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1 Introduction

Bundesbank involved in disaggregated Euro area projection exercises (BMPE) to-
gether with European Central Bank (ECB) and other National Central Banks of the
Eurosystem

In BMPE, Bundesbank has to provide forecasts for German GDP and in�ation

Forecasts are monitored by other Eurosystem central banks and the public

! There is always the need to be up-to-date with forecasting techniques



Presentation today part of bigger Bundesbank project on development of a range of
nowcast and forecast models

Techniques are still under evaluation, not implementend yet in regular forecast exer-
cises



Outline of presentation:

1. What is nowcasting?

2. Di¢ culties of now- and forecasting GDP

3. Discussion of three factor models that can tackle unbalanced data

4. MIDAS projection with factors as regressors: FACTOR-MIDAS

5. Empirical now- and forecast comparison

6. Conclusions



2 What is nowcasting?

Decision makers regularly request information on the current state of the economy

GDP is an important business cycle indicator, but sampled at quarterly frequency only
and published with considerable delay

Economist�s task: Estimate current quarter GDP using all information which is
currently available

Example: in April, German GDP is available only for the fourth quarter of the previous
year. To obtain a 2nd quarter GDP nowcast, we have to make a projection with
forecast horizon of two quarters from the end of the GDP sample.



3 Di¢ culties of now- and forecasting GDP

There are many di¢ culties in real-world applications, we discuss two:

1. GDP is quarterly data, many important indicators are sampled at monthly or
higher frequency - mixed-frequency problem

2. Indicators for nowcasting are available with di¤erent publication lags! leads to
the so-called ragged edge of multivariate datasets, Wallis (1986)

Question here: How to nowcast quarterly GDP with factors estimated from a large
set of monthly indicators?



4 Factor now- and forecasting: Two-step procedure

Boivin and Ng (2005) IJCB: In the single-frequency case, factor forecasting is often
a two-step procedure

1. Estimation Step: Estimate factors

2. Forecast step: Factor-augmented (V)AR model

We follow the same strategy in the mixed-frequency case with ragged-edge data



5 Factor estimation with ragged-edge data

Monthly observations have a factor structure

Xtm = �Ftm + �tm (1)

with factors Ftm = (f
0
1;tm

; : : : ; f 0r;tm)
0, loadings �, idiosyncratic components �tm

If data X = (X1; : : : ;XTm)
0 is balanced, there are di¤erent ways to estimate F:

1. PCA as in Stock and Watson (2002) JBES

2. Dynamic PCA according to Forni et al. (2005) JASA

3. Subspace algorithms, Marcellino and Kapetanios (2006) CEPR WP



We consider three factors models for ragged-edge data:

1. Vertical realignment of the data and dynamic PCA, Altissimo et al. (2006) CEPR
WP (New Eurocoin)

2. EM algorithm plus PCA, Stock and Watson (2002) JBES appendix, Bernanke
and Boivin (2003) JME, Schumacher and Breitung (2006) BBK DP

3. Kalman smoother estimation using a large state-space factor model with PCA
providing initial values, see Doz, Giannone and Reichlin (2006) ECB WP



5.1 Vertical realignment of the data and dynamic PCA

Altissimo et al. (2006) CEPR WP

Variable i is released with ki months of publication lag ! in period Tm, the �nal
observation available is in period Tm � ki

Balancing by �vertical�realignment

exi;Tm = xi;Tm�ki (2)

Applying this procedure for each series and harmonising at the beginning of the sam-
ple, yields a balanced data set fXtm
Factor estimation from fXtm by Dynamic PCA, Forni et al. (2005) JASA



5.2 EM algorithm and static PCA

Stock and Watson (2002) JBES appendix, Schumacher and Breitung (2006) BBK
DP

We want a full data column vector Xi = (xi;1; : : : ; xi;Tm)
0, due to the ragged-edge

problem we observe only Xobsi

relationship between observed and unobserved

Xobsi = AiXi (3)

where Ai is a matrix that can tackle missing values or mixed frequencies



EM algorithm:

1. Initial (naive) guess of observations cX(0)i 8i yields a balanced dataset cX(0), static
PCA provides initial monthly factors bF(0) and loadings b�(0)

2. E-step: Expectation of Xi conditional on observations Xobsi , factors bF(j�1) and
loadings b�(j�1)i from the previous iteration

cX(j)i = bF(j�1) b�(j�1)i +A0i(A
0
iAi)

�1
�
Xobsi �Ai bF(j�1) b�(j�1)i

�
(4)

3. M-step: Repeat the E-step for all i providing again a balanced dataset. Reesti-
mate bF(j) and b�(j) by PCA, and go to step 2 until convergence



5.3 Kalman smoother estimates in a large state-space model

Doz et al. (2006) ECB WP

Model:

Xtm = �Ftm + �tm (5)

	(Lm)Ftm = B�tm (6)

VAR for factors with 	(Lm) =
Pp
i=1	iL

i
m and Lmxtm = xtm�1, q-dimensional

vector �tm contains dynamic shocks that drive factors, identi�cation matrix B is
(r � q)-dimensional

Model has state-space representation with factors as states

Estimation �trick�: Coe¢ cients estimated outside state-space model, no iterative ML



QML to estimate the factors:

1. Estimate bFtm using PCA as an initial estimate
2. Estimate b� by regressing Xtm on the estimated factors bFtm. The covariance
of the idiosyncratic components b�tm = Xtm � b�bFtm, denoted as b��, is also
estimated

3. Estimate factor VAR(p) on the factors bFtm yielding b	(Lm) and the residual
covariance of b&tm = b	(Lm)bFtm, denoted as b�&

4. To obtain an estimate for B, apply an eigenvalue decomposition of b�&
5. State-space is fully speci�ed numerically ! The Kalman smoother provides es-
timates of factors



5.4 Discussion

VA-DPCA: easy to use, but

� availability of data determines dynamic cross-correlations between variables!

� statistical release dates for data are not the same over time, for example due to
major revisions ! dynamic correlations within the data change and factors can
change over time

EM-PCA

� interpolation of missing values in line with factor model



� no dynamics

� sometimes convergence problems (�partial factors�, large r)

KFS-PCA

� optimality properties of Kalman �lter/smoother

� explicit dynamics of the factors

� assumptions on idiosyncratic components often not ful�lled

� more (dynamic) structure, more auxiliary parameters to �x and perhaps subject
to misspeci�cation, see Boivin and Ng (2005) IJCB



6 Factor forecasting: MIDAS-basic

Ghysels, Sinko, Valkanov (2007) EctrRev

Our contribution: Clements and Galvão (2007) WP use single macro variables, we
use factors ! FACTOR-MIDAS

Three ways:

1. MIDAS-basic

2. MIDAS-smooth

3. Unrestricted MIDAS



6.1 Factor forecasting: MIDAS-basic

Ghysels, Sinko, Valkanov (2007) EctrRev, Clements and Galvão (2007) WP

MIDAS Model with one factor bftm for forecast horizon hq quarters (hq = hm=3):
ytq+hq = �0 + �1b(Lm; �)

bf (3)tm + "tm+hm (7)

b(L; �) =
KX
k=0

c(k; �)Lkm c(k; �) =
exp(�1k + �2k

2)
KX
k=0

exp(�1k + �2k2)

(8)

Quarterly GDP ytq+hq is directly related to the monthly factor
bf (3)tm and lags, wherebf (3)tm is a skip-sampled version of bftm



Estimation by nonlinear least squares (NLS)

Device for direct forecasting depending on hq, see Marcellino, Stock, Watson (2006)

yTq+hqjTq =
b�0 + b�1b(Lm; b�) bfTm (9)



6.2 The projection in New Eurocoin: MIDAS-smooth

Altissimo et al. (2006) CEPR WP

Projection:

yTq+hqjTq = b�+ h e�yF(hm)� b��1F i
� bFTm (10)

b� is GDP sample mean, b�F is sample covariance of factors
e�yF(k) is cross-covariance between smoothed GDP and factors with k lags

e�yF(k) = 1

2H + 1

HX
j=�H

�(!j)
bSyF(!j)ei!jk (11)

with �(!j) = 1 8
���!j��� < �=6 and zero otherwise, and cross-spectral matrix bSyF(!j)



If we disregard smoothing and use

b�yF(k) = 1

T � � 1

TmX
tm=M+1

ytm
bF(3)0tm�k (12)

where T � =�oor[(Tm � (M + 1))=3] in

yTq+hqjTq = b�+ h b�yF(hm)� b��1F i
� bFTm (13)

! Both in basic MIDAS and New Eurocoin: b�yF(k) can be estimated consistently
although ytq and

bFtm have di¤erent sampling frequencies
! Projection in New Eurocoin and basic MIDAS projection follow the same idea!



6.3 Unrestricted MIDAS

Unrestricted lag order model

ytq+hq = �0 +D(Lm)
bF(3)tm + "tm+hm; (14)

where D(Lm) =
PK
k=0DkL

k
m is an unrestricted lag polynomial of order K.

Estimation of D(Lm) and �0 by OLS

We consider �xed lag orders with k = 0 and k = 1

Note that for k = 0, we consider only tm-dated factors for forecasting! case k = 0
is like MIDAS-smooth without smoothing



7 Empirical now- and forecast comparison

7.1 Data

German quarterly GDP from 1992Q1 until 2006Q3

111 monthly indicators

Data: No real-time, we generate ragged-edge vintages from �nal data

Solution: Missing values at the end of the full, �nal sample are used to identify missing
values in pseudo real-time subsamples, see Banbura and Rünstler (2007) ECB WP



7.2 Forecast design

Recursive design with increasing sample size

Evaluation sample from 1998Q4 until 2006Q3

Each month, we compute new now- and forecasts with monthly horizon hm =

1; 2; : : : ; 9

Models are estimated using �xed speci�cation in terms of numbers of factors r and
q, and using information criteria, see Bai and Ng (2002, 2007)



7.3 Empirical results

Results based on �xed speci�cations for r = 1; 2

relative MSE to variance of GDP, number of factors r = 1
nowcast forecast forecast

current quarter 1 quarter 2 quarters
horizon hm 1 2 3 4 5 6 7 8 9

1.a. MIDAS-U0 VA-DPCA 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12
EM-PCA 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05
KFS-PCA 0.68 0.85 0.80 0.95 1.01 0.93 1.08 1.09 1.06

1.b. Ranking VA-DPCA 3 3 3 1 3 3 1 2 3
EM-PCA 1 1 1 2 1 1 3 3 1
KFS-PCA 2 2 2 3 2 2 2 1 2

2. Benchmarks AR 1.02 1.17 1.17 1.17 1.08 1.08 1.08 1.08 1.08
in-sample mean 1.03 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06



relative MSE to variance of GDP, number of factors r = 2, q = 1
nowcast forecast forecast

current quarter 1 quarter 2 quarters
horizon hm 1 2 3 4 5 6 7 8 9

4.a. MIDAS-U0 VA-DPCA 0.75 0.82 0.87 0.78 1.01 0.94 1.28 1.13 1.15
EM-PCA 0.66 1.07 0.85 0.98 0.96 0.73 1.26 1.00 2.30
KFS-PCA 0.71 1.06 0.87 0.94 0.96 0.69 1.17 1.11 1.52

4.b. Ranking VA-DPCA 3 1 2 1 3 3 3 3 1
EM-PCA 1 3 1 3 1 2 2 1 3
KFS-PCA 2 2 3 2 2 1 1 2 2

6. Benchmarks AR 1.02 1.17 1.17 1.17 1.08 1.08 1.08 1.08 1.08
in-sample mean 1.03 1.04 1.04 1.04 1.05 1.05 1.05 1.06 1.06



relative MSE to variance of GDP, number of factors r = 1
nowcast forecast forecast

current quarter 1 quarter 2 quarters
horizon hm 1 2 3 4 5 6 7 8 9

1.a. VA-DPCA MIDAS-basic 0.71 1.01 1.06 0.94 1.18 1.05 1.16 1.24 1.30
MIDAS-smooth 0.69 0.92 0.87 0.95 1.10 1.20 1.18 1.12 1.19
MIDAS-U0 0.71 0.86 0.89 0.90 1.05 0.98 1.05 1.09 1.12

1.b. Ranking MIDAS-basic 3 3 3 2 3 2 2 3 3
MIDAS-smooth 1 2 1 3 2 3 3 2 2
MIDAS-U0 2 1 2 1 1 1 1 1 1

2.a. EM-PCA MIDAS-basic 0.62 0.69 0.78 1.07 0.99 1.01 1.30 1.09 1.05
MIDAS-smooth 0.70 0.73 0.84 0.94 0.95 1.00 1.05 1.09 1.13
MIDAS-U0 0.58 0.65 0.72 0.92 0.93 0.79 1.10 1.10 1.05

2.b. Ranking MIDAS-basic 2 2 2 3 3 3 3 1 1
MIDAS-smooth 3 3 3 2 2 2 1 2 3
MIDAS-U0 1 1 1 1 1 1 2 3 2



7.4 More results

Nowcasts based on information-criteria model selection for r and q have no informa-
tion content

We also checked PCA vs DPCA together with vertical realignment of the data! no
big di¤erences

We checked the information content of ragged-edge data vs. balanced data! ragged-
edge contains in general useful information for nowcasting

We compared an intgrated state-space model which also interpolates GDP from Ban-
bura and Rünstler (2007) with the two-step factor nowcast here! no big di¤erences



8 Conclusions

Factor models considered here can address nowcasting questions with ragged-edge
and mixed-frequency data

Models with only one or two factors (r = 1; 2) perform best

Di¤erences between factor estimation methods (vertical realignment, EM, state space)
are minor

Simplest MIDAS projections with few lags do better than exponential lag versions

Projections are informative for the nowcast and forecast one quarter ahead ! factor
models can be regarded as short-term forecast models only


