO 1 1 1 1 1 1 2 3 2




7.4 More results

Nowcasts based on information-criteria model selection for » and ¢ have no informa-
tion content

We also checked PCA vs DPCA together with vertical realignment of the data — no
big differences

We checked the information content of ragged-edge data vs. balanced data — ragged-
edge contains in general useful information for nowcasting

We compared an intgrated state-space model which also interpolates GDP from Ban-
bura and Riinstler (2007) with the two-step factor nowcast here — no big differences



8 Conclusions

Factor models considered here can address nowcasting questions with ragged-edge
and mixed-frequency data

Models with only one or two factors (r = 1, 2) perform best

Differences between factor estimation methods (vertical realignment, EM, state space)
are minor

Simplest MIDAS projections with few lags do better than exponential lag versions

Projections are informative for the nowcast and forecast one quarter ahead — factor
models can be regarded as short-term forecast models only



