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Investing in Disappearing Anomalies

Abstract

This paper studies the optimal asset allocation to a security whose anomalous returns are
possibly disappearing over time. We apply our framework to two anomalies, positive stock
index autocorrelations and the January effect. We summarize the empirical evidence on
these phenomena from the point of view of investors with differing beliefs on the behavior
of the anomaly. Our results suggest that anomalies decay over time, and that accounting
for this decay has a large effect on optimal portfolio weights. Somewhat surprisingly, we
find that priors that downweight the historical magnitude of an anomaly can sometimes
increase the future allocations to it.

JEL classification: G12, C11.

Keywords: anomalies, Bayesian analysis, asset allocation, January effect, return autocorrela-
tion, structural breaks.
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1 Introduction

Since Fama’s (1970) seminal work, many challenges to market efficiency have arisen. Notable

examples include the size effect (Banz, 1981), the weekend effect (French, 1980), and momen-

tum (Jegadeesh and Titman, 1993). To the extent that these anomalies represent failures of

market efficiency rather than the misspecification of a pricing model, it is reasonable to expect

their appearances to be finite-lived. Once the market “discovers” a trading opportunity, it

should not persist for long, unless the anomaly is due to limits to arbitrage. In a review ar-

ticle, Cochrane (1999) observes that the recent decline in the size and value premia “suggests

that at least some of the premium the new strategies yielded in the past was due to the fact

that they were simply overlooked.”

Schwert (2001) demonstrates a lack of robustness across sample periods for a variety of

well-known anomalies and attributes at least some of the attenuation in available abnormal

returns to the dissemination of academic research findings. Among other results, he finds that

funds managed by Dimensional Fund Advisors to exploit the size and value effects have not

offered the average returns suggested by the historical sample used to identify these effects.

Not all anomalies disappear as soon as they are discovered. Schwert (2001) shows that the

January effect, which measures the tendency of small firms to outperform large firms in the

month of January, has endured through the 1990s.1 Jegadeesh and Titman (2001) find that

the magnitude of the momentum effect has been relatively unchanged since their 1993 study.

Identifying anomalies that disappear could be revealing about which ones represent market

inefficiencies and which ones are artifacts of a misspecified pricing model or limits to arbitrage.

For example, based in part on the persistence of momentum profits over the time since their first

study was published, Jegadeesh and Titman (2001) conclude that a behavioral model might

offer a more accurate description of asset prices. In comparison, the sudden disappearance

of the size and value effects (Schwert, 2001) may make the three-factor model of Fama and

French (1993) less relevant, with size and value effects perhaps better characterized as truly

anomalous but now vanished.2

1 This is also evident in the returns on the DFA US Small Stock Portfolio. Since DFA introduced it in 1982,
it has yielded the average raw return of more than 4% in Januaries, and below 1% in non-January months

2 The debate on the disappearance of the size and value effects is far from over. Recent theoretical work by
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Besides market inefficiency and model misspecification, data snooping also arises as a po-

tential explanation for apparent anomalies. If an anomaly disappears immediately after it is

identified in the academic literature, this lends support to the data snooping hypothesis, al-

though it certainly does not prove it. Data snooping would be an unlikely explanation for an

anomaly that did not diminish or disappeared only gradually following its identification.

The time-varying nature of apparent anomalies is perhaps most important to the investor

trying to form an investment strategy based on one of them. Asset allocation in this setting

is complicated by at least three factors, outlined by Brennan and Xia (2001). The first is that

the investor must decide whether or not the anomaly is solely the result of data snooping. The

second is that the investor must take into account parameter uncertainty – expected returns

are estimated, not known. The third problem, not addressed by Brennan and Xia (2001) or

elsewhere, is that anomalies might be expected to disappear.

Investing in such an unstable environment is the topic of this paper. Rather than focus on

the explanation of anomalies, we examine the optimal asset allocations of a Bayesian investor

who considers the possibility that anomalous past returns might not continue into the future.

We examine this question in a framework similar to those of Kandel and Stambaugh (1996),

Brennan and Xia (2001), Pastor (2000), and Pastor and Stambaugh (2000). Like all of these

papers, we explicitly account for parameter uncertainty in forming optimal portfolios. In

addition, following Pastor and Stambaugh (1999), we sometimes consider investors who center

their prior beliefs around the parameter values implied by a particular asset pricing model.

The framework we propose here differs from standard models of structural breaks, such

as those considered by Andrews (1993) or Pastor and Stambaugh (2001). While these papers

assume an instantaneous regime switch, we allow for a prolonged interim period in which the

anomalous assets only gradually change their behavior. Like Pastor and Stambaugh (2001),

however, the nature of our structural shift is guided by economic reasoning embodied in the

combination of model and prior. In their paper, the more probable structural breaks are those

that do not radically change the market risk premium or Sharpe ratio. Here, structural breaks

are assumed to cause anomalies to disappear and markets to become more efficient. In the

Zhang (2002) predicts business-cycle effects in the value premium that should cause it to disappear at times,
only to reappear later in full force.
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interest of simplicity, we do not consider the possibility of multiple breaks.

Our approach accommodates Merton’s (1987) view that the time between the discovery of

an anomaly and its elimination may be considerable. Merton argues that information published

in scientific journals diffuses particularly slowly, as academics and practitioners struggle to

determine whether the observation is an artifact of data, a result of market frictions, or a truly

attractive investment opportunity that can be taken advantage of. Furthermore, even if money

managers are convinced of the trading opportunity, they still face frictions in implementing the

strategy on a large scale as they gather data, build models, satisfy prudence requirements, and

possibly market the new strategy to their clients. Hence, the anomaly may decay sluggishly

over time, especially if it applies to many stocks (e.g., all small stocks) and arbitraging it away

requires an orchestrated action of many investors.

While the idea that learning by market participants might reduce market efficiencies over

time is not new, few studies have addressed the possibility directly. Watts (1978) conjectures

that the shrinking of abnormal reactions to earnings announcements might have been due to

learning. More related papers by Mittoo and Thompson (1990) and McQueen and Thorley

(1997) examine more directly whether published articles provide a source for learning by the

market. The former focuses on publication of academic research related to the size effect, while

the latter examines whether analysis published in the Wall Street Journal was responsible for

the disappearance of a particular anomaly in the pricing of gold mining stocks. Both papers

find evidence that anomalies attenuate following publications about them.

In Mittoo and Thompson’s (1990) modelling of the size effect, the return on a size-related

spread portfolio is assumed to follow a regime-switching model with two regimes.3 They reject

the hypothesis that there is no regime switch in the size effect, finding that the average size

effect, around 1% per month prior to the publication of Banz (1981), dropped to zero by the

late 1980s.

Our paper differs in the anomalies considered and more generally in its focus on asset allo-
3 The size-related spread portfolio used by Mittoo and Thompson (1990) is the equally-weighted market

index minus the value-weighted market index. Because of the greater weight of small stock in the former index
and of large stocks in the latter, returns on this spread portfolio should capture the size effect if it is present.
Other size-related strategies that involve the largest and smallest firms exclusively might be expected to amplify
the effects found.
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cation. Understanding the asset allocation process, while interesting from our own perspective

as potential investors, is also relevant for assessing the likelihood of alternative explanations of

underlying anomalies. As Kandel and Stambaugh (1996), Avramov (2002), and Cremers (2002)

demonstrate in their analyses of predictive regressions, statistical significance is sometimes a

poor measure of economic relevance. If optimal allocations decline to negligible levels after

anomalies are discovered, then statistical evidence that continues to support the existence of

the anomaly may be discounted as economically trivial. If, on the other hand, optimal alloca-

tions remain large for a significant period of time, then explanations that require modifications

to standard asset pricing models may gain credence.

As examples of our approach, we consider two of the most puzzling anomalies in empirical

finance: short-term index autocorrelation, usually associated with Lo and MacKinlay (1988),

and the January effect, identified by Keim (1983) and Reinganum (1983). Both are interesting

because they have been the focus of substantial academic debate that is to a large extent

unresolved. In addition, both suggest simple investment strategies that have been widely

applied in the investment management industry.

Our results demonstrate that these anomalies are likely to be viewed as slowly disappear-

ing, and that as of December 2001, the end of our sample, both continue to imply attractive

investment opportunities. Specifically, while autocorrelations in the value-weighted market

portfolio are today extremely low, estimates of the equally-weighted portfolio’s weekly auto-

correlation range from 10-15%. Furthermore, these autocorrelations appear to be available

even when excluding firms in the smallest two deciles of market capitalization. The effects on

asset allocation are large: given a positive two standard deviation return, an investor might

triple his investment in the equally-weighted portfolio; the same investor would short the mar-

ket following a negative two standard deviation return. As for the January effect, we estimate

a decline in January expected abnormal returns from around 9% to 4%. Although reduced,

the effects of this smaller expected return remain large: an investor who would normally (in

non-Januaries) put about 100% of his assets in the market portfolio would have put, in January

2002, five times his wealth in a size-based spread portfolio.

For both anomalies considered here, accounting for a possible decay is economically impor-

tant. Allocations to the anomaly are often dramatically different for investors who allow for a
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decay and those who do not.

A particularly surprising finding is that prior beliefs that are more strongly in favor of an

asset pricing model may perversely lead to greater allocations to the non-benchmark assets.

In one case, we find that an investor with a prior belief that annualized CAPM alphas are

mean-zero with a 2% standard deviation allocates more to the January portfolio than does a

similar investor whose beliefs are diffuse. Intuitively, if alphas are constrained to be small by

the prior, and if the data seem to be in violation of the CAPM, then the alphas might have

to decay more slowly to be consistent with that data. With the January effect, it turns out

that this greater persistence can dominate the lower initial level of alpha implied by the more

skeptical prior. At the end of the sample, the investor with the informative prior therefore has

a higher predictive mean for future January returns and actually invests more in the January

spread portfolio.

In Section 2 of the paper, we proceed with the examination of short-term autocorrelations

in stock index returns. This case is somewhat simplified by the fact that it is a study of

the index in isolation, so models of asset pricing have no relevance. Section 3 considers the

January effect, in which asset allocations are complicated by the existence of multiple assets

and possible priors that are motivated by an asset pricing model, which we take to be the

CAPM. We conclude in Section 4.
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2 The January effect

The January effect persisted for a long time because no one was paying attention

to it. Then it became just the talk of everybody.

Robert Shiller

Still, you can’t say that anything has changed. The plot just shows that there’s

been more variability in the last five years or so.

Donald Keim

I think it was all chance to begin with. There are strange things in any body of

data.

Eugene Fama4

Another puzzling phenomenon has been the tendency of small capitalization firms to out-

perform large capitalization firms in the month of January. Observations related to this

anomaly were first made by Rozeff and Kinney (1976), who observed higher returns on an

equally-weighted stock index in the month of January, and Banz (1981), who identified a con-

sistent relation between size and risk-adjusted equity returns. These results were refined by

Keim (1983) and Reinganum (1983), who showed that January effect and size effect were highly

interrelated. In fact, Blume and Stambaugh (1983), after controlling for upward biases in small

stocks returns, document that the size effect was significant only in January. For succinctness,

we refer to this finding which relates both to firm size and to the month of the year, as “the

January effect.”

More recent evidence on the effect is mixed. In an international sample, Hawawini and

Keim (1995) find that, except for France and the UK, the size premium is significantly higher

in January than the remainder of the year. Unlike Blume and Stambaugh (1983), however,

they find that in most countries the premium is positive in other months as well.
4 All quotes were taken from “Early January: The Storied Effect on Small-Cap Stocks,” by James H.

Smalhout, Barrons, December 11, 2000.
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In the “post-discovery” domestic sample, conclusions are varied. For instance, Haugen

and Jorion (1996) maintain that the January effect has shown no evidence of dissipating,

and that “no significant trend portends it’s eventual disappearance.” In contrast, Schwert

(2001) documents that the January effect has lessened, but it has not disappeared completely.

Specifically, he finds that the magnitude of the effect in the 1990s was roughly half that of the

prior two decades.

Potential explanations of the January effect include tax-loss selling (e.g., Reinganum, 1983),

the illiquidity of small-cap firms (Reinganum, 1990), and “window dressing” (Haugen and

Lakonishok, 1988). While the examination of these hypotheses is outside the scope of this

paper, our results may cast some light on the possible validity of these explanations. For

example, if tax-loss selling were advocated as the sole explanation of the January effect, and if

the January effect were to decline over a particular period, then some change in the tax code

around that time would seem to be required for the theory to hold credibly. If there were no

changes in the code and a distinct decline in the January effect were observed, we can at least

conclude that tax-loss sales are not likely the sole source of the effect.

In light of the potential instability of the January expected return, the January effect is an

interesting phenomenon given the focus of our study. Following most papers on the January

effect, we work with monthly returns on the spread portfolio that goes long in a portfolio of

small stocks and shorts a portfolio of large stocks. We choose the lowest capitalization decile of

the NYSE and AMEX exchanges as the former portfolio and the highest capitalization decile

as the latter. Following Reinganum (1983), we consider a sample starting in July 1962. The

sample ends in December 2001.

2.1 The investment problem

For simplicity, we again consider a myopic Bayesian investor with quadratic utility. Now,

this investor chooses between two risky assets, the value-weighted market index (NYSE and

AMEX) and the size-based spread portfolio described above. In addition, the investor is able

to invest in the one-month Treasury bill.

The investor forms his predictive means and variances of the excess market return, Rem,t,
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and the spread portfolio return, Rspr,t, using a simple model:

Rem,t ∼ N(µm, σ2
m) (1)

Rspr,t = α0 + α1IJ(t)δ(t−τ)+ + β Rem,t + εt, (2)

where x+ = max{x, 0}, εt ∼ N(0, σ2
ε ), and IJ(t) is an indicator that takes the value 1 in

Januaries and 0 in all other months.

A January effect can be present only if α1 6= 0. If it exists, δ measures the speed of its decay

and τ measures the last period in which it existed in full force. When δ = 1, the January effect

does not decay over time, while if δ = 0 it disappears instantly after time τ . The specification

of the spread portfolio return also nests several standard cases. When α1 = 0 the spread

portfolio does not ever exhibit any January seasonality, and when α0 = α1 = 0 the expected

return on the spread portfolio conforms with the CAPM.

Assuming that January seasonality only affects the Jensen’s alpha coefficient in the spread

return equation greatly simplifies the estimation process. A more complete model would obvi-

ously allow seasonality in the market’s expected return as well, and possibly introduce seasonal

effects in all other parameters of the model. We make these implicit simplifying assumptions

because it has been suggested that the January effect is limited to small stocks and is not

noticeable in the value-weighted market portfolio. Moreover, our sample contains relatively

few Januaries, so the estimation of a more complex model is probably unrealistic.

Another possible extension of our specification is to include a price jump that occurs when

the anomaly is discovered. As market participants realize that small cap stocks tend to be

underpriced relative to large cap stocks, they will drive up their prices just before the January

of year τ . However, it is not clear how to accommodate this effect. While the CAPM alpha of

the spread portfolio should increase prior to January of year τ , that increase may have occurred

at any time during that year. Moreover, in line with the idea that anomalies may dissipate

gradually, further price increases may also occur after the January effect is discovered. While

existence of such patterns is very interesting, we would need to estimate at least one or two

additional parameters to capture them in our specification. Given the length of our sample,
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we decided not to do that in our analysis.

2.2 Priors

We consider several prior distributions in our analysis, motivated in part by the quotes at the

beginning of this section. In all cases, the prior on the mean and standard deviation of the

market return is flat and independent of the remaining parameters, or

p(µm, σm, α0, α1, β, δ, τ , σε) ∝ p(α0, α1, β, δ, τ , σε)/σm (3)

The most general prior (the “Shiller” prior) on the remaining parameters is assumed to be

diffuse, or

p(α0, α1, β, δ, τ , σε) ∝




1/σε if 0 ≤ δ ≤ 1 and 1963 ≤ τ ≤ 2000

0 otherwise
(4)

As before, we also consider several special cases. An investor who believes that anomalies do

not exist will put all prior mass on α1 = 0 (the “Fama” prior), while the investor who does

not think that anomalies disappear puts all prior mass on δ = 1 (the “Keim” prior). Given

the possibility that the motivating quotes misrepresent the true opinions of their sources, and

because the quotes do not truly represent ex ante views, we somewhat blandly refer to these

three priors as the “diffuse”, “no-anomaly,” and “no-decay” priors.

We also consider the informative, CAPM-based priors for the regression parameters pro-

posed by Pastor and Stambaugh (1999) and Pastor (2000). Namely, the priors on α0 and α1

are independent normal with mean zero and standard deviations of either .01 or .02. The prior

on β is diffuse and the prior on σε is proportional to 1/σε. This prior will shrink α0 and α1

towards zero, so that the process governing Rspr,t is closer to the one implied by the CAPM.

2.3 Calculation of the posterior distribution

Because of prior independence, the posterior distribution of µm and σm can always be computed

independently of the other parameters. Using standard results, their posteriors are student-t
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and inverted gamma, respectively.

Conditional on δ and τ , other model parameters (α0, α1, β, and σε) can be estimated using

the standard multiple regression results (see, for instance, Zellner, 1971). Given the diffuse

conditional prior

p(α0, α1, β, σε|δ, τ) ∝ 1/σε (5)

for example, we have the well-known result that the posterior of α0, α1, and β, conditional on

σε, is multivariate normal, while the posterior distribution of σε is inverse gamma.

In the CAPM-based model, the prior is not conjugate (the normal priors are assumed to

be independent of σε) and there is no closed form solution for the posterior. However, draws

from the posterior can be easily obtained using the Gibbs sampler.

The last two parameters, δ and τ , conditional on α0, α1, β, and σε, can be estimated using

the griddy Gibbs sampler described in Section 2. To approximate the posterior distribution of

δ, its support (the interval [0, 1]) is divided into a 1000-point grid.5 Next, we iterate the Gibbs

sampler 51,000 times. We discard the first thousand draws and retain every tenth draw after

that, leaving a sample of 5,000 draws with which we work. Extremely small autocorrelation

coefficients of the draws indicate that the Gibbs chain converged and that the sample is highly

representative of the true posterior distribution.

Note that in either of the two restricted specifications, no decline and no anomaly, δ and τ

do not need to be estimated, which greatly simplifies the analysis.

2.4 Results

2.4.1 MLE estimates

As a preliminary step, we report maximum likelihood estimates for the model above and for a

simplified version. Table 5 contains these estimates, along with standard errors.

The top panel contains results for two sample periods for a simplified model in which the
5 Many more gridpoints for δ were needed for return autocorrelations because of the higher frequency that

weekly data set. With such high frequency observations, extremely small differences in δ could result in large
differences in likelihoods.

10



January effect is constant. We split our sample in 1981/1982, by which time Booth and Keim

(1999) suggest that the size effect had become widely known to investors. Dimensional Fund

Advisors small cap 9-10 Fund, for instance, was established in 1982.

The estimates suggest that the January premium, α1, has indeed declined over the last

few decades. Between the two samples, the estimate of α1 decreased by about a third. This

decrease in not as pronounced as, for instance, Booth and Keim (1999) report, because their

sample is shorter and does not incorporate the high January returns of 2000 (10.9%) and 2001

(22.8%). Nonetheless, the estimates indicate clearly that the magnitude of the January effect

has decreased over time. Interestingly, the estimates of other parameters also vary between

the two subsamples (most notably, the point estimate of β changes sign), which may indicate

that characteristics of the spread portfolio other than its January return change over time.

Using the whole sample, in the second panel of Table 5 we compute the maximum likelihood

estimates for the general model in (2) and the special cases of no anomaly and no decline.6 The

estimates imply that the January premium began to decline in 1976. Given the point estimate

of δ, about 57% of the premium had disappeared by the year 2001. Both these parameters are

estimated fairly precisely and provide strong evidence that the January anomaly indeed seems

to have decayed over time.

To make this point somewhat more formally, we consider a number of criteria provided in

the bottom four rows of the table. In addition to the Akaike Information Criterion,

AIC = −2 ln p(data|θML) + 2d, (6)

and the Bayesian Information Criterion,

BIC = −2 log p(data|θML) + d lnT (7)
6 Estimates for the general model were obtained by maximizing the model likelihood conditional on each

possible value of τ , then choosing the τ that yielded the highest likelihood. The parameter δ was constrained
to lie in [0, 1]. Standard errors for all the parameters were calculated using the outer product of gradients
method, at which time we treat τ as continuous. Since max{t − τ , 0} is non-differentiable, we approximate it
as (t− τ)Φ(10(t− τ)), where Φ(·) is the cumulative distribution function of a standard normal.
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we also consider a somewhat ad hoc modification of the BIC,

BIC∗ = −2 log p(data|θML) + d ln(T/12), (8)

where d is the number of parameters and T is the length of the sample. The modified BIC

adjusts the sample size to reflect the fact that only one out of twelve observations is actually

informative about the January effect. For all three criteria, lower numbers are preferred.

Finally, we also report statistics and p-values for likelihood ratio tests of the two restricted

models against the general one.

While the “no anomaly” specification is clearly rejected, the distinction between the “no

decline” and fully general specifications is less pronounced. Specifically, AIC weakly favors the

general specification, while the sample size-dependent BIC favors the no-decline model. When

the sample size is adjusted in the modified BIC, the no-decline model is still favored, but only

by a slim margin. Not surprisingly, the likelihood ratio test of this specification is just below

its 95% critical value.

As emphasized by Kandel and Stambaugh (1996), it is not clear how an investor should

incorporate these results into his portfolio decisions. In particular, he may be inclined to

consider the general model even though it is not firmly supported by the BIC or the likelihood

ratio test. As Kandel and Stambaugh show, a Bayesian investor may find a model important

even if frequentist analysis does not suggest statistical significance. We consider this issue

in the next section, in which we estimate the three models in the Bayesian framework and

calculate the optimal portfolio weights they imply.

2.4.2 Posterior summaries

We initially consider an investor who is deciding, as of December 2001, his asset allocations

for January 2002 based on all historical data since July 1962. Posterior medians and 90%

confidence intervals are presented in Table 6. In addition to the diffuse prior (4) and the

special cases of no decline (δ = 1) and no anomaly (α1 = 0), the table contains results

for the “2% CAPM” prior, in which α0, α1 ∼ N(0, .022) and the “1% CAPM” prior, where

α0, α1 ∼ N(0, .012).
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In general, the posteriors for the diffuse prior and the two CAPM-based priors suggest that

any decline in the January effect has been relatively slow, as posterior medians for δ are all

above .95. As the prior belief about α1 becomes tighter around zero, the posterior naturally

shrinks towards zero as well. This is not the only effect that is observed as a result of imposing

this view, however. In particular, tighter priors for α0 and α1 tend to lead to much later

estimates for τ . Intuitively, as the initial level of the anomaly is depressed, it must persist for

longer to be consistent with the data.

The effects of this shrinkage on the expected January 2002 return,

E [Rspr,2002] = E
[
α0 + α1δ

(T−τ)+ + β µm

]
(9)

are surprising. Initially, as the prior on α0 and α1 goes from diffuse to somewhat informative (a

standard deviation of .02), E [Rspr,2002] actually increases. Only when priors are tightened fur-

ther does this post-sample expected return decrease, although sample information still pushes

α1 well over four standard deviations above its prior mean.

Evidently, by pushing the posterior median of τ from 1976 to 1991, the “2% CAPM” prior

reduces the time over which the January effect decays so substantially that it more than offsets

the lower initial level of the effect. Although moving to the “1% CAPM” prior moves τ slightly

further, to 1995, this change is insufficient to overcome the effects of a smaller value for α1. An

implication of this result is that a prior that displays skepticism towards anomalies and that

generates more in-sample shrinkage may actually lead to more extreme predictive inferences.

The timing of the beginning of the disappearance of the January effect is further explored

in the left panel of Figure 6, which displays the posterior histogram of τ computed under the

diffuse prior. As was also the case for return autocorrelations, the posterior of τ is multimodal,

with the primary posterior mode in 1975 and lesser modes in 1993 and 2000. Thus, the year

1976 again stands out as the most probable year in which the decline of the first decline in the

January took place. It is interesting that the first paper on January seasonalities, Rozeff and

Kinney (1976), was published in that year, though any link between academic research and

market efficiency is at this point purely speculative.

The right panel of Figure 6 provides a visual characterization of the decline in mean Jan-
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uary returns over the full sample period. While there is a substantial amount of estimation

uncertainty, a downward path is clearly evident in the January effect. As suggested by Table

6, roughly half of the mean January return had decayed by 2001. Extrapolating the trend

forward, the effect would appear likely to survive for some time further.

2.4.3 Asset allocations as of 2001

Kandel and Stambaugh (1996) emphasize that weak statistical evidence need not imply eco-

nomic significance, and the January effect presents another example of this point. Table 7,

which displays the optimal allocations to the January spread portfolio and the value-weighted

market as of December 31, 2001, shows that allocations differ substantially based on whether

or not the investor considers the possibility of disappearance. Specifically, the “no-decline”

investor, who assumes that the January effect is stable, would optimally invest over 1,000%

of his wealth in the January spread position. The diffuse prior investor, who allows for decay,

invests half that amount.

Consistent with the higher expected returns perceived by the “2% CAPM” investor, the

allocation to the January spread is larger for that investor. It is smaller, but still quite large,

for the more skeptical “1% CAPM” investor. Finally, the “no-anomaly” investor position in

the spread portfolio, while small, is not zero. This is because this investor only considers

nonzero values of α1 to be anomalous and has a slightly positive posterior mean for α0.

What is striking about these January allocations is that they remain large despite the likely

possibility that they have declined over time. Even with the amount of shrinkage present in

the “1% CAPM” prior, the allocation to the January spread portfolio remains at close to 400%

of initial wealth. Furthermore, this is not simply an artifact of low risk aversion; the same level

of risk aversion underlies the “no-anomaly” investor’s allocation, which is close to zero in the

spread portfolio and 100% in the market index.

Certainty equivalent losses again provide an alternative measure of the significance of these

results. Since the January effect is only available one month per year, values are expressed

on a monthly (non-annualized) basis. The bottom half of Table 7 shows that these losses are

small when an investor who allows for some decline (diffuse, 2% CAPM, 1% CAPM) is forced
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to hold the portfolio of another such investor. For the same investors to hold the “no-decline”

portfolio would require substantial compensation, however, on the order of 10-20% of initial

wealth. The “no-anomaly” investor is also very reluctant to hold any portfolio but his own.

While some of these numbers may seem high, they are a direct consequence of the differences

in predictive moments. As indicated in Table 6, the median January 2002 mean return for the

no decline investor is 7.48% per month, while for the no anomaly investor it is 44 times lower,

at just .17%.

When one invokes trading costs, obviously high in the case of the spread portfolio, the

allocation may remain substantial. For instance, assuming the round trip transaction costs of

2%, the January allocation is still 250% of the investor’s wealth (at the same time, the allocation

to the market rises to almost 70%). In fact, even if we assume that the transaction costs reduce

the expected return to the level of the expected excess market return, the allocation to the

anomaly is still non-trivial at 60%, while the allocation to the market is about 92%. Hence,

even in the presence of substantial trading costs, the January anomaly is still appealing after

the investor allows it to decay for some 20 years.

In contrast, the optimal portfolio of the no-decline investor will likely remain extreme even

after a trading costs correction. The 2% to 3% round trip costs assumed above will not decrease

the allocation to a reasonable level. In the case of 2%, it only decreases to 787% of wealth. To

drive the allocation to 100% of wealth, the costs should be 6.72%.

2.4.4 Rolling sample allocations

To observe how inferences and optimal allocations have changed over time, we again perform

a rolling sample analysis. All samples begin in July 1962 and ending at the end of years 1972

through 2001. Thus, the shortest sample contains ten Januaries.

Figure 7 graphs the time series of allocations to the spread portfolio and the market port-

folio. The allocations implied by diffuse priors are contrasted with those resulting from more

restrictive priors. For visual clarity, we do not present the CAPM based allocation in this

figure. The year on the horizontal axis indicates the year for which the allocations were made;

investors are assumed to decide on their January allocations in December of the previous year.
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Although allocations have proven somewhat erratic over time, there is a general downward

trend in allocations to the January spread portfolio for the two priors that allow for a January

effect. The allocations of the investor who allows for a decline in anomalies vary between 10.03

in 1975 and .28 in 1990. During the same time, allocations to the market index have risen

for investors with all three priors. Accounting for decay in the January effect does make a

difference in optimal allocations , particularly over the last 15 years. As of the end of 2001,

the investor with diffuse priors would invest five times his initial wealth in the January spread

portfolio. While high, this allocation is just half that of the investor who assumes no decline

has occurred. Just two years before, this difference would have been even more substantial,

with “no-decline” priors implying a similar allocation but diffuse priors suggesting that the

optimal allocation be close to zero.

2.5 Implications

Almost 20 years since the publication of Keim (1983) and Reinganum (1983), the posterior

mean of the spread portfolio’s January alpha remains a robust 4%, roughly one half of it’s

original level. This is even more impressive if one allows for the possibility that this paper’s

version of the January spread strategy, namely buying the smallest decile of NYSE and AMEX

stocks and selling the largest decile, could likely be improved on. Suggestions by academics

and practitioners include forming the portfolio some time prior to the last day of December,

holding the portfolio for only two weeks rather than an entire month, and buying only those

small stocks that experienced negative returns in the previous year. Although we do not pursue

such refinements, we believe that they are likely to exist.

The January spread portfolio remains an important component of the optimal strategies

corresponding to most of the beliefs considered here (the only exception being the no-anomaly

prior), but the allocations to the January spread portfolio vary substantially across investors.

In particular, by the end of our sample the diffuse investor allocates roughly half as much to the

anomaly-based strategy as does the “no-decline” investor. Certainty equivalents demonstrate

that these differences are economically significant.

While there is considerable imprecision about when the January effect began to disappear,
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the most likely period is somewhere in the mid-1970s, around the time the first study on

January seasonality in stock returns was published by Rozeff and Kinney (1976). Our analysis

in no way shows the causality of these events, but it is consistent with the possibility, advocated

by Mittoo and Thompson (1990), that the dissemination of academic research may increase

market efficiency.

The simplistic view that inefficiencies exist until someone discovers them is, however, con-

tradicted by the fact that this particular anomaly has persisted for so long. While numerous

studies have attempted to uncover the sources of the January effect, we believe that plausible

explanations must be consistent with the observed pattern of decay. The window dressing ex-

planation of Haugen and Lakonishok (1988), for example, might be consistent with the average

level of the January effect, but the story would seem to require an additional component to

make it consistent with the effect’s gradual decline. We believe that exploration of such issues

would be of interest.

17



3 Short-horizon autocorrelations in equity index returns

“... we learned that over the past decade several investment firms – most notably,

Morgan Stanley and D.E. Shaw – have been engaged in high-frequency equity

trading strategies specifically designed to take advantage of the kind of patterns we

uncovered in 1988.” Lo and MacKinlay (1999)

While short-horizon autocorrelations in individual equity returns had been noticed as far

back as Fama (1965), the extremely high short-term autocorrelations of diversified equity in-

dices were generally unknown until Lo and MacKinlay (1988).7 Their results imply weekly

return autocorrelations as high as 15% for the value-weighted CRSP index and 30% for the

corresponding equally-weighted index. While not a violation of market efficiency per se, auto-

correlations of this magnitude are viewed as anomalous in light of the dominant view in the

finance literature, summarized by Ahn et al. (2002), that “time variation in expected returns

is not a high-frequency phenomenon.”

While the analysis within Lo and MacKinlay (1988) suggests that index autocorrelations

may have begun to decline by the end of their sample, it is difficult to find more recent

comparable evidence. Ahn et al. (2002) examine various US index and futures returns since

1982 and find daily autocorrelations ranging from -9% to +22%. Unfortunately, relatively

small sample sizes imply that standard errors are often large.

A natural explanation for positive index autocorrelations is the existence of microstructure

effects. At least since Fisher (1966), nontrading has been known to induce spurious positive

autocorrelation. The fact that equally-weighted indices display more prominent autocorrelation

than value-weighted indices supports this explanation, since equally-weighted indices weigh

more heavily on less frequently-traded small stocks. While Lo and MacKinlay (1988) and

Conrad and Kaul (1989) discount this possibility, more recent analysis by Ahn et al. (2002)

favors this explanation. We will set this issue aside temporarily.

An alternative explanation is that prices of some stocks are slow to adjust to newly ar-

rived information. Possible reasons for slow price adjustment include information asymmetries
7 Interestingly, a similar finding was obtained by Hawawini (1980), but it was not the primary focus of his

paper and appears to have been generally overlooked.
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(Llorente et al., 2002), behavioral biases (Hong and Stein, 1999), and the investor recognition

hypothesis (Merton, 1987, Badrinath et al., 1995, Shapiro, ????).

Our hypothesis that anomalies disappear, or, more generally, decay over time, may shed

light on some of the proposed explanations. For instance, it seems unlikely that behavioral

biases inherent in human nature would vanish. As we document below, return autocorre-

lations have substantially decreased over time, which suggests that this anomaly might not

be well-captured by purely behavioral models. On the other hand, the investor recognition

hypothesis could be more consistent with autocorrelation decay. Merton (1987) postulates

that due to information set-up costs investors will only research and hold a small subset of

available investments. If that is true of better informed institutional investors as well, then

prices of stocks with high institutional trading might reflect information earlier than prices of

other stocks. As discussed in Badrinath et al. (1995) and Sias and Starks (1997), some of

the information found by institutional investors will be common for all stocks, inducing the

positive cross-autocorrelations found by Lo and MacKinlay (1990).

If recent phenomena such as faster computers, the internet, the proliferation of the financial

press, the popularity of business education, the availability of security price data, and the

greater dissemination of academic research have led to a decrease in information acquisition

and processing costs, then autocorrelation induced by such costs might also be reasonably

expected to have declined. An investigation of these possibilities would obviously be difficult,

and it is well beyond the scope of the present study.

3.1 Modelling disappearance

The Bayesian investor we model is assumed to have a relatively simple view of how anomalies

disappear over time. Specifically, the investor views the anomaly as being in full force up until

some time τ , when the anomaly is “discovered”.8 Following discovery, the investor believes

that the magnitude of the anomaly disappears at a geometric rate. In the case of return
8 Throughout the paper, we will report τ in terms of calendar dates, although computations are performed

by assigning each observation a sequential whole number.
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autocorrelations, the investor assumes that the market return Rt is described by

Rt − µ = ρ0δ
(t−τ)+ (Rt−1 − µ) + εt, (10)

where x+ = max{x, 0} and where 0 ≤ δ ≤ 1. At least initially, we assume εt ∼ N(0, σ2
ε ).

The model implies that returns display a first-order autocorrelation of ρ0 up until and

including date τ . After that time, the autocorrelation disappears at a rate determined by

δ. The extreme values δ = 0 and δ = 1 correspond to the cases, respectively, in which the

anomaly disappears immediately or does not decay at all. When τ is equal to the last date in

the sample, no decay is observed.

Values of δ in between zero and one indicate that the anomaly disappears over time, with

values near one indicating persistence.

Were autocorrelation merely the product of data snooping, the true value of ρ0 would

obviously be zero, making δ and τ irrelevant. Given that data snooping has resulted in a

positive estimate of ρ0 over some historical period, however, we should expect the estimate of

τ to correspond roughly to the end of that period (possibly close to a publication date) and

the estimate of δ to be close to zero. Anomalies that persist well past their “discovery” make

the data snooping explanation highly improbable.

It should be noted that our specification is not fully general. There is no way for auto-

correlations to increase over time, and if autocorrelations decrease over time (δ < 1) then

they will eventually approach zero. In addition, other parameters are not allowed to change

over time. An alternative model might allow for instability in multiple parameters and for the

autocorrelation to converge to some nonzero value. In the interests of parsimony we do not

consider these generalizations.

In light of the well-known heteroskedasticity of weekly market returns, we do pursue a

generalization in which volatility is stochastic and that returns, conditional on volatility, are

distributed as student-t. This combination of assumptions allows for the variety of departures

from normality that Gallant, Hsieh, and Tauchen (1997) find in daily index returns. In this
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case, we replace the assumption that εt ∼ N(0, σ2
ε ) with εt ∼ t(0, ht, ν), where

ln ht = a + b ln ht−1 + cRt−1 + ηt (11)

and ηt ∼ N
(
0, σ2

η

)
. The parameter b measures the persistence of volatility, while c allows for

the possibility of a leverage effect, or a negative correlation between returns and volatilities.

ν, the student t degrees of freedom parameter, measures the degree of leptokurtosis in returns

conditional on volatility.

3.2 The investment problem

For simplicity, as in Kandel and Stambaugh (1996), we consider a myopic investor who is able

to invest only in the market and a risk-free asset. Similarly to Pastor and Stambaugh (2000),

we assume that investors have mean-variance preferences. The mean and the variance of the

market return is unknown to the investors and need to be estimated from the data. In our

Bayesian specification estimation risk can be accounted for in a fairly straightforward manner.

Parameter uncertainty is incorporated in the predictive distribution, obtained by integrating

over the posteriors. For a detailed analysis of such investment problems, see Kandel and

Stambaugh (1996).

In the case of a single risky asset, at time t the investor forms a predictive mean and

standard deviation of Rt+1, µ̂ and σ̂, and maximizes

pµ̂ + (1− p)rf − A

2
p2σ̂2, (12)

where p is the fraction of wealth invested in the risky asset. The optimal allocation is

p∗ =
µ̂− rf

Aσ̂2 . (13)

In this paper, we assume A = 2.83, a value chosen by Pastor and Stambaugh (2000) so that an

unconstrained investor would, given their data sample, choose to invest 100% of his portfolio

in the market.9 In our sample, similar results will obtain approximately. In any case, it is
9 Another possibility would be to choose the value of A that would cause some unconstrained investor to
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trivial to adjust most of our results for different values of A.

When volatility is stochastic, it is possible that the predictive variance, σ̂2, might also

account for uncertainty about the current value of the stochastic variance process ht. We

abstract from this possibility, recognizing that the information set available to actual investors

is much richer about the current level of volatility. (For example, investors observe returns

much more frequently than weekly.) Investors are therefore assumed to know the current value

of ht, though not its future values or the parameters that govern its dynamics.

3.3 Priors

We consider four priors on the parameters of the model. The first and most general, which we

call the diffuse prior, is chosen to represent prior ignorance. It is given by

p(µ, ρ0, δ, τ , σε) ∝




1/σε if 1/1/1962 ≤ τ ≤ 12/31/2001 and 0 ≤ δ ≤ 1

0 otherwise
(14)

for the constant volatility model and

p(µ, ρ0, δ, τ , a, b, c, ση, ν) ∝





λ exp(−λν)/ση if 1/1/1962 ≤ τ ≤ 12/31/2001 ,

0 ≤ δ ≤ 1 , and 3 ≤ ν ≤ 50

0 otherwise

(15)

for the stochastic volatility model. The parameter λ is set to .05, a value that implies a

relatively diffuse prior distribution for ν, with a mean of about 18 and a standard deviation of

about 12.

Other priors are restricted versions cases of these. An investor who is certain that anomalies

do not exist will put all prior mass on ρ0 = 0 (making δ and τ irrelevant). An investor

who is dogmatic that anomalies do not disappear puts all prior mass on δ = 1 (making τ

irrelevant). We refer to these priors as the “no-anomaly” prior and the “no-decline” or “no-

decay” prior. Finally, we consider the case of an investor who believes that the date of discovery

fully invest in the market given our own data samples. Since we consider different datasets in Sections 2 and 3,
however, this would require a different value of A for each section. For simplicity, we therefore assume Pastor
and Stambaugh’s (2000) value.
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was 4/1/1988, which was approximately when Lo and MacKinlay (1988) was published. This

investor is said to have a “Lo and MacKinlay” prior.

3.4 Posterior and predictive inference

We estimate model parameters using Gibbs sampling, a Markov chain Monte Carlo approach

developed in Geman and Geman (1984). Gibbs sampling is a method of indirectly drawing

samples from a multivariate distribution whose density is unknown. Samples are constructed

by repeatedly drawing from conditional distributions, which are often easier to obtain than the

joint distribution. For a good introduction to this inference technique, see Casella and George

(1992).

At least for constant volatility, conditional distributions are obtained for one parameter at

a time. For instance, we can rewrite the model as

Rt − ρ0δ
(t−τ)+Rt−1 =

(
1− ρ0δ

(t−τ)+
)

µ + εt. (16)

Conditional on all parameters but µ, we may regard this equation as a linear regression without

a constant and with a known variance. It is easy to show that the conditional distribution of

µ (see Zellner, 1971, for example) is Gaussian. A similar rearrangement can be used to obtain

a Gaussian distribution for ρ0 conditional on the remaining parameters.

For τ and δ, even the conditional distributions are nonstandard. Nevertheless, by Bayes rule

we can easily compute the posterior distribution, at least up to a constant of proportionality,

using the properties of the Gaussian likelihood function. We draw these parameters, one

at a time, in separate blocks of the Gibbs sampler. Drawing δ, for example, is performed

using the “griddy Gibbs” approach of Ritter and Tanner (1992). The [0, 1] interval (the

allowable range of δ) is discretized into more than ten thousand discrete points. At each one

of these points we compute the posterior density up to an unknown integrating constant using

Bayes rule and the known likelihood function, again conditioning on all parameters but δ.

This discretized conditional density is then normalized to integrate to one, and a cumulative

distribution function is calculated. A random draw of δ is obtained by evaluating the inverse

of this c.d.f. at a draw of a uniform [0, 1] random variable. Draws of τ are performed similarly

23



using the natural discreteness of τ to define the grid points.

We allow the Gibbs chain to run for 16,000 iterations and discard the first 1,000 to allow

for the chain to converge. Sample moments computed from the remaining 15,000 draws serve

as highly accurate estimates of corresponding posterior moments.

Our approach to estimation of the student t stochastic volatility model combines the al-

gorithms of Jacquier, Polson, and Rossi (1994) and Geweke (1993). In essence, we augment

observed price data with unobserved volatility data. Conditional on the augmented data set,

estimation proceeds similarly to method described above, relying on the properties of the

Gaussian augmented likelihood. An appendix describes this procedure in more detail.

Predictive means are computed using the law of iterated expectations as

µ̂ = Ẽ [E[Rt+1|θ]] = Ẽ
[
µ + ρ0δ

(t+1−τ)+ (Rt − µ)
]
, (17)

where a “tilde” denotes a moment estimated by averaging across the 15,000 Gibbs draws and

where θ denotes all parameters of the model. For the constant volatility model, predictive

variances are calculated using the variance decomposition

σ̂2 = Ẽ [Var(Rt+1|θ)] + Ṽar (E[Rt+1|θ]) (18)

= Ẽ
[
σ2

ε

]
+ Ṽar

(
µ + ρ0δ

(t+1−τ)+ (Rt − µ)
)

(19)

For the stochastic volatility model, predictive variances are instead decomposed as

σ̂2 = Ẽ [ht+1|θ] + Ṽar (E[Rt+1|θ]) (20)

= Ẽ
[
exp(a + b ln ht + cRt + ηt+1)

]
+ Ṽar

(
µ + ρ0δ

(t+1−τ)+ (Rt − µ)
)

(21)

= Ẽ
[
exp(a + b ln ht + cRt + .5σ2

η)
]
+ Ṽar

(
µ + ρ0δ

(t+1−τ)+ (Rt − µ)
)

(22)

where ht is assumed to be known.
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3.5 Data

Following Lo and MacKinlay (1988), we work with weekly returns on two stock market indexes.

The data spans the period from July 5, 1962, around the start of the Lo and MacKinlay (1988)

sample, to December 26, 2001. We examine weekly returns on the CRSP value and equally-

weighted indices of all stocks traded on NYSE or AMEX. Weekly returns are computed by

geometrically compounding daily returns from one Wednesday to the following Wednesday. If

a Wednesday return is missing, Thursday’s return is used instead; if the Thursday return is

also missing, then the Tuesday return is used. If all three returns (Tuesday, Wednesday, and

Thursday) are missing, the return for that week is reported as missing. Lo and MacKinlay

(1988) report that for their sample less than .5% weeks (out of 1216) are missing. Although

our procedure of computing weekly returns is the same as that of Lo and Mackinlay (1988), no

week is missing in our data for the period considered in Lo and MacKinlay. This is presumably

because errors in the CRSP tapes are corrected over time. The only missing week is from

September 11 to 16 of 2001, when trading was suspended due to the events of September 11.

Without that observation, our sample consists of 2060 weeks.

3.6 Results

3.6.1 OLS inference

The top panel of Table 1 reports OLS estimates of autocorrelation coefficients for both indexes

over different subsamples, along with standard errors calculated under OLS assumptions and

using the method of Newey and West (1987). For the pre-Lo and MacKinlay subsample,we

obtain essentially the same estimates as they did: autocorrelation coefficients of about 30%

for the equally-weighted index and 9% for the value-weighted index. In the whole sample,

1962-2001, the estimates are somewhat lower, at 26% and 4%, respectively. Furthermore,

when we use just the post-Lo and MacKinlay subsample (1988-2001), the autocorrelation of

the equally-weighted index is only about 19%, while the value-weighted index actually has a

negative autocorrelation of -6%. Using Newey-West standard errors with ten lags, neither of

these is significantly different from zero.
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To assess whether autocorrelation in the equally-weighted index is primarily induced by

the smallest stocks, we examine a portfolio of stocks in the largest eight deciles that is chosen

to approximately replicate the equally-weighted index. The weights {p̂1, p̂2, ..., p̂8} of this

portfolio are obtained by regressing equally-weighted index returns on the returns of the top

eight deciles:

Rew,t = p0 +
8∑

i=1

piRdi,t + ut (23)

The “decile 1-8 index” is given by
∑8

i=1 p̂iRdi,t. Autocorrelations of this index are only slightly

diminished from those of the equally-weighted index, indicating that index autocorrelation is

not induced solely by the smallest firms.

We also test for a structural break in return autocorrelations between 1987 and 1988, and

the results are mixed. The lower panel of Table 1 reports t-statistics for the parameter ∆ in

the regression

Rt = γ + ρRt−1 + ∆Rt−1It>1/1/1988 + εt, (24)

where It>1/1/1988 is an indicator that takes the value 0 before 1988 and 1 thereafter. While

statistics are somewhat sensitive to whether OLS or Newey-West standard errors are used, the

null hypothesis of no structural break (∆ = 0) can be rejected only in the case of the value-

weighted index. For the equally-weighted index and the decile 1-8 index, no rejection can be

made./goodnoteNote that in this specification we fix the break at the time of the publication

of Lo and MacKinlay (1988). As we show below, the break likely occurred before that date. As

in Kandel and Stambaugh (1996), the change in optimal asset allocations may be large even

when a frequentist analysis results in no statistical significance. We show below that this is

the case here.

3.6.2 Posterior summaries

While the results in Table 1 suggest that weekly autocorrelations may have diminished over

time, they are insufficient for knowing the state of return autocorrelations at the end of the

sample. We attempt to determine this by estimation of the model in (10). The posterior

medians and 90% confidence intervals for the model parameters are exhibited in Table 2. The
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µ and σ parameters are annualized for easier interpretation. 10 Figure 1 presents corresponding

plots of the posterior distribution of τ , which is computed only under diffuse priors.

Panel A of Table 2 was obtained under the assumption of constant volatility. For the

equally-weighted index, the medians of ρ0 are quite large, indicating historical autocorrelations

of almost 30%. Under diffuse priors and under the “Lo and MacKinlay” prior, the median δ

is close to one, indicating extreme persistence or near-zero decay, and there is little apparent

difference between these priors and the one that imposes “no decline.”

For the value-weighted index, results are much different. For both τ fixed (the LM prior)

and τ estimated (the diffuse prior), the 95th percentile of the posterior distribution of δ is

somewhat below one, indicating the extreme likelihood that value-weighted autocorrelations

have declined over time. Furthermore, the speed of this decline is most likely fast, as the

medians of δ are below 0.6. For instance, under the diffuse prior, the posterior median of δ

implies that in just a month the autocorrelation decreases by about 88%.

Panel B of Table 2 extends the model to the fat-tailed stochastic volatility process proposed

in (11). Posteriors of the stochastic volatility parameters a, b, c, and ση are fairly typical of

those found in the literature. Values of b near one indicate that volatility is highly persistent,

while negative values of c are consistent with a leverage effect. Average levels of volatility,

implied by a and b, are consistent with the unconditional estimates of Panel A. The parameter

ν, which represents the degrees of freedom in the student t-distributed residual, is usually

centered between 25 and 35, indicating that stochastic volatility is responsible for most of the

leptokurosis in weekly stock index returns.

Under stochastic volatility, the autocorrelation results for the equally weighted index change

somewhat. As shown in Panel B of Table 2, differences in posterior medians of ρ0 are now

somewhat more pronounced, but all three specifications that allow for nonzero ρ0 continue to

imply large values. In addition, under the “Lo and MacKinlay” prior there is slightly more

support for values of δ less than one.

For the value-weighted index under stochastic volatility, values of δ remain low, indicating

fast decay towards zero. Results for the diffuse prior are particularly interesting because they
10 90% confidence intervals are computed as the interval between the 5% and 95% quantiles of the posterior

distribution.
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imply that historical autocorrelations for the value-weighted index might have been as high as

20%.

Because of their asymmetry and multimodality, the posteriors for τ are inadequately de-

scribed by medians and 90% confidence intervals. Therefore in Figure 1 we display histograms

of the posterior distribution of τ for the diffuse prior, the only case in which τ is unknown.

The top left panel displays the posterior of τ for the equally-weighted index under the

assumption of constant volatility. In this case, autocorrelation decay most likely began at

the end of the 1970s, but τ is estimated quite imprecisely and all values receive substantial

support. In particular, one of the posterior modes is very close to the end of the sample,

indicating strong support for the possibility that autocorrelation decay did not occur, and that

the anomaly remains in full force today. When stochastic volatility is introduced in the top

right panel, this late-sample mode in the posterior of τ disappears. The distribution of τ , while

still diffuse, now has 96% of its mass prior to the end of 1985.

For the value-weighed index, shown in the bottom two panels, the posterior also displays

some bimodality, with one mode around the early 1970s and a lesser mode around the late

1980s. As in the equally-weighted index, the latter mode is reduced substantially when volatil-

ity is stochastic, and again a full 96% of the posterior mass of τ lies prior to the end of 1985.

It is notable that in all cases, but especially when volatility is stochastic, there is a high

posterior probability that τ substantially predates the Lo and MacKinlay (1988) article, which

drew the greatest attention to this anomaly. Thus if we are to attribute the decline in auto-

correlations to the high-frequency trading strategies that Lo and MacKinlay (1999) describe

in the quote at the beginning of the section, these strategies most likely were well-underway

prior to the publication of their original study.

To better understand the timing and magnitude of decay in autocorrelations, the left two

columns of Figure 2 plot the posterior median and 90% confidence intervals of ρ0δ
(t−τ)+ as a

function of t. For the equally-weighted index, this function is seen to be gradually downward

sloping, ending in 2001 at roughly a third to a half of its original level. The decline is more

pronounced when volatility is stochastic, which is primarily due to the absence of the second

posterior mode of τ that is observed for the constant volatility case.
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In comparison, the decline in the value-weighted index autocorrelation is dramatic. By the

mid 1970s, the median plummets to zero under both volatility models. Again, the decay is

stronger for the stochastic volatility model.

The rightmost column of Figure 2 contains the year-by-year OLS estimates of return au-

tocorrelations. While it appears that some decline has occurred in both series, the autocorre-

lations are obscured by significant sampling error.11 We conclude that a parametric model, if

correctly specified, is likely to offer substantial improvements over the periodic re-estimation

of a time-invariant model over short samples.

3.6.3 Asset allocations as of 2001

To gauge the economic significance of these results, we calculate optimal portfolio weights

implied by the different prior beliefs. For simplicity, we consider an investor who allocates his

wealth between the market and the risk-free instrument. Since autocorrelations imply a lag

dependence in expected returns (and in volatility when it is stochastic) we need to specify the

return for the week preceding the time the allocation is made. We consider three different

cases, +4%, 0%, or -4%, where 4% is roughly a two standard deviation weekly return. In

addition, we must specify a risk-free rate. To abstract from the role played by time variation

in this rate, we assume that it is 6% per year. Finally, when volatility is stochastic we assume

that its lagged value is equal to 2% (on a weekly basis).

Table 3 shows that as of the end of 2001, the lagged return on the equally-weighted index

still has a huge effect on optimal portfolio holdings. Under stochastic volatility, for example,

an investor with diffuse priors would triple his holdings in the market portfolio following a +4%

return, relative to a 0% return. The same investor would take a substantial short position were

the lagged market return equal to -4%.

As extreme as these fluctuating allocations are, they are substantially more stable than

those of an investor who does not consider the possibility of a decline in autocorrelations. This

“no-decline” investor shorts 600% of his wealth in the market following a -4% return and puts

over 1,200% of his wealth in the market following a +4% return.
11The OLS standard error of each autocorrelation is 1/

√
52 = 0.139.
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Somewhat surprisingly, the lagged return even has an impact on the investor who has a

dogmatic belief that no anomaly exists. This is due to the fact that lagged returns impact the

investor’s volatility forecast through (11) and (22). While this effect also impacts the allocation

for other priors, its magnitude is relatively minor.

Allocations to the value-weighted index are much more stable, with investors allocating

much closer to 100% of their wealth to the market portfolio. The sole exception is the “no

decline” investor, who maintains a belief that autocorrelations are still present. For all priors,

allocations fluctuate more noticeably for the stochastic volatility case, though this is almost

entirely due to the impact that lagged returns have on forecasts of volatility, not expected

returns.

Another measure of economic significance is the certainty equivalent loss of an investor

who is forced to hold a portfolio that is suboptimal given his beliefs. We calculate certainty

equivalents similarly to Kandel and Stambaugh (1996): the portfolio weight p optimal for an

investor with one prior is evaluated using the predictive moments of another investor with

a different prior. The certainty equivalent loss is (in the case of mean-variance utility) the

difference between the utility resulting from an investor’s own optimal allocation p∗ and the

utility from the suboptimal allocation p. It can be interpreted as the riskless return that the

investor would be willing to sacrifice to restore his own optimal allocation.

For a given predictive mean and variance, µ̂ and σ̂2, following (12) and (13), this loss is

therefore given by

(
p∗µ̂ + (1− p∗)rf − A

2
p∗2σ̂2

)
−

(
pµ̂ + (1− p)rf − A

2
p2σ̂2

)
(25)

Since µ̂ and σ̂2 generally depend on lagged returns, we summarize certainty equivalent losses

by averaging over all lagged returns in the sample.

Table 4 reports these averaged certainty equivalent losses on an annualized basis. For the

equally-weighted index, they are frequently very large, indicating that the ability to invest on

short-term trends has substantial value. Under stochastic volatility, an investor with diffuse

priors, for instance, would forgo 9% of his wealth annually to choose his own portfolio rather

than hold the portfolio that would be chosen by the “no-anomaly” investor. Not surprisingly,
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the “no-anomaly” and “no-decline” investors are least satisfied with holding one another’s

portfolios, with such suboptimal strategies generating certainty equivalent losses of about 65%

per year.

For the value-weighted portfolio, there are few losses associated with holding a suboptimal

portfolio. The exception is the “no-decline” investor, who differs from all the others in his

belief that a small amount of autocorrelation still exists.

3.6.4 Rolling sample results

To observe how investor beliefs and optimal allocations may have changed through time, we

consider a sequence of sample periods all starting in January 1962 and ending in December in

the years between 1970 and 2001. Figure 3 plots the rolling sample posterior medians of the

“terminal” autocorrelations ρ0δ
(T−τ)+ , where T is the last observation of each rolling sample

period. Because it is somewhat backwards looking, we do not report results on the “Lo and

MacKinlay” prior in this section. Since the “no-anomaly” prior sets autocorrelations equal to

zero, there are only two lines per panel in Figure 3.

For the equally-weighted index, median terminal autocorrelations are generally decreasing

over time, although the trend is fairly erratic. For the value-weighted index, diffuse priors lead

to autocorrelations that have a median of essentially zero after about 1973. For both indexes,

autocorrelations are always higher under diffuse priors, which allow for some decay to take

place.

The portfolio allocations implied by the different priors are shown in Figures 4 and 5. For

the equally-weighted index, shown in Figure 4, allocations following a +4% return generally

decline over time, while allocations following a -4% return become less negative. The effects are

more noticeable for stochastic volatility. Allocations following a 0% return have also changed,

declining at first but rising between 1975 and 2001. The net difference between allocations

following a 0% return and a 4% return has therefore fallen more significantly than the top

panel alone suggests.

Allocations to the value-weighted index, shown in Figure 5, have changed much more

dramatically. With the exception of the “no-decline” prior, return-based variation in portfolio
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weights had almost entirely disappeared by 1975.

3.7 Implications

Taken together, these results provide strong evidence of decay in index return autocorrelations

and show that a Bayesian investor would substantially modify his portfolio allocations to

account for this possibility. While allocations to the value-weighted portfolio are today fairly

constant for the investor with diffuse priors, lagged returns remain important for investment

in the equally-weighted index. Furthermore, our results suggest that return autocorrelations

were likely “discovered” by the market somewhat before Lo and MacKinlay’s 1988 paper was

published.

While our analysis does not directly address the sources of autocorrelation, the observed

patterns of decay may prove challenging for some potential explanations. To attribute auto-

correlations to data snooping, for instance, one would obviously have to explain why auto-

correlations in the equally-weighted index persist today. If microstructure effects are the root

cause, as Ahn et al. (2002) argue, then some shift in the 1970s in the magnitude of these ef-

fects would seem to be required to explain the sudden disappearance of value-weighted return

autocorrelations. While the investor recognition hypothesis could provide an explanation for

our results if one believes that information costs declined rapidly over the 1970s, we provide

no specific evidence of this possibility.

The differences between the value-weighted and equally-weighted index suggests that trans-

actions costs may play a role in the market’s ability to take advantage of newly discovered

anomalies. Since transactions costs are higher for trading small stocks, the equally-weighted

autocorrelation was more difficult for a small number of investors to speculate away. This

process was likely additionally slowed by the unavailability of the S&P 500 futures contract

until 1982 and the Russel 2000 futures contract until 1987.

If transactions costs on the equally-weighted index are large, our asset allocation results

likely overstate the usefulness of conditioning portfolio weights on lagged portfolio returns.

Mech (1993), in particular, finds limited evidence that transaction costs are sufficiently high to

make trading on this autocorrelation unprofitable. Estimating the level of transactions costs
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incurred by portfolios that are optimally constructed to minimize these costs is well beyond

the scope of this paper. It is notable, however, that the substantial autocorrelations found in

the largest eight deciles suggest that these costs may not be exacerbated by illiquidity in the

smallest stocks.

Informally, our results demonstrate that short-term trend following continues to be an

important part of any asset allocation strategy involving time-varying positions in the equally-

weighted index. Significant certainty equivalent gains can be made simply by delaying or

accelerating a re-allocation by a single week.

4 Conclusion

We present evidence supporting slow disappearance of both weekly index autocorrelations and

the January effect.

Autocorrelations in the value-weighted index have almost certainly declined to a small

fraction of their original level. Though there is some uncertainty about when this decline

began, the early 1970s appears most probable. In comparison, the equally-weighted index

continues to indicate weekly autocorrelations of 10-20% as of the end of 2001. That this value

has declined over time is somewhat supported by the data, much more so when volatility is

modelled as stochastic. In this case, it is also likely that the decay began sometime in the

1970s and almost certainly by 1985, dates that precede the publication of Lo and MacKinlay

(1988), the seminal academic article on the subject.

Frequentist analysis of the January effect reveals marginal evidence against the constancy

of the January abnormal return. Bayesian estimates suggest that almost 20 years after the

papers by Keim (1983) and Reinganum (1983), the January effect remains at about half its

original level. While the starting date of this decay is highly uncertain, the 1970s stands out as

most likely, with 1976 being the most probable first year of decline under diffuse priors. While

this year predates the papers by Keim and Reinganum, it coincides with the publication of

Rozeff and Kinney’s first paper on January seasonalities in the stock market.

Accounting for a potential decay can be of substantial economic importance. Following
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Kandel and Stambaugh (1996), we assess its impact by investigating optimal portfolio alloca-

tions. We find in all cases that an investor who allows for the possibility of anomaly decay will

choose portfolio weights that are far different from those chosen by an investor who assumes

that the anomaly is constant through time. Moreover, certainty equivalent differences reveal

large utility costs for investors required to hold suboptimal portfolios.

We also document a surprising result that shrinking abnormal returns in sample towards a

benchmark (in our case, the CAPM) may in fact lead to increased allocations to the anomalous

asset, as shrinkage can actually cause the out-of-sample predictions of abnormal returns to

rise. Effectively, a prior that reduces the initial level of an anomaly causes that anomaly to

persist for longer, so that its level at the end of the sample might be higher than it would be

under a diffuse prior. Hence, skepticism about the existence of tradeable market inefficiencies

might be better represented as a belief both about the levels of anomalies and their rates of

disappearance.

The disappearance of anomalies has important implications for research on their underlying

causes. Most obviously, studies using shorter, more recent sample periods may provide little

insight on the historical factors that contributed to the anomalous behavior. For example,

Ahn et al. (2002) attempt to determine the source of index autocorrelation by examining a

variety of value-weighted indexes and their corresponding futures contracts. However, equity

index futures were not traded until the 1980s or later, by which time value-weighted (though

not equally-weighted) autocorrelations remained at just a tiny fraction of their original levels.

In addition, potential explanations of apparent anomalies should be consistent with the

observed patterns of decay. This is likely to be a challenge to most finance theories, in which

markets are commonly modelled as single-period or stationary equilibria. In the case of index

autocorrelations, explanations involving behavioral biases might be difficult to reconcile with

the severe time-variation noticed in the level of that anomaly, and theories that explain auto-

correlations with exogenous variables that are naturally time varying may hold more promise.

An example is the investor recognition hypothesis’ possible attribution of autocorrelation to

information costs, which have likely decreased for a variety of reasons over the last few decades.

This explanation is consistent with Hou and Moskowitz’s (2002) finding that firms with low

measures of investor recognition have the most delayed response to new information.
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One possible explanation of the persistence observed in some anomalies is that securi-

ties are mispriced, but that transactions costs prevent a small number of informed traders

from immediately arbitraging anomalies away. Only as knowledge of the inefficiency gradually

disseminates across large numbers of investors, who trade on the anomaly in the process of

implementing more conventional investment strategies, is the anomaly eroded. Another alter-

native is that it is transactions costs themselves that have declined over time. As investing

in the anomaly becomes cheaper, it naturally disappears. While this could be true for some

cases, other anomalies, such as value-weighted index autocorrelations, appear to shrink too

quickly for this to be a reasonable possibility.

Understanding why some anomalies disappear quickly (e.g., weekly autocorrelation of the

value-weighted index), while others last longer (e.g., the January effect) or do not seem to

decline at all (e.g., momentum, see Jegadeesh and Titman, 2001) seems an important matter

that this study leaves untouched. Such an investigation might improve our understanding of

market efficiency and would likely have implications for the current debate over rational and

behavioral asset pricing models. We plan to pursue these issues in future work.
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A Student t / stochastic volatility sampling algorithm

In this appendix we adapt the methods of Geweke (1993) and Jacquier, Polson, and Rossi

(1994, hereafter JPR) to estimate the stochastic volatility model

Rt − µ = ρ0δ
(t−τ)+ (Rt−1 − µ) + εt (26)

lnht = a + b ln ht−1 + cRt−1 + ηt, (27)

where εt ∼ t(0, ht, ν), ηt ∼ N
(
0, σ2

η

)
, and t ∈ {1, 2, ..., T}.

Following Geweke (1993), assuming that εt ∼ t(0, ht, ν) is equivalent to assuming that

εt =
√

ht
√

ωtε
∗
t , where ε∗t is a standard normal and ν/ωt ∼ χ2(ν). We adopt this latter

representation here.

Introducing stochastic volatility to the framework outlined in Section 2 requires adding an

additional component to the Gibbs sampling algorithm. First, conditioning on the time series

of ht and of ωt, we draw the parameters ση, a, b, c, and ν. Second, conditional on all the

parameters as well as the asset returns, we draw values of ht and ωt.

Conditional on the ht, drawing the parameters ση, a, b, and c uses standard regression

results such as those found in Zellner (1971). In particular, the distribution of ση is an inverted

gamma, and the vector [a, b, c] given ση is multivariate normal.

Conditional on the ωt, drawing ν is also fairly straightforward. Following Geweke (1993),

the conditional density of νt is

(ν/2)Tν/2Γ(ν/2) exp(−ξν), where ξ =
1
2

T∑

t=1

[
ln(ωt) + ω−1

t

]
+ λ. (28)

We sample from this univariate density using the griddy Gibbs sampler.

To draw the latent variable ωt given the all the parameter values and the time series of ht

and Rt, we use the result from Geweke that

(
ε2t + ν

)
/ωt ∼ χ2(ν + 1). (29)
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The last step is to draw the ht conditional on the model parameters and the ωt. As in

JPR, we draw the entire time series of ht by cycling through each element one at a time. In

effect, this step actually consists of T separate draws from the densities

p(ht|h1, h2, ..., ht−1, ht+1, ..., hT , R1, R2, ..., RT , ω1, ω2, ..., ωT , θ), (30)

where θ represents the vector of all model parameters. Similar to JPR, the Markovian nature

of the ht process and Bayes rule together imply that this density is proportional to

p(ht|ht−1, θ)p(ht+1|ht)p(Rt|ht, ωt). (31)

Furthermore, this product of densities is proportional to

f(ht) ≡ 1
ht

exp
(
−(lnht −mt)2

2s2
t

)
1√
ht

exp
(
− ε2t

2ωtht

)
, (32)

where

εt = (Rt − µ)− ρ0δ
(t−τ)+(Rt−1 − µ) (33)

mt = [a(1− b) + b(lnht−1 + ln ht+1) + cRt−1 − bcRt] /(1 + b2) (34)

s2 = σ2
η/(1 + b2) (35)

When c = 0 and ωt = 1, these match the formulas found in JPR.

Similarly to JPR, we draw from this density using the Metropolis Hastings algorithm with

the candidate generating density

q(ht) ∝ h
−(φ+1)
t exp(−ψt/ht), (36)

where φ = −1.5+(1−2 exp(s2))/(1− exp(s2)) and ψt = .5ε2/ωt +(φ+1) exp(mt + .5s2). This

produces a inverse gamma candidate generating density that approximates the target density

in (32). JPR show that this candidate generator has relatively thick tails and demonstrates

good convergence properties.
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A candidate draw h∗t from this inverse gamma is then accepted, replacing the current draw

ht, with probability

min
{

f(h∗t )/q(h∗t )
f(ht)/q(ht)

, 1
}

(37)

If the draw is rejected, the current draw ht is kept.

By drawing each ht in turn, from t = 1 to t = T , a new draw of the time series of ht is

obtained. While the algorithm must be modified for t = 1 and t = T , this is straightforward

following the procedure of Jacquier, Polson, and Rossi (2001).
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Table 1
Frequentist analysis of equity index autocorrelations

Equally-Weighted Value-Weighted Decile 1-8
Index Index Index

Sample autocorrelations
OLS (in parentheses) and Newey-West (in brackets) standard errors

1962 - 2001 0.257 0.038 0.234
(0.021) (0.022) (0.021)
[0.102] [0.029] [0.090]

1962 - 1987 0.280 0.089 0.257
(0.026) (0.027) (0.027)
[0.138] [0.041] [0.121]

1988 - 2001 0.186 -0.064 0.155
(0.036) (0.037) (0.036)
[0.112] [0.043] [0.089]

Structural break test t-statistics
Using OLS (top number) and Newey-West (bottom number) standard errors

1.808 3.147 1.935
0.420 2.569 0.537
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Table 2A
Posterior summary of disappearing autocorrelation, constant volatility
Medians and 90% confidence intervals (in parentheses), 1962-2001 sample

Diffuse LM (1988) No-decline No-anomaly
prior prior prior prior

Equally-Weighted Index

µ× 52 0.182 0.182 0.184 0.184
(0.132, 0.232) (0.132, 0.233) (0.133, 0.234) (0.144, 0.222)

ρ0 0.284 0.269 0.258 0
(0.236, 0.352) (0.232, 0.306) (0.222, 0.293) (n/a)

δ 0.999 0.999 1
(0.950, 1.000) (0.998, 1.000) (n/a)

σ ×√52 0.146 0.146 0.146 0.151
(0.142, 0.149) (0.142, 0.150) (0.142, 0.150) (0.147, 0.155)

Value-Weighted Index

µ× 52 0.120 0.120 0.118 0.119
(0.081, 0.160) (0.081, 0.159) (0.079, 0.158) (0.080, 0.156)

ρ0 0.123 0.083 0.039 0
(0.036, 0.271) (0.038, 0.126) (0.002, 0.074) (n/a)

δ 0.582 0.462 1
(0.059, 0.998) (0.044, 0.987) (n/a)

σ ×√52 0.143 0.143 0.143 0.143
(0.140, 0.147) (0.140, 0.147) (0.140, 0.147) (0.140, 0.147)
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Table 2B
Posterior summary of disappearing autocorrelation, stochastic volatility
Medians and 90% confidence intervals (in parentheses), 1962-2001 sample

Diffuse LM (1988) No-decline No-anomaly
prior prior prior prior

Equally-Weighted Index

µ× 52 0.207 0.208 0.209 0.221
(0.169, 0.244) (0.170, 0.245) (0.169, 0.248) (0.192, 0.252)

ρ0 0.352 0.294 0.257 0
(0.285, 0.436) (0.250, 0.339) (0.220, 0.296) (n/a)

δ 0.999 0.998 1
(0.998, 1.000) (0.794, 0.999) (n/a)

a -0.449 -0.456 -0.454 -0.414
(-0.638, -0.317) (-0.642, -0.313) (-0.632, -0.309) (-0.576, -0.289)

b 0.944 0.943 0.943 0.948
(0.920, 0.960) (0.920, 0.960) (0.921, 0.961) (0.928, 0.963)

c -4.699 -4.744 -4.735 -3.992
(-6.060, -3.489) (-6.003, -3.546) (-6.026, -3.459) (-5.197, -2.805)

ση 0.259 0.260 0.259 0.261
(0.218, 0.311) (0.216, 0.309) (0.213, 0.311) (0.225, 0.306)

Value-Weighted Index

µ× 52 0.124 0.123 0.127 0.131
(0.091, 0.157) (0.091, 0.155) (0.095, 0.160) (0.100, 0.161)

ρ0 0.194 0.110 0.043 0
(0.104, 0.277) (0.063, 0.157) (0.005, 0.082) (n/a)

δ 0.557 0.456 1
(0.055, 0.995) (0.041, 0.952) (n/a)

a -0.242 -0.233 -0.258 -0.265
(-0.382, -0.142) (-0.357, -0.147) (-0.420, -0.156) (-0.411, -0.169)

b 0.969 0.970 0.967 0.966
(0.952, 0.981) (0.955, 0.981) (0.947, 0.979) (0.948, 0.978)

c -4.995 -5.001 -5.047 -5.028
(-6.172, -3.708) (-6.283, -3.832) (-6.592, -3.701) (-6.652, -3.713)

ση 0.158 0.154 0.163 0.168
(0.122, 0.200) (0.123, 0.193) (0.124, 0.214) (0.133, 0.211)
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Table 5
Maximum likelihood estimates of the January effect
Asymptotic standard errors in parentheses

Rspr,t = α0 + α1IJ,t + βRem,t + εt

1962-1981 1982-2001

α0 -0.0014 -0.0085
(0.0036) (0.0034)

α1 0.0964 0.0633
(0.0093) (0.0073)

β 0.4029 -0.1490
(0.0534) (0.0745)

σε 0.0493 0.0434
(0.0018) (0.0016)

Rspr,t = α0 + α1δ
(t−τ)+IJ,t + βRem,t + εt

1962-2001

α0 0.0007 -0.0057 -0.0056
(0.0028) (0.0026) (0.0024)

α1 0 0.0798 0.1022
(n/a) (0.0057) (0.0114)

δ 1 0.9678
(n/a) (0.0138)

τ 1976.0
(5.0898)

β 0.1669 0.1278 0.1254
(0.0409) (0.0388) (0.0400)

σε 0.0532 0.0485 0.0481
(0.0011) (0.0012) (0.0013)

AIC -2299.471 -2385.583 -2387.464
BIC -2278.665 -2360.616 -2354.175
BIC∗ -2291.153 -2375.601 -2374.156

LRT 93.9933 5.8815
(p-value) (0.0000) (0.0528)
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Table 7
Investing in the January portfolio as of December 31, 2001

Prior used to Diffuse 2% 1% No No
find weights: CAPM CAPM decline anomaly

Portfolio Holdings

Allocation to the spread portfolio 5.158 5.663 3.979 10.784 0.092

Allocation to the market 0.344 0.239 0.421 -0.428 0.970

Certainty Equivalent Losses

Prior of investor

Diffuse 0 0.001 0.005 0.119 0.097

2% CAPM 0.001 0 0.011 0.100 0.118

1% CAPM 0.005 0.011 0 0.174 0.057

No decline 0.109 0.090 0.159 0 0.392

No anomaly 0.104 0.126 0.061 0.463 0
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Figure 1: Posterior distributions of τττ for disappearing

autocorrelations under diffuse priors

1962-2001 sample
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Figure 3: Rolling sample estimates of return autocorrelations

Samples starting in 1962 and ending between 1970 and 2001
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Figure 4: Rolling allocations to the equally-weighted market portfolio

Samples starting in 1962 and ending between 1970 and 2001
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Figure 5: Rolling allocations to the value-weighted market portfolio

Samples starting in 1962 and ending between 1970 and 2001
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Figure 6: Posterior distributions for the January effect

1962-2001 sample
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Figure 7: Rolling allocations to the January spread portfolio

Samples starting in 1962 and ending between 1972 and 2001
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