Are Bond Premia Countercyclical?

Stanford & NBER Stanford & NBER

Monika Piazzesi Martin Schneider

Bank of Canada Conference 2008

Motivation

• stylized fact: excess returns on long bonds are predictable

Motivation

- stylized fact: excess returns on long bonds are predictable
- definitions
 - log $\underline{\mathsf{excess}\ \mathsf{return}}$ on zero coupon bond of maturity n years, held for 1 year

 $= \log \text{ price next year } - \log \text{ price today } - 1 \text{ year interest rate}$

$$= p_{t+1}^{(n-1)} - p_t^{(n)} - i_t^{(1)} := x_{t+1}^{(n)}$$

- predictability: premium $E_t x_{t+1}^{(n)}$ moves around
 - E_t computed from statistical model -> "statistical premium" e.g., fitted value from regressing $x_{t+1}^{(n)}$ on time-t variables

Motivation

- stylized fact: excess returns on long bonds are predictable
- = statistical premium $E_t x_{t+1}^{(n)}$ moves around
 - higher after recessions, lower at end of booms
 - higher in early 1980s, low in 1970s
- common interpretation: statistical premium $E_t x_{t+1}^{(n)}$ is compensation for risk
 - more risk compensation after recessions & in early 1980s
- \Rightarrow economic models must explain changes in compensation for risk requires large time variation in risk (e.g. heteroskedasticity in consumption) or time varying risk aversion (e.g. from habit formation)

This paper

- statistical premium $E_t x_{t+1}^{(n)}$ is based on statistical analysis and hindsight.
- investors face subjective premium at date t, $E_t^* x_{t+1}^{(n)}$
- -> measure subjective premium from surveys
 - decompose statistical premium

$$E_t x_{t+1}^{(n)} = E_t^* x_{t+1}^{(n)} + \left(E_t x_{t+1}^{(n)} - E_t^* x_{t+1}^{(n)} \right)$$

ask how much of stylized fact is due to forecast differences?

- study economic model with subjective expectations, where
 - subjective premium $E_t^* x_{t+1}^{(n)}$ is compensation for risk
 - statistical premium $E_t x_{t+1}^{(n)}$ reflects forecast differences

Message

• It's hard to forecast in real time!

Relative to regressions run today with hindsight, surveys miss changes in

- the slope of the yield curve, e.g. decreases after recessions
- the level of the yield curve, e.g. decreases in early 1980s
- \Rightarrow Different interpretation of stylized fact:
 - common interpretation:
 - statistical premium $E_t x_{t+1}^{(n)}$ is risk compensation more risk compensation in recessions & early 1980s
 - our interpretation:

statistical premium $E_t x_{t+1}^{(n)}$ partly due to measurement, larger forecast differences in recessions & early 1980s

Outline

- 1. document properties of interest-rate survey forecasts statistical premia move with forecast differences
- 2. reduced form model of interest rates & inflation
 - (a) estimate distribution with data
 - (b) estimate subjective distribution with survey data, many maturities & horizons
 - \Rightarrow under subj. distribution, level & slope of yield curve are more persistent
 - \Rightarrow subjective premium much less volatile & cyclical, especially for long maturities
- 3. economic model

prices are functions of agents' expectations about payoffs & current positions

Related Literature

• predictability regressions

Fama & Bliss 1987, Campbell & Shiller 1991, etc

statistical analysis of interest rate survey data

Froot 1989, Kim & Orphanides 2007, Chernov & Mueller 2008

• role of survey expectations in other markets

Frankel & Froot 1989, Gourinchas & Tornell 2004, Bacchetta & al. 2008

• EZ preferences

Epstein & Zin 1989, Bansal & Yaron 2004, Campbell & al. 2003

Properties of Survey Forecasts

- 2 datasets: Goldsmith-Nagan surveys 1970-1986 & Bluechip surveys 1983 today
- each quarter, 40 market participants are asked about their interest-rate expectations
- max horizons: 2 quarters for GN, 1 year for Bluechip
- decomposition for bond of maturity n years, held for horizon h years

$$E_t x_{t+h}^{(n)} = E_t^* x_{t+h}^{(n)} + \left(E_t x_{t+h}^{(n)} - E_t^* x_{t+h}^{(n)} \right)$$

- measure $E_t x_{t+h}^{(n)}$ with regressions

- measure
$$E_t^* x_{t+h}^{(n)} = E_t^* p_{t+h}^{(n-h)} - p_t^{(n)} - i_t^{(h)}$$

with interest-rate surveys $E_t^* p_{t+1}^{(n-1)} = -(n-1) E_t^* i_{t+1}^{(n-1)}$

evaluate for $n={\bf 11}$ years, $h={\bf 1}$ year for Bluechip

Properties of Survey Forecasts

- 2 datasets: Goldsmith-Nagan surveys 1970-1986 & Bluechip surveys 1983 today
- each quarter, 40 market participants are asked about their interest-rate expectations
- max horizons: 2 quarters for GN, 1 year for Bluechip
- decomposition for bond of maturity n years, held for horizon = h years

$$E_t x_{t+h}^{(n)} = E_t^* x_{t+h}^{(n)} + \left(E_t x_{t+h}^{(n)} - E_t^* x_{t+h}^{(n)} \right)$$

- measure $E_t x_{t+h}^{(n)}$ with regressions

- measure $E_t^* x_{t+h}^{(n)} = E_t^* p_{t+h}^{(n-h)} - p_t^{(n)} - i_t^{(h)}$ with interest-rate surveys $E_t^* p_{t+1}^{(n-1)} = -(n-1) E_t^* i_{t+1}^{(n-1)}$

evaluate for n = 20.5 years, h = .5 years, combining GN & Bluechip

Outline

- 1. document properties of interest-rate survey forecasts statistical premia move with forecast differences
- 2. reduced form model of interest rates & inflation
 - (a) estimate distribution with data
 - (b) estimate subjective distribution with survey data, many maturities & horizons
 - (c) under subj. distribution, level & slope of yield curve are more persistent
 - (d) subjective premium much less volatile & cyclical, especially for long maturities
- 3. economic model

prices are functions of agents' expectations about payoffs & current positions

Reduced form model

- capture distribution of bond returns of all maturities
- quarterly state space system
- observables: short rate $i_t^{(1)}$, spread $i_t^{(20)} i_t^{(1)}$ and inflation

observables_t = $\mu_h + \eta_h$ state variables_{t-1} + e_t state variables_t = ϕ_s state variables_{t-1} + $\sigma_s e_t$

• estimate using MLE -> statistical model

Subjective state space system

• *subjective* system

observables
$$_t = \mu_h^* + \eta_h^*$$
state variables $_{t-1} + e_t^*$ state variables $_t = \phi_s^*$ state variables $_{t-1} + \sigma_s e_t^*$

- estimation
 - compute conditional expectations from subjective system
 - identify *-parameters by matching these expectations to survey forecasts
 - survey data for many maturities & horizons from Goldsmith-Nagan, Bluechip inflation forecasts from Survey of Professional Forecasters

Yield Curve

• absence of arbitrage => existence of risk neutral probability measure Q such that

$$i_t^{(n)} = E_t^Q \left[\frac{1}{n} \sum_{i=0}^{n-1} i_{t+i}^{(1)} \right] + \text{Jensen's inequality term}$$

• risk neutral system

observables_t =
$$\mu_h^Q + \eta_h^Q$$
state variables_{t-1} + e_t^Q
state variables_t = ϕ_s^Q state variables_{t-1} + $\sigma_s e_t^Q$

- estimation:
 - compute conditional expectations from risk neutral system $-> i_t^{(n)}$ linear in state variables
 - identify Q-parameters by matching these expectations to actual yields -> subjective & statistical distribution for all $i_t^{(n)}$

Properties of subjective state space system

- subjective forecasts (computed from subjective system) match survey data well
- short rate and spread are more persistent than in statistical state space system

	short rate	spread
statistical system, diag $\{\phi_s\}$	0.88	0.76
subjective system, diag $\{\phi_s^*\}$	0.99	0.92

=> subjective system capture forecast differences:

$$E_t x_{t+h}^{(n)} = E_t^* x_{t+h}^{(n)} + \underbrace{E_t x_{t+h}^{(n)} - E_t^* x_{t+h}^{(n)}}_{\text{countercyclical}}$$

Comparison of subjective & statistical premia

maturity 10 years

subjective premium

volatility	% trend	% cycle
3.63	65	17

statistical premium

7.48 45 33

Outline

- 1. document properties of interest-rate survey forecasts statistical premia move with forecast differences
- 2. reduced form model of interest rates & inflation
 - (a) estimate distribution with data
 - (b) estimate subjective distribution with survey data, many maturities & horizons
 - (c) under subj. distribution, level & slope of yield curve are more persistent
 - (d) subjective premium much less volatile & cyclical, especially for long maturities
- 3. economic model

prices are functions of agents' expectations about payoffs & current positions

Asset pricing with subjective beliefs and positions

- Solve savings & portfolio choice problems for class of agents, given subjective beliefs
- in equilibrium,

asset demand (prices, beliefs) = observed position

• solve for asset prices

prices = f (beliefs, positions)

- compare model-implied prices with observed prices
- Are observed prices consistent with optimizing behavior by class of agents who
 - hold observed positions
 - form expectations consistent with surveys?

Asset demand

- Infinite horizon portfolio choice problem with N + 1 assets
 - short bonds = nominal bond that pays off $\exp(-\pi_{t+1})$
 - -N longer bonds = nominal bonds with longer maturities
- Epstein-Zin utility
- bond returns driven by subjective state space system

Observed positions

- many different nominal instruments, but many are close substitutes
- \bullet consider N factor model for interest rates

e.g., N = 2 factor model does a good job explaining *quarterly* variation

- replicate observed nominal positions by portfolios with N+1 spanning bonds spanning exact in continuous time, approximate in discrete time
- derive replicating portfolio for every zero-coupon bond contain short (1 quarter) bond and N long bonds
- extend to nominal instruments in FFA

Doepke and Schneider 2006

Results

• choose preference parameters to match average yields

 $\mathsf{CRRA}=\mathsf{2, IES}=\mathsf{1, }\beta=\mathsf{0.97}$

- pictures of model-implied premia
 - statistical premia
 - are cyclical because of forecast differences
 - subjective premia
 - move less & at lower frequencies

Conclusions

- Documented properties of survey forecasts
- Estimated statistical and subjective distributions of interest rates
- Studied structural model: prices related to expectations, positions

Findings

- Survey forecasters perceive level & slope as more persistent than statistical models preliminary findings: consistent with learning about the state-space parameters
- Predictability of excess returns in large part due to measurement issues (especially predictability at business cycle frequencies)

Lessons for economic modelling:

• need models of expectation formation...

... just as urgently as models of changes in risk compensation!

• to implement models, feed them subjective expectations