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Abstract

No-arbitrage Near-Cointegrated VAR(p) Term Structure Models,
Term Premia and GDP Growth

The present paper has five objectives. First, using dynamic regressions and Kullback causality measures, we
build stylized facts about the dynamic links between the GDP growth and the spread between a long rate and a short
rate, and between GDP growth and the short rate. The idea is to extend to a more realistic dynamic setting the usual
results typically based on standard static regressions. Second, we carefully study the stationarity and the persistence
properties of our variables of interest (the short rate, the spread between the long and the short rate, and the GDP
growth), and we propose a modelling which focus on prediction performances in order to obtain, in particular, a
reliable estimation of the term premia on the long-term bond. Third, this joint dynamics of the state variables is
used to build a no-arbitrage macro-finance term structure model giving us the possibility to fit and to forecast the
entire yield curve, and to extract term premia from any yield to maturity. Fourth, in order to try to conciliate the
different viewpoints about the effects of the term premia on future GDP growth, we develop a dynamic analysis
which studies and compares the respective roles of the expectation component and of the risk premium component
of the spread. This analysis is based on a novel approach called ”New Information Response Function”. Fifth, in
order to analyze more deeply the dynamic behavior of the term premia, we use a decomposition in terms of forward
term premia at different horizons and a decomposition in terms of risk premia attached to the one-period holding of
bonds of different maturities. The results obtained are promising in terms of fitting and prediction properties of our
Near-Cointegrated VAR(p) term structure model, as well as in terms of evaluating term premia and disentangling the
dynamic impact on the GDP growth of shocks on the expectation part and on the term premium part of the spread.
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1 Introduction

One of the most important questions of the macroeconomics and finance literature on interest rates
is the understanding of the dynamic relationships between economic activity, yields and term premia
on long-term bonds, because of the related important implications for the conduct of monetary
policy. The recent rise of federal funds rates (f.f.r.) of 425 basis points and the low and relative
stable level of the long-term (10-years) interest rate, observed between June 2004 and June 2006 on
the U.S. market, has further induced much interest in trying to detect the economic reasons behind
this phenomenon [described as a ”conundrum” by the Federal Reserve Chairman Alan Greenspan
in February 2005, given that, during three previous episodes of restrictive monetary policy (in 1986,
1994 and 1999), the 10-year yield on US zero-coupon bonds strongly increased along with the fed
funds target] and, also, to well specify the links between financial and macro variables and risk
premia.

Among several finance and macro-finance models [see, for instance, Hamilton and Kim (2002),
Bernanke, Reinhart and Sack (2004), Favero, Kaminska and Sodestrom (2005), Kim and Wright
(2005), Ang, Piazzesi and Wei (2006), Bikbov and Chernov (2006), Dewachter and Lyrio (2006),
Dewachter, Lyrio and Maes (2006), Rudebusch, Swanson and Wu (2006), Rosenberg and Maurer
(2007), Rudebusch and Wu (2007, 2008), Chernov and Mueller (2008), Cochrane and Piazzesi
(2008), and the survey proposed by Rudebusch, Sack and Swanson (2007)], some have indicated
that the reason behind the coexistence of increasing f.f.r. and stable long-rates is found in a
reduction of the term premium, that offsets the upward revision to expected future short rates
induced by a restrictive monetary policy. Moreover, some of these works [Hamilton and Kim (2002),
and Favero, Kaminska and Sodestrom (2005)] find a positive relation between term premium and
economic activity. In contrast, Ang, Piazzesi and Wei (2006) [APW(2006), hereafter], Rudebusch,
Sack and Swanson (2007), and Rosenberg and Maurer (2007) find that the term premium has no
predictive power for future GDP growth. Practitioner and private sector macroeconomic forecaster
views agree on the decline of the term premium behind the conundrum but, in contrast, suggest a
relation of negative sign between term premium and economic activity [see Rudebusch, Sack and
Swanson (2007), and the references there in, for more details]. This negative relationship is usually
explained by the fact that a decline of the term premium, maintaining relatively low and stable
long rates, may stimulate aggregate demand and economic activity, and this explanation implies a
more restrictive monetary policy to keep stable prices and the desired rate of growth. Therefore,
policy makers seems to have no precise indication about the stimulating or shrinking effect of term
premia on gross domestic product (GDP) growth.

The present paper has five objectives. First, using dynamic regressions and Kullback causality
measures, we build stylized facts about the dynamic links between the GDP growth and the spread
between a long rate and a short rate, and between GDP growth and the short rate. The idea
is to extend to a more realistic dynamic setting the usual results typically based on standard
static regressions. Second, we carefully study the stationarity and the persistence properties of our
variables of interest (the short rate, the spread between the long and the short rate, and the GDP
growth), and we propose a modelling which focus on prediction performances in order to obtain,
in particular, a reliable estimation of the term premia on the long-term bond. Third, this joint
dynamics of the state variables is used to build a no-arbitrage macro-finance term structure model
giving us the possibility to fit and to forecast the entire yield curve, and to extract term premia
from any yield to maturity. Fourth, in order to analyze more deeply the dynamic behavior of the

1



term premia, we use a decomposition in terms of forward term premia at different horizons and
a decomposition in terms of risk premia attached to the one-period holding of bonds of different
maturities. Fifth, in order to try to conciliate the different viewpoints about the effects of the term
premia on future GDP growth, we develop a dynamic analysis which studies and compares the
respective roles of the expectation component and of the risk premium component of the spread.
This analysis is based on a novel approach called ”New Information Response Function”.

The specification of our model starts from the well known paper of APW (2006), in which
the authors propose a no-arbitrage affine term structure model for joint GDP growth and yields
dynamics. Their approach improves out-of-sample GDP forecasts of classical OLS regressions [see,
among others, Harvey (1989, 1993), Stock and Watson (1989), Estrella and Hardouvelis (1991),
Estrella and Mishkin (1998), Dotsey (1998), Hamilton and Kim (2002), Favero, Kaminska and
Sodestrom (2005), Rudebusch and Williams (2008)] at all horizons and, contrary to previous results,
they find that the short rate has more predictive power that any term spread. In their model, the
yield curve factor (Xt, say) is given by the short rate (rt), the spread between the long and the
short rate (St), and the one-period real GDP growth (gt), and its dynamics is described by a
(unconstrained) Gaussian VAR(1) process.

We take a more general approach by leaving the data choose the number of lags, the number
and the nature of possible cointegration relationships. In other words we check whether the joint
dynamics is described by a Cointegrated VAR(p) model (CVAR(p)) in which the cointegrating
relations is given by spreads [see Campbell and Shiller (1987), Kugler (1990), MacDonald and
Speight (1991), Hall, Anderson and Granger (1992), Taylor (1992), and Shea (1992)].

Choosing to impose or not unit roots on interest rates joint dynamics [VAR(p) against CVAR(p)
modelling] has important consequences. Indeed, it is well known that moving from a stationary
environment to a unit root one, implies various types of discontinuity problems, in particular, in
terms of asymptotic behavior of the estimation or testing procedure, or in terms of prediction. In
the context of macro-finance modelling of interest rates, Cochrane and Piazzesi (2008) also noted
very different long term predictions of yields, depending on whether unit roots are imposed or not.
In the VAR context this discontinuity simply comes from the fact that the long run behavior of
predictions is driven by roots of the determinant of the autoregressive polynomial matrix and that
this behavior becomes very different as soon as at least one unit root is present.

This ”discontinuity problem” is tackled in the literature by using different approaches, based on
fractionally integrated processes, switching regimes, time-varying parameters, bayesian modelling
or local-to-unity asymptotics. In the present work, we use the latter approach and we propose
a no-arbitrage term structure model in which the dynamics of the factor Xt = (rt, St, gt)

′ [the
same as APW(2006)] is given by a Near-Cointegrated VAR(p) model [NCVAR(p)] which is able to
improve out-of-sample forecasts and which is able to build a reliable measure of the term premia of
interest rates. The specification of the NCVAR(p) factor dynamics that we propose is obtained as
follows. First, on the basis of typical econometric procedures (lag order selection criteria, Johansen
cointegration analysis) we select and estimate a VAR(p) and CVAR(p) model for the 3-dimensional
vector (rt, St, gt)

′. Then, we apply an average of the estimated VAR and CVAR parameters, in which
the optimal weight λ∗ ∈ [0, 1] (say) is selected in order to minimize the prediction error of a variable
of interest. The associated multivariate autoregressive model we obtain, called Near-Cointegrated
VAR(p) model, will describe the dynamics of the factor driving term structure shapes in our
yield-curve model. Since, in this paper, we are particularly interested in analyzing the dynamic
relationship between the spread (between the long and short rate), its components (expectation
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part, and term premium) and the future economic activity, the optimal weight used to average
the VAR(3) and CVAR(3) estimated parameters will be the one providing the best prediction of
the expectation part of the spread. Our study is based on 174 quarterly observations of U.S. zero-
coupon bond yields, for maturities from 1 to 40 quarters, and U.S. real GDP, covering the period
from 1964:Q1 to 2007:Q2. In our model, the short rate (rt) and the long rate (Rt) are, respectively,
given by the 1-quarter and 40-quarter yields, and the one-quarter GDP growth at date t is denoted
by gt. These three variables constitute the information that investors use to price bonds. We select
and estimate a VAR(3) and CVAR(3) model for the 3-dimensional vector Xt and, thus, the yield
curve formula will be driven by a NCVAR(3) factor. In the estimated CVAR(3) model, we have
one cointegrating relationship given by the spread, and an unrestricted constant.

Then, we study and evaluate the abilities of our model in several ways: a) out-of-sample pre-
dictions of yields, their expectation part, output growth, for various maturities and prediction
horizons; b) ability to fit the yield curve (absolute pricing error); c) ability to match Campbell-
Shiller regression coefficients. These performances are compared with those of other competing
models, like the VAR(1) model of APW(2006), its generalization given by the VAR(3) model, and
the CVAR(3) model which capture sources of non-stationarity. Two particularly important results
are the following: i) in an interest rates forecast exercise, the NCVAR(3) term structure model
reduces the out-of-sample root-mean-square forecast error (RMSFE), of the competing models, up
to 45% (for long forecasting horizons); ii) in addition, our preferred model forecast the expecta-
tion part yields, for any time to maturity, better than the VAR(1), VAR(3) and CVAR(3) models.
Consequently, our methodology seems to be a promising one to extract a reliable measure of term
premia from long term bonds. The methodology of estimation of the term premia and of their
different decompositions is used to analyze the recent period of the ”conundrum” and to compare
it with other periods showing an increase of the short rate.

Finally, we are interested in measuring the effects of a shock hitting a given factor, or a filtered
transformation of the factors, on the output growth, the yield curve, the spread and its components.
More precisely, our aim is to provide a dynamic analysis of the relationship between the spread and
future activity. In addition, we are interested in disentangling the effects of a rise of the spread due
to an increase of its expectation part, and a rise of the spread caused by an increase of the term
premium. For that purpose, we propose a new approach based on a generalization of the Impulse
Response Function, called New Information Response Function (NIRF). This approach allow us
to measure the dynamic effects of a new information at date t = 0 (an unexpected increase of the
spread or one of its component, for instance) on the variables of our model. Similar to the results
found in the literature, we find that an increase of the spread implies a rise of activity. We find
similar results when the rise of the spread is generated by an increase of its expectation part. In
contrast, an increase of the spread caused by a rise of the term premium induce two effects on the
output growth: the impact is negative for short horizons (less than one year), whereas it is posi-
tive for longer horizons. Therefore, our results suggest that the ambiguity found in the literature
regarding the sign of the relationship between the term premium and future activity, could comes
from the fact that the sign of this relationship is changing over the period that follows the shock.
In addition, we propose an economic interpretation of this fact.

The paper is organized as follows. Section 2 introduces the data base used in the present work,
and the stylized facts about the dynamic links between interest rates and GDP growth. Section
3 describes the Near-cointegration methodology, and presents some empirical performances of the
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NCVAR(3) model in terms of out-of-sample forecast of short rate, long rate and GDP growth.
Section 4 shows how the Near-cointegrated model can be completed by a no-arbitrage affine term
structure model. In Section 5, we present decompositions of the term premia in terms of forward
and risk term premia, and we show how these measures can be used to analyse more accurately the
recent ”conundrum” episode. Section 6 presents the impulse response analysis and, in particular,
introduces the notion of New Information Response Function. Section 7 concludes, Appendix 1
gives further details about unit root analysis, Appendix 2 derives the yield-to-maturity formula
and Appendix 3 gives details about impulses responses and definition of shocks. In Appendix 4 we
gather additional tables and graphs.

2 Data and Stylized Facts

2.1 Description of the Data

The data set that we consider in the empirical analysis contains 174 quarterly observations of U. S.
zero-coupon bond yields, for maturities 1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36 and 40 quarters, and
U. S. real GDP, covering the period from 1964:Q1 to 2007:Q2. The yield data are obtained from
Gurkaynak, Sack, and Wright (2007) [GSW (2007), hereafter] data base and from their estimated
Svensson (1994) yield curve formula. In particular, given that GSW (2007) provide interest rate
values at daily frequency, each observation in our sample is given by the daily value observed at the
end of each quarter. The same data base is used by Rudebusch, Sack, and Swanson (2007) [RSS
(2007), hereafter] in their study on the implications of changes in bond term premiums on economic
activity. Observations about real GDP are seasonally adjusted, in billions of chained 2000 dollars,
and taken from the FRED database (GDPC1).

In the data base they provide, GSW (2007) do not propose (over the entire sample period,
ranging from 1961 to 2007), yields with maturities shorter than one year. Moreover, they calculate
yields with 8, 9 and 10 years to maturity only after (mid-)August, 1971. Our construction of the
interest rate time series with 3, 6 and 9 months to maturity, based on the Svensson (1994) formula
estimated by GSW (2007), is justified by the fact that they estimate this formula using Treasury
notes and bonds with at least three months to maturity. The construction of the three long-term
interest rate time series before 1971 is justified [as indicated by RSS (2007, footnote 26), for the
10-years yield-to-maturity] by the fact that (even if there were few bond observations with these
maturities), the reconstructed time series are highly correlated with other well known and widely
used time series [like, for instance, the FRED interest rates data base (Trasury Constant Maturity
interest rates), or the McCulloch and Kwon (1993) data base]. Moreover, in order to be coherent
with the literature and, in particular, with the majority of the papers concerned with the predictive
ability of the term spread for GDP [see, for instance, Fama and Bliss (1987), and Ang, Piazzesi
and Wei (2006)], we have decided to start the sample period in 1964.

Summary statistics about the yields (expressed on a quarterly basis), the real log-GDP and its
first difference are presented in Table 1. The average yield curve is upward sloping, and interest
rates with larger standard deviation, skewness and kurtosis are those with shorter maturities.
Furthermore, yields are highly autocorrelated with an autocorrelation which is, for any given lag,
increasing with the maturity and, for any given maturity, decreasing with the lag. The high
persistence in log-GDP strongly reduces when we move to its first difference (the one-quarter GDP
growth rate).
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Yields 1-Q 4-Q 8-Q 12-Q 16-Q 20-Q 40-Q log-GDP 1Q GDP
growth

Mean 0.0152 0.0158 0.0164 0.0168 0.0170 0.0173 0.0180 8.7094 0.0080
Std. Dev. 0.0071 0.0070 0.0067 0.0065 0.0064 0.0063 0.0059 0.3854 0.0083
Skewness 1.0292 0.8455 0.8422 0.8626 0.8860 0.9087 0.9817 -0.0248 -0.0849
Kurtosis 4.6910 4.1357 4.0080 3.8800 3.7824 3.7196 3.6426 1.8298 4.4873
Minimum 0.0025 0.0026 0.0033 0.0043 0.0053 0.0062 0.0096 7.9897 -0.0204
Maximum 0.0398 0.0392 0.0395 0.0389 0.0384 0.0379 0.0372 9.3518 0.0387
ACF(1) 0.910 0.932 0.940 0.946 0.951 0.955 0.959 0.981 0.268
ACF(4) 0.760 0.788 0.805 0.817 0.826 0.831 0.842 0.925 0.093
ACF(8) 0.513 0.581 0.627 0.658 0.679 0.693 0.717 0.853 -0.167
ACF(12) 0.335 0.426 0.494 0.538 0.566 0.585 0.616 0.785 -0.170
ACF(16) 0.240 0.307 0.365 0.404 0.430 0.448 0.482 0.718 0.004
ACF(20) 0.224 0.252 0.283 0.308 0.325 0.336 0.356 0.655 0.127

Table 1: Summary Statistics on U.S. Quarterly Yields, log-GDP [given by log(GDPt)] and one-
quarter GDP growth rate [given by log(GDPt/GDPt−1)] observed from 1964:Q1 to 2007:Q2
[Gurkaynak, Sack and Wright (2007) data base]. ACF(k) indicates the empirical autocorrelation
with lag k expressed in quarters.

The short rate (rt) and the long rate (Rt) used in this paper are, respectively, the 1-quarter and
40-quarter yields, and the log-GDP at date t is denoted by Gt. These three variables, collected in
the vector Yt, constitute the information that investors use to price bonds.

2.2 Dynamic Regressions, Bivariate Causality Measures and Impulse Response
Functions

Since the work by Stock and Watson (1989) on leading economic indicators, many studies docu-
mented that the spreads between the ten or five years yields and three months interest rate are
useful predictors of the real output growth [see e.g. Hamilton and Kim (2002), Ang, Piazzesi and
Wei (2006), Rudebusch, Sack and Swanson (2006)]. Most of these studies consider static regres-
sions of future (mean) GDP growth for the next k quarters on present spread and, possibly, present
one-quarter GDP growth. In particular, for k = 1, the regressions are:

gt = a0 + b1St−1 + εt ,

and gt = a0 + a1gt−1 + b1St−1 + εt .

In order to analyze more precisely the dynamic links between gt = log(GPDt/GDPt−1) and St

(the spread between the 10-years yield and the short rate) it is important to introduce higher order
lags in these regressions. These dynamic regressions can be viewed as an intermediate step between
the static approach and the more comprehensive study presented in the following sections, which
could provide useful stylized facts. More precisely, we have considered four lags in each variable
and we have estimated sequentially the impact of these lags. Table 2 shows the estimations and
the t-values of the ai and bj (for i ∈ {1, . . . , 4}) coefficients in the regression:

gt = a0 +
∑4

i=1 aigt−i +
∑4

j=1 bjSt−j + εt , (1)
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Number of lags Panel A Panel B
(p, q) (0,1) (1,1) (2,2) (3,3) (4,4) (4,1) (4,2) (4,3)

a1 0.25 0.17 0.20 0.20 0.21 0.17 0.21
[3.4] [2.2] [2.6] [2.6] [2.7] [2.3] [2.6]

a2 0.15 0.17 0.17 0.14 0.14 0.15
[2.0] [2.2] [2.1] [1.8] [1.9] [2.0]

a3 -0.03 -0.04 -0.007 -0.05 -0.045
[-0.4] [-0.5] [-0.08] [-0.6] [-0.6]

a4 0.09 0.07 0.07 0.09
[1.2] [0.9] [0.9] [1.2]

b1 0.42 0.376 -0.35 -0.29 -0.21 0.37 -0.35 -0.25
[2.5] [2.2] [-1.4] [-1.1] [-0.8] [2.3] [-1.4] [-0.9]

b2 0.91 1.14 1.189 0.92 1.17
[3.6] [3.8] [4.0] [3.6] [3.9]

b3 -0.38 -0.34 -0.44
[-1.4] [-1.1] [-1.6]

b4 -0.19
[-0.7]

Table 2: Parameter estimates of the dynamic regressions gt = ao +
∑p

i=1 aigt−i +
∑q

j=1 bjSt−j + εt

(t-values are in brackets). In Panel A we first regress gt on St−1 only (first column), and then we
regress the same variable on (gt−1, . . . , gt−p) and (St−1, . . . , St−q), with p = q and p ∈ {1, . . . , 4}.
In Panel B, we regress gt on (gt−1, . . . , gt−p) and (St−1, . . . , St−q), with p = 4 and q ∈ {1, 2, 3}.

in which the lags are introduced progressively. When St−1 only is introduced (first column in Panel
A of Table 2), we find a significant coefficient equal to 0.42. This coefficient is smaller than the
one found by APW (2006), namely, 0.65 from data between 1964:Q1 to 2001:Q4 (and with the
spread based on the five years yield to maturity). This result confirms the decreasing impact of
the spread in recent years. Interestingly, the introduction of St−2 has a strong and very significant
impact, which is robust to the introduction of additional lags both in St and gt. This lagged effect
is obviously missed in the static regressions mentioned above.

To go further in this dynamic analysis, it is worthwhile to introduce the notions of causality
measures and of their decomposition (see Gourieroux Monfort (1997), chapter 10, and Gourieroux,
Monfort and Renault (1987)). The global causality measure from St to gt, based on a maximal
number of lags equal to 4 (additional lags are not significant), is defined as Kullback discrepancy
between the conditional models:

gt = a0 +
∑4

i=1 aigt−i +
∑4

i=1 biSt−i + εt , εt ∼ N(0, σ2)

and gt = ã0 +
∑4

i=1 ãigt−i + ε̃t , ε̃t ∼ N(0, σ2
0) .

This measure is equal to 1
2 log(σ2

0/σ
2), and can be consistently estimated by 1

2 log(σ̂2
0/σ̂

2), where σ̂2

and σ̂2
0 are the standard estimators of σ2 and σ2

0 . When we compare different causality measures for
different variables or different lags, any multiplicative constant can obviously be introduced and,
for statistical reasons, it is convenient to retain the measure C = T log(σ̂2

0/σ̂
2), with T denoting

the sample size, because this measure is the likelihood ratio statistic for the null hypothesis of no
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causality and is asymptotically distributed as χ2(4) under the null. This global measure can be
decomposed into:

C =

4∑

i=1

Ci

with Ci = T log(σ̂2
i−1/σ̂

2
i ) ,

where σ̂2
i is the estimator of the variance of the error in the regression of gt on (gt−1, gt−2, gt−3, gt−4,

St−1, . . . , St−i), and where σ̂2
4 = σ̂2.

Under the null hypothesis of no causality, the marginal causality measures Ci are independently
distributed as χ2(1). We can also define the cumulated causality measures C(j) =

∑j
i=1 Ci, which

is distributed as a χ2(j) under the null. In Figure4 A.1 we present these cumulative measures C(j),
for j ∈ {1, . . . , 4}, and the benchmark curves χ2

0.90(j), χ2
0.95(j) and χ2

0.99(j), for j ∈ {1, . . . , 4}.
From this figure we clearly see that the bulk of the causality intensity appears at lag 2 and that

the cumulative causality remains strongly significant at higher lags. The global causality measure
is equal to 21.6. Note that, we did not consider the instantaneous causality corresponding to i = 0,
because St is measured at the end of the quarter and, therefore, such a causality cannot go from
St to gt.

A further dynamic analysis is based on the impulse response function deduced from the bivariate
modelling: 




gt = a0 +
∑4

i=1 aigt−i +
∑4

j=1 bjSt−j + εt , εt ∼ N(0, σ2
ε )

St = ā0 +
∑4

i=0 āigt−i +
∑4

j=1 b̄jSt−j + ηt , ηt ∼ N(0, σ2
η) .

(2)

Note that this is a recursive representation since gt appears in the second equation, which implies
that εt and ηt are independent and can be shocked independently. We choose this recursive form
because it implies no instantaneous effect on gt of a shock on St, in agreement with the fact already
mentioned that St is measured at the end of the quarter.

Figure A.2 represents the responses of a positive shock on ηt. In particular, the solid line shows
the propagation of this shock on gt, in terms of proportions of the initial shock. We see that, after
a small negative impact at horizon 1, the response jumps to a more than proportional positive
impact at horizon 2. For instance, a shock on the spread (measured on a quarterly basis) equal to
40bp (annual basis) has an impact on the (one-quarter) GDP growth slightly larger than 0.1%, two
quarters later. Figure A.3 gives the cumulated impact on the (one-quarter) GDP growth, that is
to say the impact on the long run GDP growth, which converges to 3.5 after 5 years. This means,
for instance, that a shock of 10−3 on the quarterly spread has a long run effect of 0.35% on the
GDP growth.

The cumulated causality measures and the impulse response functions are also given when
replacing the spread by the one-quarter short rate rt [see figures A.4, A.5 and A.6]. The cumulated
causality measure from rt to the quarterly GDP growth is always above all the khi-square lines [see
figure A.4]. However, the shape is different from the corresponding curve for the spread: the jump
at horizon 2 is smaller, the curve is smoother and it reaches a higher level for the global causality,
namely 26.9 (instead of 21.6 for the spread).

4In the following, prefix A. before the number of a figure or a table indicates that it is presented in Appendix 4.
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The impulse response functions to a negative shock on the short rate are given in figures A.5 and
A.6. We see a positive response on the GDP growth at horizon 2 which is more than proportional,
and the long run response of the GDP growth is equal to +3.2.

All these results could be viewed as advanced stylized facts which must be confirmed and
developed by a more precise multivariate analysis. In particular, it would be important to analyze
the long run properties of the variables to separate the spread into an expectation part and a term
premium part and to disentangle their specific effects on the growth of the GDP.

3 Near-Cointegration Analysis

The specification of the state variable dynamics is based on the following steps. First, in Section
3.1, we apply a cointegration analysis to the autoregressive dynamics of the vector Yt = (rt, Rt, Gt)

′,
suggested by classical and efficient unit root tests [Section 3.1.1]. This econometric procedure lead
us to a vector error correction model (with two lags) for ∆Yt, that we can write as a Cointegrated
VAR(3) for Xt = (rt, St, gt)

′, the spread St = Rt − rt being the cointegrating relationship [Section
3.1.2].

This specification has the advantage to explain the persistence in interest rates better than the
unconstrained counterpart given by a VAR(3) model for Xt but has two important drawbacks.
First, it assumes the non-stationarity of interest rates, while a wide literature on nonlinear models
indicates that they are highly persistent but stationary [see, for instance, Ang and Bekaert (2002),
and the references therein]. Second, as indicated by Cochrane and Piazzesi (2008), interest rate
forecasts over long horizons, coming from the alternative CVAR(3) and VAR(3) specifications,
have very different behaviors [see Section 3.2.1] because of the discontinuity problem induced by
the presence or not of a unit root in a VAR dynamics. As a consequence, important differences
are found about the term premia extraction. In order to propose a state dynamics able to explain
the observed serial dependence, and in order to propose a solution to the discontinuity problem,
we assume Xt given by a Near-Cointegrated VAR(3) model, as defined in Section 3.2.2.

3.1 A Vector Error Correction Model of the State Variable

3.1.1 Unit Root Tests

The first step of our modelling studies the presence of unit roots in the short rate, long rate and real
log-GDP time series. We apply not only classical unit root tests, like the Augmented Dickey-Fuller
(ADF) tests (t test and F test), and the Phillips-Perron (PP) test, but also the (so-called) efficient
unit root tests proposed in the paper of Elliot, Rothenberg and Stock (1996) [Dickey-Fuller test
with GLS detrending (denoted Dickey-Fuller GLS), and Point-Optimal test], and in the work of
Ng and Perron (2001) (denoted Ng-Perron). It is well known that ADF and PP tests have size
distortion and low power against various alternatives, and against trend-stationary alternatives
when conventional sample size are considered [see, for instance, De Jong, Nankervis, Savin and
Whiteman (1992a, 1992b), and Schwert (1989)]. For these reasons, we verify the presence of unit
roots using also these efficient unit root tests which have more power against persistent alternatives,
like the time series we analyze [see Table 1].

The results are the following. With regard to the short rate and the long rates, Table A.1 shows
that for both series, and for all tests, we accept (at 5% or 10% level) the hypothesis of unit root
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without drift. As far as the real log-GDP level is concerned, the hypothesis of unit root is accepted
at 10 % level and for every test when a constant is included in the test regression (see left panel of
Table A.2). When, also a linear time trend is included in the test regression (see Table A.2, right
panel), the hypothesis of unit root in the time series Gt is rejected at 1 % level by the ADF test,
and at the 5 % level by the PP test. Nevertheless, when we consider the efficient unit root tests, the
hypothesis of unit root is always accepted at 10% level and for each test. Given the better power
properties of efficient unit root tests, with respect to ADF and PP tests, we are lead to accept the
hypothesis of unit root in Gt. We have also applied unit root tests to the components of ∆Yt, and
we always reject the unit root hypothesis.

The results presented above suggest that short rate, long rate and log-GDP are I(1) time series,
thus, Yt is a I(1) process [in the Engle and Granger (1987) sense, that is, a vectorial process in
which all scalar components are integrated of the same order]. The purpose of the next section is
to search for long-run equilibrium relationships (common stochastic trends) among the components
of Yt, using cointegration techniques.

3.1.2 Cointegration Analysis and State Dynamics Specification

We study the presence of cointegrating relationships among the short rate, long rate and log-GDP
time series using the (VAR-based) Johansen (1988, 1995) Trace and Maximum Eigenvalue tests.
First, we assume that the I(1) vector Yt = (rt, Rt, Gt)

′ can be described by a 3-dimensional Gaussian
VAR(p) process of the following type:

Yt = ν +

p∑

j=1

ΦjYt−j + εt , (3)

where εt is a 3-dimensional Gaussian white noise with N (0,Ω) distribution [Ω denotes the (3 × 3)
variance-covariance matrix]; Φj, for j ∈ {1, . . . , p}, are (3 × 3) matrices, while ν is a 3-dimensional
vector. On the basis of several lag order selection criteria (and starting from a maximum lag of
p = 4, in order to make the following estimation of risk-neutral parameters feasible), the lag length
is selected to be p = 3 (see Table A.3), and the OLS estimation of the (unrestricted) VAR(3) model
is presented in Table A.4. Then, we write the Gaussian VAR(3) model in the (equivalent) vector
error correction model (VECM) representation :

∆Yt = ΠYt−1 +
2∑

j=1

Γj∆Yt−j + ν + εt ,

with Π = −
[
I3×3 −

∑3
j=1 Φj

]
and Γj = −

3∑

i=j+1

Φi ,

(4)

and we determine the rank r ∈ {0, 1, 2, 3} of the matrix Π using the (likelihood ratio) trace and
maximum eigenvalue tests. The rank(Π) gives the number of cointegrating relations (the so-called
cointegrating rank, that is, the number of independent linear combinations of the variables that are
stationary), and (3− r) the number of unit roots (or, equivalently, the number of common trends).
The results, presented in the first part of Table A.5, indicate that both tests accept the presence of
one cointegrating relation (r = 1) at 5 % level, and, thus, they decide for the presence of two unit
roots in the vector Yt. Consequently, we can write Π = αβ′, where α and β are (3× 1) vectors (the
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second part of Table A.5 provides the maximum likelihood parameter estimates of these matrices),
and β′Yt will be I(0) [see Engle and Granger (1987) and Johansen (1995)].

Observe that, the cointegration analysis is based on the model specification (4), in which the
unrestricted constant term ν induces a linear trend in Yt. Given the decomposition ν = αµ+γ (with
µ a scalar and γ a (3 × 1) vector orthogonal to α), we have tested the null hypothesis H0 : ν = αµ
(the intercept is restricted to lie in the α direction) using the χ2(2)-distributed (under H0) likelihood
ratio statistic l̃r taking the value 13.9354 which is larger than the chi-square 1 % quantile (with two
degrees of freedom) χ2

0.01(2) = 9.21. Consequently, the null hypothesis is rejected, which implies a
drift in the common trends5.

Moreover, in order to achieve economic interpretability of the cointegrating relation, we have
tested the null hypothesis H0 : β = (−1, 1, 0)′ (the spread between the long and the short rate is
the cointegrating relation) using the likelihood ratio statistic lr∗ taking the value6 3.276, which
is smaller than the chi-square 5 % quantile (with two degrees of freedom) χ2

0.05(2) = 5.99. Con-
sequently, the null hypothesis is accepted, and, therefore, the spread provides the long-run equi-
librium relationship7. Least squares parameter estimates of model (4), when Π = αβ′ = 1, with
β = (−1, 1, 0)′, and ν = αµ + γ, are presented in Table A.6. Observe that, the same kind of model
specification (a VECM with two lags in differences, one cointegrating relation given by the spread
and an unrestricted constant term) is obtained when the 5-years yield is considered as the long
rate, when the analysis is applied to the same sample period (1964:Q1 - 2001:Q4), or the same data
base8, as in APW (2006) [the results are available upon request from the authors].

In order to propose a direct comparison between the performances of our model (under the
historical and the risk-neutral probability) and the one proposed by APW (2006), we rewrite
model (4) in terms of the 3-dimensional state process Xt = (rt, St, gt)

′, with St = Rt − rt and
gt = Gt − Gt−1 :

Xt = ν̃ +

3∑

j=1

Φ̃jXt−j + η̃t , (5)

with ν̃ = Aν , A =




1 0 0
−1 1 0
0 0 1


 ,

Φ̃1 = Γ̃1 + α̃ (0, 1, 0) + B , Φ̃2 = Γ̃2 − Γ̃1B , Φ̃3 = −Γ̃2B ,

Γ̃i = AΓiA
−1 for i ∈ {1, 2} , B =




1 0 0
0 1 0
0 0 0


 , α̃ = Aα ,

5The likelihood ratio statistic is l̃r = −T
P3

k=2 log[(1− λ̃k)/(1−λk)], where (λ̃2, λ̃3) and (λ2, λ3) are, respectively,
the two smallest eigenvalues associated to the maximum likelihood estimation of the restricted (under H0) and
unrestricted model (4). The estimation of the two models leads to (λ̃2, λ̃3) = (0.0962431, 0.032958) and (λ2, λ3) =
(0.039789, 0.008368).

6The likelihood ratio statistic is lr∗ = −T log[(1 − λ∗

1)/(1 − λ1)] (χ2(2)-distributed under the null), where λ∗

1 is
the largest eigenvalue associated to the maximum likelihood estimation of model (4) under H0.

7Many authors have found cointegration between short-term and long-term interest rates, and the existence of
long-run equilibrium relationships given by the spread [see Campbell and Shiller (1987), Engle and Granger (1987),
Hall, Anderson and Granger (1992)].

8We are very grateful to Andrew Ang, Monika Piazzesi and Min Wei for providing us the data set.

10



and where η̃t is a 3-dimensional Gaussian white noise with N (0, Ω̃) distribution and Ω̃ = ΣΣ′ =
AΩA′ [the parameter estimates are presented in Table A.7, while the estimates of the APW (2006)
state dynamics are organized in Table A.8], where Σ is assumed to be lower triangular. Note that
the third column of Φ̃3 is a vector of zeros. This Cointegrated VAR (3) model [CVAR(3), hereafter]
can equivalently be represented in the following 9-dimensional VAR(1) form:

X̃t = Φ̃X̃t−1 + e1[ν̃ + η̃t] ,

where Φ̃ =




Φ̃1 Φ̃2 Φ̃3

I3×3 03×3 03×3

03×3 I3×3 03×3


 , X̃t = (X ′

t,X
′

t−1,X
′

t−2)
′ ,

(6)

and where e1 is a (9 × 3) matrix equal to (I3, 03, 03)
′.

3.2 Near-Cointegrated VAR(p) Dynamics

3.2.1 A Discontinuity Problem

It is well known that moving from a stationary environment to a non-stationary one, implies various
types of discontinuity problems, in particular in term of asymptotic behavior of the estimation or
testing procedure (see e.g. Chan and Wei (1987), Phillips (1987, 1988), Phillips and Magdalinos
(2006)) or in term of prediction (see e.g. Stock (1996), Kemp (1999), Diebold and Kilian (2000),
Elliot (2006)). In the context of macro-finance VAR modelling, Cochrane and Piazzesi (2008) also
noted very different long term interest rates predictions depending whether unit roots constraints
are imposed or not (see figures 1 and 2). In the VAR context this discontinuity simply comes
from the fact that the long run behavior of predictions is driven by roots of the determinant of the
autoregressive matrix polynomial and that this behavior becomes very different as soon as at least
one unit root is present.

As an illustration, we consider the K-step ahead short rate forecasts obtained from the CVAR(3)
and VAR(3) models (figures 1 and 2 respectively) for K = 1, 4, 8, 12, 16, 20 quarters. We
observe that the forecasts of the short rate differ sharply depending on the considered model. More
specifically, with a VAR(3) model, forecasts tend to quickly converge to the unconditional mean of
the short rate as far as the forecast horizon increases. In contrast, when a unit root constraint is
imposed (like in the CVAR(3) model), forecasts obtained at all horizons are very similar, and very
close to the present short rate.

3.2.2 Averaging estimations

The discontinuity problems can be tackled in different ways based on fractionally integrated pro-
cesses, switching regimes, time-varying parameters, bayesian methods or local-to-unity asymptotics.
For instance, Kozicki and Tinsley (2001a, 2001b, 2005), introducing shifting endpoint-based time-
varying parameters in the short rate dynamics, significantly improve yield predictions. Here we
adopt the local-to-unity approach. More precisely, we start from the results by Hansen (2007,
2008a, 2008b) which shows, among other results, that using a local-to-unity approach, the optimal
weight averaging an unconstrained and a unit root (constrained) estimator, in terms of forecast
error minimization, is strictly between 0 and 1. So, the idea is to consider an average of the VAR(3)
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Figure 1:
K-step ahead short rate forecasts from the CVAR(3) model

K = 1, 4, 8, 12, 16, 20, 40 quarters.

and CVAR(3) parameters and to find the optimal weight in terms of prediction of a variable of
interest.

The Near-Cointegrated VAR(3) model for the state vector Xt is obtained in the following
way: once we have estimated the vector of the unconstrained VAR(3) parameters θvar (parameter
estimates are presented in Table A.9) and the vector of parameters θcvar of the CVAR(3) model
(Table A.7), the vector of parameters θnc specifying the Near-Cointegrated VAR(3) model is given
by:

θnc = θnc(λ) = λθvar + (1 − λ)θcvar , (7)

with λ ∈ [0, 1] a free parameter selected to minimize a criterion of interest. In this paper we focus
on minimizing the prediction error, measured by the root mean squared forecast error (RMSFE
thereafter), of a variable of interest, and given our aim to provide a reliable measure of the term
premia on long term bonds, we focus on the best estimation of the associated expectation part.

Given at date t a yield with residual maturity h, denoted by Rt(h), we define its expectation
term as EXt(h) = − 1

h log B∗

t (h) with B∗

t (h) = Et[exp(−(rt + rt+1 + ... + rt+h))]. The associated
term premium is given by TPt(h) = Rt(h) − EXt(h) (see section 5 for a detailed presentation).
For a given maturity h, the parameter λ = λ(h) (say) is selected as the solution of the following
problem:

λ∗(h) = arg min
λ(h)∈[0,1]

T∑

t=1

[B̃∗

t (h) − B̂∗

t (h)]2 (8)

where, for each date t and residual maturity h, B̃∗

t (h) is the observed realization of exp(−rt −
... − rt+h−1) while B̂∗

t (h) is the NCVAR(3) model implied B∗

t (h), that is the model’s forecast of
exp(−rt − ... − rt+h−1). The out-of-sample forecasts are performed during the period 1990:Q1 -
2007:Q2, using an increasing size window for the estimation of models VAR(3) and CVAR(3). More
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Figure 2:
K-step ahead short rate forecasts from the VAR(3) model

K = 1, 4, 8, 12, 16, 20, 40 quarters.

precisely, we first estimate the parameters θvar and θcvar over the period 1964:Q1 to 1989:Q4 and
we calculate B̂∗

t (h) with t =1989:Q4. Then, at each later point in time t, we re-estimate θvar and
θcvar taking into account the new observation and, in doing so, we replicate the typical behavior of
an investor that incorporates new information over time (see also Favero, Kaminska and Sodestrom
(2006)).

In table 3 we compare, for h ranging from 2 to 40 quarters, the RMFSE obtained from the
NCVAR(3) model, with λ∗(h) solution of (8), with those obtained by the CVAR(3), VAR(3),
VAR(1) and AR(1) (based on the short rate) models. With regard to the NCVAR mechanism,
when λ∗(h) = 0, the optimal forecasts of B∗

t (h) are obtained from the CVAR(3) model, while, when
λ∗(h) = 1 the optimal forecasts come from the VAR(3) model. The case 0 < λ∗(h) < 1 corresponds
to predictions of B∗

t (h) computed with the NCVAR(3) model, with a vector of parameters given
by θ∗nc(h) = λ∗(h)θvar + (1 − λ∗(h))θcvar . We observe that, for h > 4, the NCVAR(3) specification
outperforms the VAR(3) and CVAR(3) models. More precisely, there exist a λ∗(h), strictly between
0 and 1, such that the average of the estimated parameters in the CVAR(3) and VAR(3) models
improves the forecasts of B∗

t (h) [see figure 3]. Even more, the NCVAR(3) model outperforms the
(most competing) VAR(1) and AR(1) models (except for h = 2 for the AR(1) model); in particular,
for long maturities, our model reduces their out-of-sample RMSFE of 20-30%.

Since, in this work, one of the main objectives is to extract the term premium from the 40-
quarter long term bonds, we will assume that the NCVAR(3) state dynamics, driving term structure
shapes over time and maturities, is specified by a λ∗(40) = 0.2624. Nevertheless, in order to deeply
understand all the potentialities of the proposed NCVAR term structure model, we will also consider
the case of a weighting parameter λ optimally selected on the basis of a criterion of interest like
the forecast of state variables and yields over several horizons [see Sections 3.2.3 and 4.3].
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Figure 3:
X axis: λ; Y axis: RMSFE of B∗

t (h) obtained from the NCVAR(3) model with vector of
parameters θnc = λθvar + (1 − λ)θcvar. λ = 0 corresponds to the CVAR(3) case, while λ = 1

corresponds to the VAR(3) case.

3.2.3 Out-of-Sample Forecasts with Near-Cointegrated VAR(3) State Dynamics

In Section 3.2.2 we have seen that the specification of the expectation term of a zero-coupon
bond Bt(h), namely B∗

t (h), is in general more precise when performed by our NCVAR(3) model.
Moreover, besides the cases h = 2 and h = 4 quarters, λ∗(h) is always inside the interval [0, 1],
indicating the advantage in averaging estimations to forecast B̃t(h), with respect to the extreme
CVAR(3) and VAR(3) cases.

The purpose of the present section is to analyze the out-of-sample forecast performances that
the NCVAR(3) state dynamics is able to produce. In particular, we study its ability to forecast the
one-quarter short rate, the 10-years long rate and the one-quarter GDP growth in two main cases:
a) when λ is selected to minimize, for each forecasting horizon q (say) and for each variable, the
associated RMSFE; in this context λ is considered as a free parameter which gives a further degree
of freedom in order to improve model’s performances like, in this case, the forecast of a variable of
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h AR(1) λ∗(h) NCVAR(3) CVAR(3) VAR(3) VAR(1)
(Vasicek)

2 0.00144198 1.0000 0.00149067 0.00154129 0.00149067 0.00157565
4 0.00713912 1.0000 0.00636612 0.00662780 0.00636612 0.00754511
8 0.02572808 0.7911 0.02282756 0.02365905 0.02287877 0.02609197

12 0.04756626 0.5672 0.04227720 0.04359307 0.04287781 0.04691679

B̃∗

t (h) 16 0.06890693 0.3471 0.05953802 0.06070613 0.06226470 0.06674954
20 0.08817411 0.1772 0.07361418 0.07421954 0.08058584 0.08475891
28 0.11514307 0.1782 0.09627664 0.09791432 0.10841901 0.11136596
32 0.12290695 0.2320 0.09910924 0.10372194 0.11350414 0.11963159
36 0.13260412 0.2598 0.10338498 0.11207893 0.11972531 0.13043550
40 0.14107400 0.2624 0.10123857 0.11547323 0.12239660 0.14055551

Table 3: Out-of-sample forecasts of B̃∗

t (h) = exp(−rt − ... − rt+h−1). Table entries are RMSFEs.
AR(1) (Vasicek) denotes forecasts of B̃∗

t (h) using a Gaussian AR(1) process describing the dynamics
of the (one-quarter) short rate. The time to maturities (h) are measured in quarters.

interest over a certain horizon; b) when the averaging parameter is fixed to λ = 0.2624, in order to
establish the performances of the factor characterizing the yield-to-maturity formula of our selected
term structure model [in Section 4.3 we will concentrate on the forecast of yields with maturities
between 3 and 40 quarters]. As in Section 3.2.2, the out-of-sample forecast exercise is performed
using an increasing-size window: we first estimate the parameters θvar and θcvar over the period
1964:Q1 - 1989:Q4 and then, at each later point in time t, we re-estimate θvar and θcvar taking into
account the new observation.

The results, organized in Table 4, are presented for case a) and, then, for case b).

a) First, with regard to the optimal value of λ = λ(q) (say) in the NCVAR(3) specification,
we observe that, as far as q increases, λ∗(q) decreases from λ∗(q) = 1 to λ∗(q) = 0, for
the short and long rate, while it remains equal to zero in the case of the GDP growth rate.
This result indicates that, for interest rates, the minimization of the forecast error, when
the forecasting horizon increases, gives an increasing weight to the CVAR(3) component and,
thus, it indicates how important it is for obtaining reliable long-run forecasts. With regard to
GDP growth forecasts, we have a complete preference (λ∗(q) = 0 for each q) for the CVAR(3)
component. Second, as far as the short and long rate forecasts are concerned, our NCVAR(3)
model outperforms, over both short and long forecasting horizons, the AR(1) and VAR(1)
specifications. In particular, it is important to observe the remarkable performance about
short rate long-horizon forecasts: the NCVAR(3) model reduces the RMSFE obtained by
AR(1) and VAR(1) specifications of 25% when q = 32 quarters, and of 45% when q = 40
quarters. This result, along with the forecast performance of the expectation term, highlights
the ability of our approach to extract a reliable measure of term premia on long-term bonds.
Third, as far as the models’ forecast of gt are concerned, for h = 16 and h = 20, the
CVAR(3) (and NCVAR(3)) slightly outperforms the AR(1) and VAR(1) model while, for
shorter maturities, the AR(1) specification proposes the best performances.

b) If we consider the forecast of the state variables obtained by the NCVAR(3) process with
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q AR(1) λ∗(q) NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ = 0.2624]

rt 1 0.00147585 1.0000 0.00152379 0.00155154 0.00157312 0.00152379 0.00161267
4 0.00442546 0.7585 0.00388532 0.00392834 0.00398789 0.00389483 0.00449470
8 0.00659594 0.5993 0.00607209 0.00612820 0.00625836 0.00613987 0.00647230

12 0.00745883 0.4329 0.00694911 0.00697577 0.00713955 0.00716155 0.00716000
16 0.00779739 0.2698 0.00708623 0.00708631 0.00721580 0.00755620 0.00745265
20 0.00811347 0.0378 0.00671292 0.00684157 0.00671763 0.00782944 0.00782010
28 0.00908244 0.0000 0.00749682 0.00778469 0.00749682 0.00884670 0.00902846
32 0.00953839 0.0000 0.00723228 0.00783472 0.00723228 0.00924450 0.00956114
36 0.01003454 0.0000 0.00650092 0.00778389 0.00650092 0.00967746 0.01012154
40 0.01055810 0.0000 0.00582954 0.00789679 0.00582954 0.01015693 0.01070457

Rt 1 0.01129684 1.0000 0.00119449 0.00120936 0.00121914 0.00119449 0.00118238
4 0.01013233 0.8894 0.00230502 0.00235331 0.00240402 0.00230642 0.00232552
8 0.00900139 0.6469 0.00300762 0.00307379 0.00320254 0.00305507 0.00312799

12 0.00823473 0.4707 0.00392395 0.00396178 0.00413364 0.00410495 0.00427545
16 0.00770173 0.2201 0.00416466 0.00416755 0.00425506 0.00476777 0.00507070
20 0.00695753 0.0000 0.00424712 0.00445743 0.00424712 0.00563220 0.00594186
28 0.00607529 0.0000 0.00537884 0.00577048 0.00537884 0.00706849 0.00732260
32 0.00570298 0.0000 0.00591024 0.00629019 0.00591024 0.00758718 0.00789753
36 0.00548394 0.0000 0.00573424 0.00632595 0.00573424 0.00781734 0.00821376
40 0.00551052 0.0000 0.00547662 0.00637219 0.00547662 0.00812138 0.00860646

gt 1 0.00499098 0.0000 0.00549931 0.00560079 0.00549931 0.00597070 0.00573126
4 0.00518494 0.0000 0.00631169 0.00643978 0.00631169 0.00680449 0.00555359
8 0.00464024 0.0000 0.00521692 0.00531731 0.00521692 0.00547284 0.00486811

12 0.00476664 0.0000 0.00491617 0.00496746 0.00491617 0.00498269 0.00491073
16 0.00476048 0.0000 0.00472333 0.00475241 0.00472333 0.00474189 0.00483858
20 0.00483377 0.0000 0.00473452 0.00475326 0.00473452 0.00477318 0.00483837

Table 4: Out-of-sample forecasts of state variables. Table entries are RMSFEs. rt denotes the
(one-quarter) short rate, Rt is the 10-years interest rate, and gt is the one-quarter GDP growth.
AR(1) denotes a Gaussian scalar autoregressive of order one process used to forecast, respectively,
the rt, Rt and gt. The forecasting horizons (q) are measured in quarters.

λ = 0.2624, the results we obtain are the following. With regard to the short rate, even
if the averaging parameter is selected using the expectation term criterion, the RMSFEs
produced by our selected state process remain in general lower than those obtained by the
AR(1) and VAR(1) models and, in particular, for long horizons. Indeed, for q = 32 quarters,
our selected factor reduces the RMSFE of the AR(1) and VAR(1) models of almost 20%,
and this percentage increases to 25% when q = 40 quarters. If we consider the long rate,
the forecast errors remain, in average, quite close to those obtained in case a), for short and
middle forecasting horizons, while, for q = 32, 36 and 40 quarters, they get slightly worse than
the AR(1) forecasts, but still better than those obtained by the VAR(1) process. Finally, the
forecasts of the one-quarter GDP growth remain almost the same as in case a).
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4 Affine Term Structure Models

4.1 The Yield Curve Formula

In the previous sections we have specified (and estimated) the historical dynamics of the state
variable Xt as a Near-Cointegrated Gaussian VAR(3) process with averaging parameter given by
λ∗(40) = 0.2624. The following step is to derive the (arbitrage-free) yield-to-maturity formula
by specifying a positive stochastic discount factor (SDF) Mt,t+1 for each period (t, t + 1). More
precisely, we assume:

Mt,t+1 = exp
[
−µ0 − µ′

1X̃t + Γ′

t ηt+1 −
1
2Γ′

tΓt

]
, (9)

where η̃t+1 = Σηt+1.
Γt = γ0+γX̃t = γ0+γ1Xt+γ2Xt−1+γ3Xt−2 is the affine (multiple lags) stochastic risk sensitivity

vector, γ0 is a (3× 1) vector and γ = [γ1 : γ2 : γ3] is a (3× 9) matrix (in the case of CVAR(3) term
structure model, the third column of γ3 is a vector of zeros). γ0, γ1, γ2, γ3 are called risk sensitivity
coefficients or parameters. The absence of arbitrage opportunity (A.A.O.) restriction for the risk-
free asset implies rt = µ0 + µ′

1X̃t, where rt is the one-period interest rate between t and t + 1
(known at t). So, under the no-arbitrage restriction, we have Mt,t+1 = exp

[
−rt + Γ′

tηt+1 −
1
2Γ′

tΓt

]
.

This specification is convenient computationally because V ar(ηt+1) = I, however it depends on the
arbitrary choice of Σ in the decomposition Ω̃ = ΣΣ′. A more intrinsic specification involves the
innovation η̃t+1 of Xt+1:

Mt,t+1 = exp

[
−rt + Γ̃′

tη̃t+1 −
1

2
Γ̃′

tΩ̃Γ̃t

]

where Γ̃′

tΣ = Γ′

t or equivalently, Γ̃′

tΩ̃ = Γ′

tΣ
′ or ΣΓt = Ω̃Γ̃t (where Γ̃t = γ̃0 + γ̃X̃t = γ̃0 + γ̃1Xt +

γ̃2Xt−1 + γ̃3Xt−2). Now, given that under the A.A.O. the price Bt(h) at date t of a zero-coupon
bond (ZCB) maturing at t + h can be written as B(t, h) = Et[Mt,t+1 . . . Mt+h−1,t+h], we have the
following result.
Proposition 1: The price at date t of the zero-coupon bond with time to maturity h is:

Bt(h) = exp(c′hX̃t + dh) , (10)

where ch and dh satisfies, for h ≥ 1, the recursive equations:





ch = −ẽ1 + Φ̃
′

ch−1 + (Σγ)′c1,h−1

= −ẽ1 + Φ̃∗
′

ch−1 ,

dh = c′1,h−1(ν̃ + Σγo) + 1
2c′1,h−1ΣΣ′c1,h−1 + dh−1 ,

(11)

and where :

Φ̃∗ =




Φ̃1 + Σγ1 Φ̃2 + Σγ2 Φ̃3 + Σγ3

I3×3 03×3 03×3

03×3 I3×3 03×3


 is a (9 × 9) matrix ,
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with initial conditions c0 = 0, d0 = 0 (or c1 = −ẽ1, d1 = 0), where ẽ1 is the (9 × 1) vector with all
entries equal to 0 except the first one equal to 1. c1,h indicates the vector of the first 3 components
of the 9-dimensional vector ch. If we adopt the parameterization (Ω̃, Γ̃t) instead of (Σ,Γt) we just
have to replace ΣΣ′ by Ω̃ and Σγi by Ω̃γ̃i (i = 0, 1, 2, 3) [Proof : see Appendix 2].

Corollary 1: The yield with h periods to maturity at date t, denoted Rt(h), is given by :

Rt(h) = −
1

h
log Bt(h)

(12)

= −
c′h
h

X̃t −
dh

h
, h ≥ 1 .

So Rt(h) is an affine function of the factor X̃t, that is of the 3 most recent lagged values of the
3-dimensional factor Xt+1.

4.2 Risk Sensitivity Parameter Estimates

The estimation of historical (VAR, CVAR and NCVAR) and risk sensitivity paramaters follow a
consistent two-step procedure, as adopted, among the others, by APW(2006), Monfort and Pe-
goraro(2007), and Garcia and Luger (2007). In Section 3 we have presented the (first step) least
squares estimates of θvar, θcvar, and θncvar, thanks to the observations of the 1-quarter and 40-
quarters yields, and of the real GDP. Given these parameter estimates, the (second step) estima-
tion of the risk sensitivity parameters θγ = (γ0, γ1, γ2, γ3) is obtained by constrained nonlinear least
squares (CNLLS), using the observations on yields with maturities different from those used in the
first step (that is, maturities ranging from 2-quarters to 36-quarters). A constraint is imposed in
order to satisfy the arbitrage restriction on the 10-years yield (the long rate). In particular, the
Constrained NLLS estimator is given by:





θ̂γ = Arg minθγ
S2(θγ)

S2(θγ) =
∑

t

∑

h

(R̃t(h) − Rt(h))2,

s. t.
∑

t

(R̃t(40) − Rt(40))
2 = 0 ,

(13)

where, for each date t and maturity h, Rt(h) is the theoretical yield determined by formula (12),
and R̃t(h) indicate the observed one.

Risk sensitivity parameter estimates of the CVAR(3), VAR(3), NCVAR(3) and VAR(1) factor-
based term structure models are presented, respectively, in Tables A.10 and A.11.

4.3 Empirical Comparisons

4.3.1 Pricing Errors

The purpose of this section is to study the ability of our yield-to-maturity formula, driven by the
NCVAR(3) factor (with λ = 0.2624), to explain the observed interest rates variability in terms of
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fitting performances over the maturities used in the estimation of the risk sensitivity parameters.
In the following section (Section 4.3.2), we will study the performances of our model to forecast out-
of-sample these interest rates. Moreover, in Section 4.3.3, with the purpose to further analyze the
specification of our term structure model, we will test its ability to explain the observed violation
of the Expectation Hypothesis theory (see, among the others, Campbell and Shiller (1991), and
Dai and Singleton (2002,2003)). These results will be systematically compared with those obtained
by the competing CVAR(3), VAR(3) and VAR(1) factor-based term structure models.

Let us start from fit performances: in the last four columns of Table 5, we compare the (an-
nualized absolute) yield-to-maturity errors of our selected NCVAR(3) factor-based term structure
model with the performances of the other competing term structure models. For each date t and
for each estimated model, we compute, over the maturities used to estimate the risk sensitivity
parameters θγ , the pricing error in the following way:

PEt =

∑
h |R̃t(h) − Rt(h)|

H
, (14)

where R̃t(h) and Rt(h) are, respectively, the (annualized) observed and model-implied yields, and
where H denotes the number of maturities used to estimate θγ . Given the time series PEt, we
calculate (for each model) the associated mean, standard deviation, minimum and maximum value.

NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ∗ = 0.2583] [λ = 0.2624]

Mean 16.19 16.26 16.91 16.86 18.76
Median 12.53 12.69 12.89 12.55 16.02
Std. Dev. 13.22 13.20 14.02 13.96 15.23
Min. 0.99 0.84 2.07 1.21 2.01
Max. 88.57 88.25 93.39 91.49 112.74

Table 5: Annualized Absolute Pricing Errors (Basis Points).

The indications that stand out from this (in-sample) term structure fit comparison are the
following. First, if we compare the fit of the yield curve obtained by the CVAR(3) and VAR(3)
term structure models, we observe that these two models perform equally well and they outperform
the APW(2006) model. This similarity highlights the compatibility of the parameter’s restriction
characterizing the CVAR(3) model, with respect to the interest rates dynamics. Second, our pre-
ferred model, with an averaging parameter selected to minimize an error forecast criterion and not
a fitting criterion like (13), has smaller mean, std. dev., minimum and maximum pricing errors
than those obtained by the three competing models. This result indicates that, the parameter λ we
add to solve the discontinuity problem and we select to improve the specification of the expectation
term in the long-term bond leads, at the same time, to a better fitting of the yield curve. The
reason of this result is shown in the second column of Table 5, where we put pricing error statistics
of the NCVAR(3) term structure model in which we have jointly estimated the parameters θγ and
λ using the CNLLS methodology of Section 4.2. We observe that the optimal value of the averaging
parameter, for the criterion (13), is λ∗ = 0.2583, which is very close to λ∗(40) = 0.2624.
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4.3.2 Yields Out-of-Sample Forecasts

In this section we want to further corroborate the out-of-sample forecast ability of our term structure
modelling, based on a NCVAR(3) factor dynamics. The exercise is based on the increasing-size
window procedure followed in Section 3, in which we re-estimate at each iteration the historical
parameters θcvar and θvar when a new observation is available, while, for ease of computation,
risk sensitivity parameters are fixed to the values estimated over the entire sample period9. In
particular, we aim at studying if our model is able to forecast well the yield curve, with respect
to the competing models mentioned above, both in the case of a parameter λ selected to minimize
the yield forecast error for a given maturity h and over a certain horizon q, and in the case of
λ = 0.2624 (case i) and case ii), respectively, presented below). The results, presented in Table 6,
are the following.

i) With regard to the optimal value of the averaging parameter λ, considered as a function of
the forecasting horizon q and of the time-to-maturity h [λ∗ = λ∗(h, q), say], we first observe
that, for any h ∈ {4, 8, 12, 20}, λ∗(h, .) decreases when q increases. In other words, for any
considered yield-to-maturity, the weight of the CVAR(3) component in the minimization of
the forecast error increases when the forecast horizon increases. This means that, as for the
short and long rate forecasts analyzed in Table 4, the out-of-sample forecast of yields over
increasing horizons, asks for a model (in the VAR setting) increasingly able to explain their
serial dependence. Second, for q ∈ {1, 4, 8} (short forecast horizons), as far as h increases,
λ∗(., q) decreases as well, indicating the increasing importance of the CVAR(3) model in
the short run forecast of long-term yields. In particular, one may observes that, for q = 1,
we move from λ∗(4, 1) = 0.9171 to λ∗(20, 1) = 0.4892. Third, for q = 12, the optimal
value of λ is around 0.5 for any h ∈ {4, 8, 12, 20}, suggesting the equal importance of the
CVAR(3) and VAR(3) components in the forecast over this particular horizon. Finally, for
any q > 12 (medium and long forecast horizons), the CVAR(3) model has a dominating role
in forecasting yields for any residual maturity h ∈ {4, 8, 12, 20}. In particular, for q = 36 and
q = 40, λ∗(h, q) = 0 for any h.

Let us now make a comparison of forecast performances between the NCVAR(3) term struc-
ture model with the AR(1) time series model and the VAR(1) term structure model. The
conclusion standing out from Table 6 is that our NCVAR(3) affine model outperforms the
most competing AR(1) model, as well as the VAR(1) term structure model, over any forecast-
ing horizon q (except for q = 1) and any residual maturity h. Moreover, for long forecasting
horizons (q = 36 and q = 40), when we move from the AR(1) time series model to the
NCVAR(3) term structure model, the RMSFE reduces between 35% and 45% for residual
maturities ranging from h = 4 and h = 20.

ii) We consider now the case of the NCVAR(3) term structure model with λ(h, q) = 0.2624 for
any pair (h, q). What we interestingly observe, again from Table 6, is that our model still
outperforms the AR(1) time series model and the VAR(1) term structure model, for any
q > 1 and any h ∈ {4, 8, 12, 20}, even with a fixed averaging parameter selected to optimally
forecast the expectation part of the 40-quarters yield. This means that, our specification of

9We have also performed some forecast exercise estimating, at each iteration, historical and risk sensitivity param-
eters, and we have found that the ranking among the models was the same and the magnitude of associated RMSFEs
was almost unchanged.
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the NCVAR yield curve model, focused on the extraction of the term premia from the long-
term bond is, at the same time, able to forecast interest rates, for any forecasting horizon
q ∈ {4, . . . , 40} and any residual maturity h ∈ {1, 4, 8, 12, 20, 40}, better than the most
competing AR(1) time series model and VAR(1) yield curve model.

4.3.3 Campbell-Shiller Regressions

Let us now study the ability of our NCVAR(3) term structure model (with λ = 0.2624) to explain
the empirically observed failure of the Expectation Hypothesis Theory (EHT, hereafter) by means
of the well known Campbell and Shiller (1991) long-rate regressions. This violation is documented
by the fact that, for any residual maturity h, regressing the yield variation Rt+1(h − 1) − Rt(h)
onto the normalized spread (Rt(h) − rt)/(h − 1) leads to a negative regression coefficient φh (say)
while, if EHT was correct (under the assumption of constant risk premiums), this coefficient (in the
population) should be equal to one for any h. Moreover, several empirical studies have documented
that φh becomes increasingly negative when h increases [see Campbell and Shiller (1991), Bansal
and Zhou (2002), Dai and Singleton (2002), Monfort and Pegoraro (2007)]. We find confirmation
of this stylized fact also in the GSW (2007) data base considered in our empirical analysis; indeed,
the estimated slope coefficients φh,T (say) obtained from the above mentioned regression is always
negative and moves from -0.494 to -2.567 as far as h increases from three to forty quarters (see the
second column of Table 7).

Let us compare the ability of our term structure model to replicate these increasingly negative
Campbell-Shiller regression coefficients, with the ability of the competing VAR(3) and VAR(1) term
structure models. In order to understand how well the proposed term structure models replicate
the violation of the EHT, we operate in the following way. First, we calculate, for each of them,
the population slope coefficient φh given by the following relation:

φh =
Cov[Rt+1(h − 1) − Rt(h), (Rt(h) − rt)/(h − 1)]

V ar[(Rt(h) − rt)/(h − 1)]
, (15)

where we take the estimates of the model parameters as the true parameters of the data-generating
process, and we verify if φh is increasingly negative. Second, in order to understand if small-sample
bias affect the population slope coefficients generated by any of the models we consider, we conduct
the following Monte-Carlo exercise: for any given residual maturity h, we simulate 500 samples of
length 174 (the length of our sample of observations) from a given estimated model, we calculate the
5% quantiles (Confidence Bands, hereafter) of the small sample distribution of the (Monte-Carlo
based) estimated slope coefficient, and then we verify if the sample slope coefficients lie well inside
these Monte-Carlo confidence bands. If the estimated term structure model generates negative
downward sloping population Campell-Shiller regression coefficients and if their empirical counter-
part lie inside the small-sample Monte-Carlo confidence bands, then we consider this model as able
to successfully match the violation of the EHT. From Table 7, we observe that our NCVAR(3)
factor-based term structure model is the only one able, among the three models considered in the
empirical analysis, to successfully replicate this stylized fact: the population slope coefficient is
increasingly negative for any h (while the VAR(3) and VAR(1) specifications generate a positive
φ3 coefficient) and the sample coefficients lie inside the Confidence Bands (except for h = 8).
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q AR(1) λ∗(q) NCVAR(3) NCVAR(3) CVAR(3) VAR(3) VAR(1)
[λ = 0.2624]

Rt(4) 1 0.00150457 0.9171 0.00173200 0.00179392 0.00187151 0.00226702 0.00212967
4 0.00410245 0.7542 0.00388512 0.00396777 0.00406611 0.00467780 0.00459689
8 0.00618828 0.6578 0.00595052 0.00605602 0.00621890 0.00705335 0.00644976

12 0.00712904 0.5120 0.00687839 0.00694667 0.00714956 0.00835300 0.00725270
16 0.00753698 0.3051 0.00695090 0.00695414 0.00709709 0.00874877 0.00764111
20 0.00803245 0.0520 0.00664430 0.00677684 0.00661315 0.00918641 0.00830445
28 0.00926663 0.0061 0.00760501 0.00790518 0.00755524 0.01011159 0.00974535
32 0.00977851 0.0000 0.00737861 0.00800062 0.00732978 0.01035500 0.01030866
36 0.01026247 0.0000 0.00656263 0.00789903 0.00652089 0.01061580 0.01083760
40 0.01080059 0.0000 0.00577706 0.00796956 0.00574673 0.01094494 0.01138883

Rt(8) 1 0.00154723 0.6245 0.00175921 0.00181942 0.00196628 0.00258628 0.00221387
4 0.00378185 0.6838 0.00357272 0.00368763 0.00381515 0.00462851 0.00420143
8 0.00563986 0.6414 0.00543996 0.00558128 0.00575273 0.00685439 0.00584279

12 0.00662399 0.5290 0.00641456 0.00651503 0.00671885 0.00818448 0.00667537
16 0.00712138 0.3149 0.00651845 0.00652452 0.00664151 0.00865068 0.00710065
20 0.00774318 0.0680 0.00631748 0.00645255 0.00622776 0.00925017 0.00788360
28 0.00908665 0.0122 0.00734640 0.00767379 0.00721745 0.01021373 0.00945996
32 0.00963692 0.0000 0.00730348 0.00788722 0.00717071 0.01048004 0.01010022
36 0.01010066 0.0000 0.00656615 0.00779931 0.00644671 0.01066727 0.01062787
40 0.01061729 0.0000 0.00574192 0.00780954 0.00564300 0.01092711 0.01115301

Rt(12) 1 0.00153930 0.5399 0.00175446 0.00182192 0.00203052 0.00287847 0.00230031
4 0.00348641 0.6364 0.00331522 0.00345525 0.00359999 0.00464893 0.00392987
8 0.00508890 0.6124 0.00496925 0.00513329 0.00529701 0.00669243 0.00536835

12 0.00609559 0.5213 0.00596558 0.00608394 0.00626409 0.00802816 0.00621587
16 0.00667039 0.3160 0.00613023 0.00613781 0.00620965 0.00858206 0.00667918
20 0.00737411 0.0811 0.00602085 0.00615635 0.00586493 0.00928250 0.00752741
28 0.00880667 0.0192 0.00709789 0.00744032 0.00687984 0.01024790 0.00918380
32 0.00939450 0.0022 0.00722974 0.00775906 0.00699564 0.01052059 0.00987538
36 0.00985087 0.0000 0.00661061 0.00770813 0.00638871 0.01064768 0.01039711
40 0.01035066 0.0000 0.00583726 0.00769212 0.00563554 0.01083864 0.01089231

Rt(20) 1 0.00145368 0.4892 0.00179187 0.00188328 0.00218170 0.00345216 0.00267997
4 0.00306038 0.5905 0.00300003 0.00318839 0.00336102 0.00484218 0.00378866
8 0.00425306 0.5681 0.00425957 0.00445899 0.00460784 0.00654362 0.00482962

12 0.00527566 0.4990 0.00525419 0.00539504 0.00552664 0.00784873 0.00564470
16 0.00594500 0.3176 0.00552177 0.00553244 0.00552459 0.00852924 0.00612972
20 0.00673015 0.1060 0.00556158 0.00568689 0.00528903 0.00934363 0.00701994
28 0.00824621 0.0408 0.00673454 0.00706000 0.00635259 0.01027103 0.00874448
32 0.00888492 0.0386 0.00710840 0.00751844 0.00668822 0.01052619 0.00948993
36 0.00933858 0.0000 0.00670731 0.00752999 0.00626099 0.01055783 0.00999968
40 0.00982848 0.0000 0.00608401 0.00750527 0.00563944 0.01063770 0.01045906

Table 6: Out-of-sample forecasts of Rt(h), with h ∈ {4, 8, 12, 20} measured in quarters. Table
entries are RMSFEs. AR(1) denotes a Gaussian scalar autoregressive of order one process used to
forecast Rt(h) for any h ∈ {4, 8, 12, 20}. Forecasting horizons (q) are measured in quarters.
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h sample NCVAR(3) Confidence VAR(3) Confidence VAR(1) Confidence
φh,T φh Bands φh Bands φh Bands

3 -0.494 -0.204 (-0.722, 0.880) 0.195 (-0.536, 1.058) 0.025 (-0.678, 1.182)
[0.278]

4 -0.745 -0.308 (-0.918, 0.760) -0.0002 (-0.773, 0.933) -0.052 (-0.778, 1.061)
[0.398]

8 -0.976 -0.581 (-0.904, 0.860) -0.485 (-0.904, 0.889) -0.377 (-0.572, 1.204)
[0.684]

12 -1.196 -0.877 (-1.460, 0.564) -0.882 (-1.433, 0.609) -0.706 (-1.158, 0.839)
[0.822]

20 -1.546 -1.457 (-2.364, 0.106) -1.516 (-2.348, 0.057) -1.351 (-2.236, 0.180)
[0.934]

40 -2.567 -2.743 (-4.330, -0.695) -2.754 (-4.377, -0.880) -2.698 (-4.442, -0.595)
[1.186]

Table 7: Campbell-Shiller long-rate regressions. The slope sample coefficients φh,T are estimated
from the regression Rt+1(h− 1)−Rt(h) = φo,h + φh,T [Rt(h)− rt]/(h− 1) + ut+1,h, using the GSW
(2007) data base of sample size T = 174 [Newey-West standard errors with 4 lags are in brackets; the
residual maturity h is measured in quarters]. The slope population coefficients φh are obtained from
the model taking the parameter estimates as the true parameters of the data-generating process.
Confidence bands show the 5% quantiles of the estimated slope coefficients from 500 samples of
length 174 quarters simulated from the model.

5 Unbiased Term Premia

5.1 Definition of Unbiased Term Premia

Let us consider Rt(h) and rt, that is, the yield of maturity h periods at time t, and the short rate
(Rt(1) = rt). The usual term yield premium corresponding to this maturity is defined as:

T̃ P t(h) = Rt(h) −
1

h
Et

h−1∑

j=0

rt+j , (16)

ẼX t(h) = 1
hEt

∑h−1
j=0 rt+j being the Expectation Hypothesis term. So, we have:

Rt(h) = ẼX t(h) + T̃ P t(h),

and a similar decomposition for the spread gives:

St(h) = Rt(h) − rt

= ẼXSt(h) + T̃ PSt(h) ,

where ẼXSt(h) = ẼXt(h) − rt is the Expectation Hypothesis Spread.

A drawback of this version of the term premium T̃ P t(h) is that it would not be zero under
the hypothetic situation where the historical dynamics and the risk-neutral dynamics would be
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identical, i.e. in a hypothetic world without risk aversion. In a such a situation, the yield of
maturity h would be:

EXt(h) = −
1

h
log B∗

t (h) (17)

where:
B∗

t (h) = Et[exp−(rt + rt+1 + . . . + rt+h−1)],

and not ẼXt(h). Therefore, a more natural definition of the yield term premium, called ”unbiased”
because it is exactly equal to zero when the risk neutral and historical worlds are identical, is:

TPt(h) = Rt(h) − EXt(h) . (18)

Note that EXt(h) is easily computed using the recursive equations (11), with γ0 = 0 and γ = 0.

5.2 Yield term premia and forward term premia

The short-term forward rate of maturity h is:

ft(h) = log Bt(h − 1) − log Bt(h) ,

where Bt(h) is the price at time t of the zero-coupon bond of residual maturity h. Therefore, we
have:

ft(h) = log
EQ

t [exp(−rt − . . . − rt+h−2)]

EQ
t [exp(−rt − . . . − rt+h−1)]

,

with the convention rt + . . . + rt+h−2 = 0 if h = 1. If the historical dynamics was identical to the
risk-neutral one, this forward rate would be:

EXf
t (h) = log B∗

t (h − 1) − log B∗

t (h)

So, a natural term premium for the short-term forward rate ft(h), called the forward term premium,
is:

TP f
t (h) = ft(h) − EXf

t (h) . (19)

Given that Rt(h) = 1
h

h∑

j=1

ft(j), and since we obviously have:

EXt(h) =
1

h

h∑

j=1

EXf
t (j) , (20)

we get:

TPt(h) =
1

h

h∑

j=1

TP f
t (j) . (21)
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So, we have the following decomposition of Rt(h) or St(h):

Rt(h) = 1
h

h∑

j=1

EXf
t (j) +

1

h

h∑

j=1

TP f
t (j) , and

St(h) = 1
h

h∑

j=1

EXSf
t (j) +

1

h

h∑

j=1

TP f
t (j) ,

with EXSf
t (j) = EXf

t (j) − rt , ∀j ∈ {1, . . . , h} .

(22)

In other words, the yield and spread term structures, Rt(h) and St(h), are obtained by summing
the averages of the forward Expectations and of the Premium term structures.

The forward term premium TP f
t (h) is the premium of a FRA (forward rate agreement) in the

short rate between t + h− 1 and t + h, negotiated at time t at level ft(h). So this premium can be
viewed as the price evaluated at t of the risk coming from the uncertainty of the short rate between
t+h−1 and t+h. Of course there is no uncertainty for h = 1, so TP f

t (1) = 0, and the uncertainty
is likely to increase with h. According to (11) we have:

ft(h) = log Bt(h − 1) − log Bt(h) (23)

= (ch−1 − ch)′X̃t + dh−1 − dh

= (ẽ1 + (I − Φ̃′)ch−1 − (Σγ)′c1,h−1)
′X̃t − c′1,h−1(γ̃ + Σγ0) −

1

2
c′1,h−1ΣΣ′c1,h−1

= rt + c′h−1(I − Φ̃)X̃t − c′1,h−1ν̃ −
1

2
c′1,h−1ΣΣ′c1,h−1 − c′1,h−1ΣΓt

Similarly

EXf
t (h) = rt + c∗

′

h−1(I − Φ̃)X̃t − c∗
′

1,h−1ν̃ −
1

2
c∗

′

1,h−1ΣΣ′c∗1,h−1

where c∗h−1 is obtained from (11) with γ = 0, and

TP f
t (h) = (ch−1 − c∗h−1)

′(I − Φ̃)X̃t − (c1,h−1 − c∗1,h−1)
′ν̃ (24)

−
1

2
c′1,h−1ΣΣ′c1,h−1 +

1

2
c∗

′

1,h−1ΣΣ′c∗1,h−1 − c′1,h−1ΣΓt

or with the parameterization (Ω̃, Γ̃t):

TP f
t (h) = (ch−1 − c∗h−1)

′(I − Φ̃)X̃t − (c1,h−1 − c∗1,h−1)
′ν̃ (25)

−
1

2
c′1,h−1Ω̃c1,h−1 +

1

2
c∗

′

1,h−1Ω̃c∗1,h−1 − c′1,h−1Ω̃Γ̃t

In particular, if Γt = 0 (γ = 0, γ0 = 0), TP f
t (h) = 0, and if Γt does not depend on t (γ = 0) we
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have ch−1 = c∗h−1, TP f
t (h) = −c′1,h−1Σγ0 (= −c′1,h−1Ω̃γ̃0), and

TPt(h) =
1

h

h∑

j=1

TP f
t (j) (26)

= −
1

h

h∑

j=1

c′1,j−1Σγ0

5.3 Yield term premia, risk premia and risk sensitivities

Formula (21) gives a decomposition of the yield term premium TPt(h) in terms of the forward term

premia TP f
t (j). Anoher interesting decomposition of TPt(h) is based on the expected term premia

attached to future one-period holdings of the zero-coupon bond with residual maturity h at time
t. Indeed we have:

Rt(h) = −
1

h

h∑

j=1

log
Bt+j−1(h − j + 1)

Bt+j(h − j)
(27)

=
1

h

h∑

j=1

ρt+j(h − j + 1)

where ρt+j(h − j + 1) is the geometric return between t + j − 1 and t + j of the zero-coupon bond
of residual maturity h − j + 1 at t + j − 1 (or residual maturity h at t).
If the historical dynamics was identical to the risk-neutral one, the yield of residual maturity h
would be:

EXt(h) = −
1

h

h∑

j=1

log
B∗

t+j−1(h − j + 1)

B∗

t+j(h − j)
(28)

=
1

h

h∑

j=1

ρ∗t+j(h − j + 1) .

So:

TPt(h) = Rt(h) − EXt(h) (29)

=
1

h

h∑

j=1

[
ρt+j(h − j + 1) − ρ∗t+j(h − j + 1)

]
.

Note that in equations (27), (28) and (29) the left hand sides are known at t whereas the terms
of the sums in the right hand sides are random. So we get additional identities by taking the
conditional expectation of both sides of the equations with respect to the historical distribution.
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In particular we get:

TPt(h) =
1

h

h∑

j=1

Et

[
ρt+j(h − j + 1) − ρ∗t+j(h − j + 1)

]
(30)

=
1

h

h∑

j=1

EtEt+j−1

[
ρt+j(h − j + 1) − ρ∗t+j(h − j + 1)

]

=
1

h

h∑

j=1

EtRPt+j−1(h − j + 1) ,

where RPt+j−1(h − j + 1) is the risk premium at t + j − 1 associated with the one-period holding
between t + j − 1 and t + j of a zero-coupon bond of residual maturity h− j + 1. The risk premia
RPt+j−1(h − j + 1) are equal to zero if the risk sensitivities Γt’s (or Γ̃t’s) are equal to zero. Using
equations (11) we have:

ρt+j(h − j + 1) = dh−j + c′h−jX̃t+j − dh−j+1 − c′h−j+1X̃t+j−1 (31)

= c′h−jX̃t+j − (−ẽ1 − c′h−jΦ̃ − c′1,h−jΣγ)X̃t+j−1

−c′1,h−j(ν̃ + Σγ0) −
1

2
c′1,h−jΣΣ′c1,h−j

= c′h−j(X̃t+j − Φ̃X̃t+j−1 − e1ν̃) + ẽ′1X̃t+j−1

−c′1,h−jΣγX̃t+j−1 − c′1,h−jΣγ0 −
1

2
c′1,h−jΣΣ′c1,h−j

= c′1,h−j η̃t+j + rt+j−1 − c′1,h−jΣΓt+j−1 −
1

2
c′1,h−jΣΣ′c1,h−j

Similarly:

ρ∗t+j(h − j + 1) = c∗
′

1,h−j η̃t+j + rt+j−1 −
1

2
c∗

′

1,h−jΣΣ′c∗
′

1,h−j (32)

where the c∗1,h−j are obtained from (11) with γ = 0. Finally

RPt+j−1(h − j + 1) = −c′1,h−jΣΓt+j−1 −
1

2
c′1,h−jΣΣ′c1,h−j +

1

2
c
′
∗

1,h−jΣΣ′c∗1,h−j (33)

or with the alternative parameterization in (Γ̃t, Ω̃):

RPt+j−1(h − j + 1) = −c′1,h−jΩ̃Γ̃t+j−1 −
1

2
c′1,h−jΩ̃c1,h−j +

1

2
c∗

′

1,h−jΩ̃c∗1,h−j (34)

Since Γt+j−1 = γ0 + γX̃t+j−1, and c∗1,h−j(Φ̃, ν̃,Σ), c1,h−j(Φ̃, ν̃,Σ, γ0, γ) satisfy c∗1,h−j(Φ̃, ν̃,Σ) =

c1,h−j(Φ̃, ν̃,Σ, 0, 0), it is clear that the risk premia RPt+j−1(h − j + 1) are equal to zero if γ0 = 0
and γ = 0. The decomposition (30) becomes:

TPt(h) =
1

h

h∑

j=1

EtRPt+j−1(h − j + 1) (35)

=
1

h

h∑

j=1

−c′1,h−jΣEtΓt+j−1 −
1

2
c′1,h−jΣΣ′c1,h−j +

1

2
c∗

′

1,h−jΣΣ′c∗1,h−j ,
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and, thus, TPt(h) is decomposed in h terms, each term depending on t through the expectation
EtΓt+j−1 of the risk sensitivity vector. Roughly speaking a term of this decomposition will increase
if the expected price of risk within the period is increasing.

Note that if the risk sensitivities do not depend on t (γ = 0), we have c1,h = c∗1,h, and there-

fore, TPt(h) = − 1
h

∑h
j=1 c′1,h−jΣγ0 does not depend on t either. Comparing with (26) we get

−c′1,i−1Σγ0 = TP f
t (i) = EtRPt+h−i(i), ∀t, i, h > i, and the forward term premium of horizon

i is equal to the expectation of the risk premium attached to any future one-period holding of
a zero coupon bond with residual maturity i (at the beginning of the period). Moreover, in the
general case, the contribution of the distant periods (large j) in the general expression of TPt(h)
are likely to be almost constant in t since the EtΓt+j−1 are likely to be close to their unconditional
expectations. And, finally, the level of the contribution of the distant periods are likely to be small
given that the uncertainty in the return of the bond is likely to decrease when its residual maturity
decreases; in particular the last term (j = h) in (35) is equal to zero since RPt+h−1(1) = 0.

5.4 Computation of the term premia

Figure A.9 shows the term premia computed from VAR(3), CVAR(3) and NCVAR(3) models. The
three measures are very similar in their variations over the sample. The VAR(3) term premium is
the more volatile (standard deviation equal to 2.63), with levels that range from -1 to 6, and its
correlation with the 10-year spread is equal to 0.31. The CVAR(3) measure is much more stable
(standard deviation equal to 1.19), but is highly correlated with the 10-year spread (correlation
coefficient equal to 0.91). This result is related to the presence of a unit root in the short term
interest rate. When the short rate is considered as an I(1) non stationary process, the expectation
part of the 10-year interest rate, EXt(40), is very close to the short rate. Therefore, the expectation
part of the spread, EXSt(40), is close to zero, and the 10-year spread is nearly equal to the term
premium. This result highlights one of the limits of the CVAR approach for computing the term
premium. As argued earlier, our preferred measure of the term premium is the one obtained from
the NCVAR(3) model. This measure is an average of the measures obtained from VAR(3) and
CVAR(3) models. It is more stable than the VAR(3) term premium (standard deviation equal to
1.16), and it is less correlated with the spread than the CVAR(3) term premium (the correlation
coefficient between the spread and the NCVAR(3) term premium is equal to 0.77).

In figures A.10 and A.11 we focus on the behavior of our preferred measure, the NCVAR(3)
term premium. This measure shows similarities with other measures of the term premium found
in the literature. Rudebusch, Sack and Swanson (2007) compare five term premia measures before
focusing their attention on a measure based on the Kim-Wright approach (2005)10 which appears
to be representative of other measures. Figure A.10 shows that over the period 1990-2007, our
NCVAR(3) measure displays similar features, including peaks and trough observed with the Kim-
Wright measure. More particularly, both measures are very close between 1990 and 2002. The main
difference between both term premia is observed during the period 2002-2004 during which, the
NCVAR(3) term premium is substantially higher than the Kim-Wright’s one11. In addition, we also

10This approach is based on a standard no-arbitrage continuous-time affine term structure model, in which the
yield curve is driven by a three-dimensional latent factor.

11During this period, levels of the NCVAR(3) term premium are closer to those obtained with others methodologies,
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note that the decrease in the term premium in 2004 is more pronounced with the NCVAR(3) model.
For comparison purposes, we also present in figure A.10, the 10-year term premium obtained from
a VAR(1) model similar to Ang, Piazzesi and Wei (2006). This measure tends to be lower than
the two others. In addition, we also note that the three term premia have substantially decreased
over the recent period, consistently with results found in the literature. Finally we also report
in figure A.11 recessions (shaded bars) as dated by the National Bureau of Economic Research.
We note that the term premium tends to increase in period of recession, and then appears to be
contra-cyclical.

5.5 An Application to the Conundrum

Figure 4 presents the short term rate and the 10-year interest rate, along with its expectation
part and term premium, during the three previous episodes of monetary policy tightening (shaded
areas). We observe that in the three cases, the rise in the short term interest rate comes with an
increase of EXt(40) and a decrease in TPt(40). The final effect on the 10-year interest rate depends
on the extent of the changes in its two components EXt(40) and TPt(40). For the 1994 and 1999
episodes, the rise of EXt(40) exceeds the decline in TPt(40) in such a way that in both cases, the
10-year interest rate increases. In contrast, for the 2004 episode, the rise in EXt(40) seems to be
offset by the decline in TPt(40), leading to stable 10-year interest rate. This inertia of the 10-year
interest rate is described as a ”conundrum” by Alan Greenspan given that during previous episodes
of restrictive monetary policy, this rate increased along with the fed fund target.

The explanation of this phenomenon has to be found in the sharp decrease of the term premium
between June 2004 and June 2006. In order to shed more light regarding this phenomenon, we
present in figure 5 the term premium decomposition in risk premia as it is described in equation
(35). For sake of readability, we aggregate the expected risk premia over the time intervals (t, t+2y)
(0 to 2y, in the graph), (t+2y, t+5y) (2y to 5y), (t+5y, t+10y) (5y to 10y). The sum of these three
components gives the 10-year term premium. Expected risk premia for a given period measures
the expected risk of holding, over that period, a bond with residual maturity of 10 years at date
t. As noted by Cochrane and Piazzesi (2008), this risk is closely linked to expected inflation over
the period. Actually, a negative expected risk premium indicates that inflation is expected to
be stable over the period. In other words, a negative risk premia, or at least a decreasing risk
premia, can reflect the fact that the market believe in the (increased) credibility of the monetary
authority in controlling inflation. Looking at figure 5 we see that the decreasing trend of the term
premium observed during the rise of short term interest rate is mainly driven by expected risk
premia over the two following years. During the 1994 tightening, the risk premia decreases but
remains positive, except for one quarter. During the 1999 episode, negative expected risk premia
are more frequent but do not exceed three quarters. In contrast, during the 2004 episode, period
of negative expected risk premia lasts at least six quarters. The observed increasing periods of
negative expected risk premia may reveal that the Fed became more and more credible for low
and stable inflation over the three previous monetary policy tigthening episodes. Of course, other
elements have probably intensified the decreasing trend of the risk premium, particularly in 2004
(foreign central banks intervention for instance), but the possibility an of increased credibility of
the Fed cannot be rejected at a first glance. For that reason, we are tempted to adopt the views of
Cochrane and Piazzesi (2008) questioning the puzzling feature of the 2004 episode and argue that

such as the Rudebusch and Wu (2008) measure (see Rudebusch, Sack and Swanson (2007) for further details).
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Figure 4:
Short rate, 10-year interest rates and its components over the three

previous monetary policy tightening episodes
Shaded areas: monetary policy tightening episodes.
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Figure 5:
Expected risk premia and 10-year term premium

Shaded areas: monetary policy tightening episodes.
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Figure 6:
Forward term premia and 10-year term premium

Shaded areas: monetary policy tightening episodes.

the 2004 episode is not different in nature but just in terms of the relative weights of the components
of the long term interest rate. Finally, we also show in figure 6 the decomposition of the 10-year
term premium, in terms of forward term premium (see equation (26)) aggregated over the same
expected risk premia time intervals time intervals. We see that the 10-year term premium is mainly
driven by the forward term premium spanning the period (t + 5y, t + 10y). More particularly, this
premium tends to decrease during restrictive monetary policy. Indeed, when short rate increases,
inflation is expected to be lower in the future, reducing the volatility of future short rates. As a
consequence, long term forward term premia decreases. We can expect that the credibility of the
Fed in maintaining low and stable inflation is positively linked with the fall of the forward term
premium. In figure 6, we observe that the decline in the 5-years to 10-years forward term premium
is more pronounced during the 2004 tightening. Once again, this corroborate the idea according to
which the credibility of the Fed has increased over the last decade.

6 Impulse Response Functions

In what follows, the dynamics of the 3-dimensional state process Xt = (rt, St, gt)
′ is given by the

Near-Cointegrated VAR(3) model described in the previous sections. The optimal weight used
to average the VAR(3) and CVAR(3) parameters is chosen to get the best prediction of B∗

t (40)
(λ∗(40) = 0.2624). Hence, our NCVAR(3) specification provides the best measure of the 10-year
term premium.
In this section we are interested in measuring the differential impact on Xt, t = 1, ..., T of a shock
hitting a given variable. For that purpose, we propose in this section a new approach based on a
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generalization of the Impulse Response Function, called New Information Response Function. The
first two subsections present the methodology, while the last two present the responses to a shock
on the spread, along with its expectation part and term premium component, and to a shock on
the short term interest rate.

6.1 New Information Response Function

In this section, we generalize the standard notion of Impulse Response Function (IRF ) to the
notion of New Information Response Function (NIRF ). Let us consider a n-dimensional VAR(p)
process yt, possibly non-stationary. We denote by ηt its innovation process. We want to measure
the differential impact on yt, t = 1, ..., T , of a new information I0 at date t = 0 (by convention).
Typically, this new information will be the value h0 taken by some function h(η0) of the innovation
of the process at t = 0. In order to measure this differential impact we use a definition introduced
in the context of nonlinear models (see e.g. Gallant, Rossi and Tauchen (1993), Koop, Pesaran and
Potter (1996), Gourieroux and Jasiak (1999)). More precisely, the NIRF is defined by:

NIRF (t) = E
(
yt|I0, y−p

)
− E

(
yt|y−p

)
, t ≥ 0 ,

where y−p = (y′
−1, ..., y

′

−p)
′. Exploiting the linearity of the model we see that:

NIRF (t) = E
(
yt|h(η0) = h0, y−p = 0

)

= E
(
yt|η0 = E(η0|h(η0) = h0), y−p = 0

)

and:
NIRF (t) = Dtδ (36)

with δ = E(η0|h(η0) = h0), and Dt is the tth Markov matrix coefficient of the MA representation
of yt (see Appendix 3).

This general definition of a NIRF includes standard Impulse Response Functions. First, if the
variance-covariance V (η0) matrix of η0 is diagonal, it is usual to consider a shock of 1 on the jth

component of η0 and 0 on the others. In this case the new information is simply η0 = δ = ej ,
(where ej is the vector with components equal to zero except the jth equal to 1). Second, if V (η0)
=Σ, it is usual to consider a shock of 1 on the jth component of a transformed vector ξ0 defined
by η0 = Pξ0, where PP ′ = Σ. In this case, the new information is η0 = δ = P (j), where P (j) is the
jth column of P (P (j) can also be normalized in order to have its jth component equal to 1; see
Appendix 3). Third, Pesaran and Shin (1998) also considered a ”generalized” IRF, in which the new
information is η0j = 1 and therefore, in formula (36), δ = E(η0|η0j = 1) = Cov(η0, η0j)/V ar(η0j)
(in the gaussian case).

But the New Information Response Function is useful in a much more general context, in
particular when considering shocks on filtered variables.

6.2 Shocks on filtered variables

If we consider a m-dimensional process ỹt obtained by applying a linear filter on yt:

ỹt = F (L)yt
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where F (L) = [F1(L), ..., Fn(L)] is a (m × n) matrix of polynomials in the lag operator. The
innovation of ỹt at t = 0 is: η̃0 = F (0)η0.

Therefore if the new information at t = 0 is h̃(η̃0) = h̃0, the NIRF is:

NIRF (t) = Dtδ

with δ = E
(
η0|h̃(F (0)η0) = h̃0

)
. Obviously, the new information may also be made of an infor-

mation on both η0 and η̃0: h(η0) = h0, and h̃(η̃0) = h̃0 or h(η0) = h0 and h̃(F (0)η0) = h̃0.
In the context of our model, the component of ỹt may be, for instance, the expectation part of

a spread of some maturity, or the term premium corresponding to some maturity. If the maturity
if 40 quarters, the corresponding filter can be computed from the VAR coefficients only, otherwise
it necessitates the affine term structure model.

6.3 Impulse responses to a shock on the 10-year spread

In this section we focus on the responses of the GDP, the yields of various maturities and their
corresponding term premia and expectation components, to a unexpected increase in the spread
equal to one at date t = 0.

For that purpose and following previous notations, we need to determine the value of the (3×1)
vector δ such that δ = E(η0|I0), where η0 is the innovation of the vector (rt, St, gt) and I0 is the new
information at date t = 0. Here, the new information I0 includes, first of all, η0,2 = 1, where η0,2 is
the second component of η0, that is, the innovation of the spread at date t = 0. In addition, we have
to remember that rt and St are observed at the end of the period (end-of-quarter observations) and
they drive an information covering a following period spanned by the residual maturity, whereas gt

is the growth rate of GDP between t− 1 and t, observed at t, and driving an information spanning
the two previous quarters. Therefore, a shock on the spread (or on any interest rate) occurring at
date t (end of the quarter), should have no effect on the growth rate of real GDP between t−1 and
t. Accordingly, we impose an additional restriction to ensure that the growth rate of real GDP does
not respond instantaneously to a shock on the spread. More precisely, the information η0,3 = 0,
where η0,3 is the innovation of the one-quarter GDP growth at date t = 0, is included in I0.

This means that, we have to find the value δ = E(η0|η0,2 = 1, η0,3 = 0) or, in other words, the
value of the first component of δ, that is the instantaneous expected response of the short rate when
the spread increases by one unity whereas the growth rate of GDP remains at its past level: we have
δ = (β, 1, 0)′, where β = E(η0,1|η0,2 = 1, η0,3 = 0). In the gaussian case, β is the coefficient of η0,2 in
the theoretical regression of η0,1 on η0,2 and η0,3. Figures 7 present the responses over 20 quarters
of the real GDP, interest rates, term premia and expectation components of yield as defined by
equation (17) and(18). Figure 7(a) indicates that an increase in the spread of 1 percentage point
(that is 4 percentage points in annual basis) concurs with a decrease in the short term interest rate
greater than 1 percentage point (4 percentage point in annual basis). The expectation component
of the 10-year interest rate also decreases, but less than the short term interest rate. In contrast
the differential impact on the 10-year term premium is initially positive, before becoming negative
after about 10 quarters. Finally, the response of the 10 year interest rate is negative and ranges
between 0 and −0.4 percentage point (that is a range between 0 and −1.6 percentage points in
annual basis). As far as the yield curve is concerned [see figure 7(b)], we see that all the responses of
the yields are negative with an amplitude that is growing as the maturity decreases. This suggests
that the shock mainly affects the short end of the yield curve leading to a steepening of the curve.
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In figure 7(c) we observe that after a slight decrease that does not exceed 1 quarter, the real
GDP tends to increase until to reach its new steady state level. After 20 quarters, the real GPD
has increased by 4%, corresponding to an average annual growth rate equal to 0.8%. This result
confirms the well documented results in the literature that emphasizes the positive relationship
between the slope of the yield curve and future activity. Note that the response of real GDP to a
shock on the spread are very close to the one obtained in the bivariate analysis of section 2 (see
figures A.3 and 7(c)). In particular the long run effect on the real GDP growth displays the same
amplitude.
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Figure 7: Responses to a shock on the spread

There exists an extensive empirical literature relating the predictive power of the slope of the
yield curve on subsequent real activity. Theoretically, one of the main explanation of this fact
is related to countercyclicality of monetary policy. When the central bank lowers the short term
interest rate two effects are expected. First, the long term interest rate tends to decrease, but less
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than the short term interest rate (because the central bank is expected to move to a contractionary
policy in the future to respond to future increases in inflation). Second, with long term interest
rates smaller, financing conditions improve and private investment increases, leading in turn to an
increase of activity. According to this theory, the increase of the spread is mainly generated by the
drop of the short term interest rate and the expectation part of the spread. More precisely, recall
that the 10-year spread, St(40) = St, can be decomposed as:

St = TPt(40) + EXt(40) − rt (37)

where TPt(40) is the 10-year term premium, and EXt(40) the expectation part of the 10-year
interest rate defined by (18) and (17) respectively. rt = Rt(1) is the short term (one-quarter)
interest rate. We denote by EXSt(40) the expectation part of the spread, defined by:

EXSt(40) = EXt(40) − rt (38)

Therefore, we see that an increase in the spread can be generated by an increase in EXSt(40) or
an increase in TPt(40) (or both). The ”monetary policy explanation” of the predictive power of
the spread is based on the fact that St increases in response to a decrease of rt and an increase of
EXSt(40). However, equation (37) indicates that an increase in the spread can also result from a
rise in the term premium TPt(40), not necessarily related to monetary policy. For instance, any
events that can affect the supply and demand for long term bonds are good candidate to explain
a move on the term premium, and consequently the spread of interest rate. However, if the spread
increases because of a rise in the term premium, the final effect on real activity is not clear. On
one hand, an higher term premium, that is an higher long term interest rate, should deteriorate the
financing conditions and then should reduce private investment and economic activity. In this case
there is a negative relationship between the spread and future output growth. On the other hand,
if the rise in the term premium and long term interest rate are due to an increase in the government
purchases, financed by the issue of long term bonds, one may expect that spending government
policy should finally stimulate economic activity. In this case, the increase in the spread induces a
rise in real output and the relationship between the spread and future activity is positive.

This ambiguity appears in the results of the literature. Actually, papers that try to determinate
to what extent each component of the spread, that is EXSt(40) or TPt(40), helps to predict future
activity, generally lead to different conclusions regarding the role of the term premium. Hamilton
and Kim (2002), and Favero, Kaminska and Södeström (2005) tend to conclude to a positive and
significant relationship between the term premium and future activity. In contrast, Ang, Piazzesi
and Wei (2006), Rudebusch, Sack and Swanson (2007), and Rosenberg and Maurer (2007) do not
find significant link between the level of the term premium and future output growth.

In what follows, we try to shed light on this debate by analyzing the dynamic effects of an
increase in the spread on real activity, disentangling the effects of a rise in the spread due to an
increase in its expectation part, and a rise in the spread caused by an increase in the term premium.
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6.4 Impulse Responses to a shock on the term premium and the expectation
part of the spread

Given the affine structure of our model, the expectation part of the spread EXSt(40) and the term
premium TPt(40) are obtained by applying a linear filter on yt = (rt, St, gt)

′:

EXSt(40) = F1,1(L)rt + F1,2(L)St + F1,3(L)gt (39)

TPt(40) = F2,1(L)rt + F2,2(L)St + F2,3(L)gt (40)

Hence, the innovation at t = 0 of EXSt(40) and TPt(40), denoted by η̃0,1 and η̃0,2 respectively are:

η̃0,1 = F1,1(0)η0,1 + F1,2(0)η0,2 + F1,3(0)η0,3 (41)

η̃0,2 = F2,1(0)η0,1 + F2,2(0)η0,2 + F2,3(0)η0,3 (42)

where η0,1, η0,2 and η0,3 are the innovation at t = 0 of rt, St and gt respectively. In addition, by
construction, we have12:

η0,2 = η̃0,1 + η̃0,2

6.4.1 Shock on the expectation part

We are interested in the dynamic effects of 1 percentage point increase in the spread that would
be completely due to a 1 percentage point increase in the expectation part of the spread. More
precisely, the new information I0 includes η0,2 = 1, η̃0,1 = 1 and η̃0,2 = 0. We also assume that this
increase has no instantaneous effect of the real GDP, that is I0 also includes η0,3 = 0. Therefore, we
have to determine the value of the vector δ = E(η0|I0) = E(η0|η0,2 = 1, η̃0,1 = 1, η̃0,2 = 0, η0,3 = 0)

where η0 = (η0,1, η0,2, η0,3)
′. From equation (41) we immediately obtain that η0,1 =

1−F1,2(0)
F1,1(0) . Then:

δ =

(
1 − F1,2(0)

F1,1(0)
, 1, 0

)
′

Figures 8 show the impulse responses to a 1 percentage point shock on the expectation part of
the spread (4 percentage point in annual basis). The response of the spread is mainly driven by
its expectation part, the response of the 10-year term premium remaining very close to zero. In
addition, we observe that the increase in the expectation part of the spread is mainly generated by
a drop in the short term interest rate [see figure 8(a)]. More generally, figure 8(b) shows that this
shock principally affects the short run of the yield curve (steepening of the yield curve). Figure 8(c)
presents the responses of the real GDP (in log). We see that the real GDP tends to slightly decrease
after one period before growing to its new long term steady state. Here the positive relationship
between the spread and the subsequent values of GDP growth is confirmed. These results suggest
that this shock can be interpreted as a monetary policy shock: the central bank decreases the short
term interest rate, leading to a lower long term interest rate. Given that the decline in the long
term interest rate is smaller (in absolute value) than the fall in the short term interest rate, the
spread immediately increases. With lower long term interest rates, private investment tends to
increase, as well as subsequent GDP.

We observe that responses to a spread shock, reported in previous section, seem very close to
the ones obtained after a shock on the expectation part of the spread. This indicates that in our
sample, rises and falls in the spread has been mainly generated by shocks on its expectation part.

12This implies that the Fi,j(0) verify F1,1(0) + F2,1(0) = 0, F1,2(0) + F2,2(0) = 1 and F1,3(0) + F2,3(0) = 0
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Figure 8: Responses to a shock on the Expectation part of the spread

6.4.2 Shock on the term premium

Now, we focus on dynamic effects of a 1 percentage point increase in the spread that is completely
generated by a 1 percentage point increase in the term premium (4 percentage point in annual
basis). Here the new information is I0 = {η0,2 = 1, η̃0,1 = 0, η̃0,2 = 1, η0,3 = 0}.

From equation (42) we have η0,1 =
1−F2,2(0)

F2,1(0) .

Then:

δ =

(
1 − F2,2(0)

F2,1(0)
, 1, 0

)
′

Figures 9 present the responses to the 10-year term premium shock. We observe that the impulse
responses of the 10-year spread and the 10-year interest rate are mainly driven by the response of
the term premium. The response of the short term interest rate is very flat and close to zero. More
generally, the shock seems to affect principally the long end of the yield curve (see figure (9(b)). In
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addition, we observe that the shock have only slight effects on the expectation part of the spread
and on the long term interest rate.

Regarding the response of real GDP (see figure (9(c)), we observe that in the first year that
follows the shock, the real GDP tends to decrease. Then, real GDP increases until to reach a
new long term steady state value that is higher than the previous one. Therefore, the relationship
between the term premium part of the 10-year spread and future economic activity is negative for
short horizon (smaller than one year), whereas it is positive for longer horizon.

Giving an economic interpretation to the term premium shock is not obvious because the only
macroeconomic factor we take into account in our model is the GDP growth. More precisely, to be
able to interpret more accurately the shock, we should incorporate more macroeconomic variables
such as inflation, private investment or government spending. Notwithstanding, the shapes of
impulses responses provide us some insight about the nature of the shock. Actually, the shock
induces a higher long term interest rate that is followed by an increase in activity in the long run
(with short term interest rates and expectations of future short term interest rates that remain
relatively stable). We can conjecture that the term premium shock could be compared to a shock
on government spending that would be financed by issue of long term bonds [see also Greenwood
and Vayanos (2008)]. Such policy can generate two opposite effects on activity. First, higher long
term interest rate tends to reduce private investment, and have negative effect on real GDP. Second,
public investment tends to boost activity. Our results suggest that the first effect dominates in the
short run, explaining the decreasing trend of real GDP during the first year, and is progressively
offset by the second effect, leading the real GDP to increase in the long run. Of course, at this stage
of our analysis we can only venture some interpretation that one has to verify with a more accurate
macroeconomic (structural) model [see, for instance, Rudebusch and Swanson (2008a, 2008b)].
However, according to our result, the ambiguity found in the literature regarding the effect of the
term premium component of the spread and future activity, could stem from the changing sign of
this relationship over the period that follows the shock. Over short horizons, this relationship is
negative, whereas it becomes positive for longer horizons.

6.5 Shock on the short term interest rate

Finally, we focus on the dynamics effects of a decrease equal to one percentage point in the short
term interest rate ( 4 percentage point in annual basis). The new information at date t = 0 is I0 =
(η0,1 = −1, η0,3 = 0). Therefore, we have to determine the value of δ = E(η0|η0,1 = −1, η0,3 = 0).
We have:

δ = (−1,−ζ, 0)′

where ζ is the coefficient of η0,1 in the theoretical regression of η0,2 on η0,1 and η0,3.
Figures 10 report the responses to the shock. Roughly speaking, an unexpected move on the short
term interest rate can be interpreted as a monetary policy shock. We see that the responses to
this shock are close to the one obtained with a shock on the expectation part of the spread (EXS
shock hereafter). In particular, we observe that in both cases, the response of the spread seems to
be driven by its expectation part [see figure 10(a)]. This result confirms the intution according to
which the EXS shock can be viewed as a monetary policy shock.

However, some slight difference can be noted. Looking at figure 10(a), we observe that the
response at t = 0 of the term premium to a short rate shock is negative. In the case of a EXS shock,
the response of the term premium becomes negative after three quarters (recall that we controlled
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Figure 9: Responses to a shock on the Term Premium

it to be zero at t = 0). In addition, at t = 0, the amplitude of the fall in the expectation part of the
long term interest rate, EX0(40), is comparable to the one observed after an EXS shock (for the
short rate shock: EX0(40)/r0 = 0.45 in quarterly basis; for the EXS shock: EX0(40)/r0 = 0.44
in quarterly basis). Therefore, recalling that Rt(40) = EXt(40) + TPt(40), the long rate also
decreases after the short term rate shock, but the fall is relatively higher in absolute value than the
one obtained after an EXS shock (for the short rate shock: Rt(40)/r0 = 0.7; for the EXS shock:
R0(40)/r0 = 0.44 in quarterly basis). In other words, the increase in the spread is smaller than after
an EXS shock (for the short rate shock: S0/r0 = 0.3; for the EXS shock: S0/r0 = 0.55 in quarterly
basis). More generally the yield curve tends to steepen, but the steepening is less pronounced than
after an EXS shock (compare figures 8(b) and 10(b)).

Looking at figure 10(c), we see that the real GDP tends to increase after a negative shock on
the short rate, but the long run impact is much smaller than the one associated to an EXS shock
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Figure 10: Responses to a (negative) shock on the short term interest rate

or a spread shock. Indeed, the immediate reduction in the long rate is, in that case, much larger
and therefore the immediate rise in the spread is only 0.3. Here again, the positive relationship
between the spread and future activity is verified.
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7 Conclusions and Further Developments

In this paper we have used and developed both econometric tools and asset pricing models to
study various problems concerned with the dynamic relationships between economic activity, yields
and term premia on long-term bonds. The econometric tools we have used are mainly, Kullback
causality measures, unit root and cointegration tests, information criteria, local-to-unit root and
near-cointegration analysis. Moreover, we have developed the notion of New Information Response
Function. As far as asset pricing models are concerned, we have used the theory of no-arbitrage
discrete-time affine term structure models to build the yield curve, and we have introduced a notion
of unbiased term premia. In addition, this notion of term premia is decomposed in various forward
term premia over different horizons and in various risk premia attached to one-period holdings of
bonds at different maturities.

The results obtained are promising in terms of fitting and prediction properties of our Near-
Cointegrated VAR(p) term structure model, as well as in terms of evaluating term premia and
disentangling the dynamic impact on the GDP growth of shocks on the expectation part and
on the term premium part of the spread. Our starting point was the model proposed by APW
(2006), but the various methodologies proposed here could clearly be used in different contexts,
and there are obvious possible extensions of our approach. On the econometric side we could,
for instance, consider the introduction of stochastic volatilities, switching regimes or fractionally
integrated processes. On the macroeconomic side, it would be useful to extend the state vector in
order to introduce other variables and, in particular, inflation. These are the objectives of ongoing
and future research works.
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Appendix 1: Further details about the unit root analysis.

The number of lags in the ADF test is selected minimizing the Akaike Information Criterion
(AIC). In the (heteroskedastic-consistent) PP test, the Bartlett spectral kernel is used to estimate
the spectrum, and the Newey-West (1994) procedure is used to determine the number of auto-
covariance terms used. In the efficient unit root tests, we use GLS detrended data to estimate
the spectral density at frequency zero, and the lag length is selected minimizing the Modified AIC
(MAIC), as suggested by Ng and Perron (2001)13. In each test, the minimization of the information
criterion is applied over lags p ∈ {0, . . . , pmax}, with pmax = [12(T/100)1/4 ], where [x] denotes the
integer part of x, and where T denotes the sample size (in our case, pmax = 13).

In the ADF tests, we use MacKinnon (1996) critical values for the t statistic (to test the null
hypothesis ξ0 = 0 under c = 0, with ξ0 denoting the parameter multiplying the lagged value of the
process in the test regressions), while we consider Dickey and Fuller (1981, Tables IV-VI) critical
values for the F statistics [to test the null joint hypothesis (c, ξ0)

′ = (0, 0)′ or (b, ξ0)
′ = (0, 0)′, c

and b respectively denoting the constant term and the parameter of the linear time trend in the
test regressions]. In the PP tests, we use MacKinnon (1996) critical values. In the Ng-Perron test,
critical values are taken from their original paper (Table 1). With regard to the Dickey-Fuller GLS
test, if only a constant is included in the test regression, we use MacKinnon (1996) critical values,
while, if we include also a linear time trend, we apply critical values taken from Elliot, Rothenberg
and Stock (1996, Table 1). Indeed, in the first case only, their t-statistic follows a Dickey-Fuller
distribution. In the Point-Optimal test, critical values are provided by Elliot, Rothenberg and
Stock (1996, Table 1).

In all unit root tests we have considered, the null hypothesis (presence of a unit root in the
scalar time series) is rejected when the value of the test statistic is lower than the critical value
(critical region). On the contrary, in the F test, the null hypothesis is rejected when the value of
the test statistic is bigger than the critical value.

13Ng and Perron (2001) show that, starting from the findings of Elliot, Rothenberg and Stock (1996) and Dufour
and King (1991), the use in conjonction of the MAIC and GLS detrended data, lead to tests with size and power
gains with respect to the tests proposed by Ng and Perron (1996).
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Appendix 2: Proof of Proposition 1

Assuming that (10) is true for h − 1, we get:

Bt(h) = exp(c′hX̃t + dh)

= Et[Mt,t+1 · · ·Mt+H−1,t+H ]

= Et[Mt,t+1Bt+1(h − 1)]

= exp
[
−β − α′X̃t −

1
2Γ′

tΓt + dh−1

]
× Et[exp

(
Γ′

tηt+1 + c′h−1X̃t+1

)
]

= exp
[
−β − α′X̃t −

1
2Γ′

tΓt + dh−1 + c′h−1Φ̃X̃t + c′1,h−1ν̃
]

×Et[exp (Γt + Σ′c1,h−1)
′ηt+1)]

= exp

[(
−α + Φ̃

′

ch−1 + (Σγ)′c1,h−1

)
′

X̃t

+
(
−β + c′1,h−1(ν̃ + Σγo) + 1

2c′1,h−1ΣΣ′c1,h−1 + dh−1

)]
,

(A.1)

and by identifying the coefficients we find the recursive relation presented in Proposition 1. �
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Appendix 3: Impulse Responses and Definition of Shocks

Let us consider a VARMA model defined by:

B(L)yt = ν + C(L)ηt , (A.2)

where yt is a vector of size n, ν is a vector of constant terms, ηt is a white noise with mean 0 and
variance-covariance matrix Σ, B(L) and C(L) are matrices of lag polynomials of maximal degree
p for B and q for C. We also assume that ηt is the innovation of yt and, therefore, B(0) = In×n,
C(0) = In×n. The process yt may be non stationary, so B(1) is not necessarily invertible.

Impulse Responses

We want to compute the impact on yt, t ≥ 0, of a shock δ on η0. Let us introduce the following
notations: y−p = (y′

−1, y
′

−2, . . . , y
′

−p)
′, η−q = (η′

−1, η
′

−2, . . . , η
′

−q)
′, yt = (y′t, y

′

t−1, . . . , y
′

0)
′, and ηt =

(η′t, η
′

t−1, . . . , η
′

0)
′.

Given that yt is a linear function ηt, η−q and y−p and, since we want to evaluate the differential
impact on yt, with respect to a given path, of a shock on η0, we can assume that η−q = 0 and
y−p = 0. Therefore, we have the following moving average representation of yt:

yt = µt +

t∑

i=0

Diηt−i , (A.3)

where µt is deterministic. Replacing relation (A.3) in (A.2) we get, in particular

(
p∑

i=0

BiL
i

)(
t∑

i=0

DiL
i

)
ηt =

(
q∑

i=0

CiL
i

)
ηt ,

and, therefore,

Dh = Ch −
h∑

i=1

BiDh−i , h ≥ 1 ,

with B0 = In×n, C0 = In×n,D0 = In×n,Dj = 0n×n if j < 0

and Bj = 0n×n if j > p Cj = 0n×n if j > q.

(A.4)

So, the matrices Dh’s can be computed recursively from (A.4). The impact on yt of a shock δ on
η0 is Dtδ. In particular, the impact on y0 is δ.

Unit Variance Orthogonalized Errors

If Σ is diagonal, the components of any ηt, in particular η0, are uncorrelated and we can shock a
component of η0 independently of the others. If Σ is not diagonal, we can decompose it in Σ = PP ′,
where P is lower triangular. In other words, the white noise ξt defined by ηt = Pξt has a variance-
covariance matrix equal to In×n. A shock of 1 on the jth component of ξ0 has an immediate impact
on η0, or on y0, equal to δ1 = P (j), where P (j) is the jth column of P . In particular, there is no
impact on y0i, for i < j, and the impact on y0j is Pjj . The impact on yt is DtP

(j). These impacts
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obviously depend on the ordering of the components of yt. Moreover, the immediate impact on y0j

is not equal to 1.

Unit Impact Orthogonalized Errors

If we want to obtain an immediate impact on y0j, or η0j , equal to 1, we have to write ηt as:

ηt = P∆−1∆ξt ,

or ηt = P̃ ζt ,

(A.5)

where ∆ is the diagonal matrix with diagonal terms Pjj, P̃ = P∆−1, ζt = ∆ξt, and V ar(ζt) =
∆∆′ = ∆2. Note that P̃ is a lower triangular matrix whose diagonal terms are equal to 1. The
same is true for P̃−1 and, therefore, ζt = P̃−1ηt can be interpreted as the vector of the residuals of
the regression of each component of ηt on the previous ones. A shock of 1 on the jth component of
ζ0 has an immediate impact on y0, or η0, equal to δ2 = P̃ (j); in particular, the impact on y0j is 1.
The impact on yt is DtP̃

(j).
Moreover, observe that relation (A.2) can be rewritten in the following way:

P̃−1B(L)yt = P̃−1ν + P̃−1C(L)P̃ ζt ,

or B̃(L)yt = ν̃ + C̃(L)ζt ,

with B̃(0) = P̃−1 , C̃(0) = In×n .

(A.6)

In other words, relation (A.6) is a recursive version of (A.2). Note that, if C(L) = c(L)In×n, we
have C̃(L) = c(L). The impact on the yt’s of a shock equal to 1 on ζ0j can be computed in different
ways. A first way is to compute δ2 = P̃ (j), to compute the Dt’s using (A.4) and get DtP̃

(j). A
second way is to set y−p = 0, η−q = 0, η0 = P̃ (j), ηt = 0 ∀ t > 0, and compute recursively the
yt’s from (A.2). A third way is to set y−p = 0, ζ0 = ej, ζt = 0 for t 6= 0 and to compute the yt’s
recursively from (A.6).

Non Orthogonalized Errors

A third approach has been proposed by Pesaran and Shin (2006). They suggested to define the
impact on yt, of a unitary shock on η0j by:

E(yt | y−p, η−q, η0j = 1) − E(yt | y−p, η−q) . (A.7)

The linearity of the model implies that this impact is simply DtE(η0 | η0j = 1). Under normality
we know that:

δ3 = E(η0 | η0j = 1) = Σ(j)

Σjj
, (A.8)

where Σ(j) is the jth column of Σ. The impact on η0 is δ3, and in particular the impact on η0j

and y0j is obviously 1 like in the unit impact orthogonalization. However, the impact on η0 is in
general different except for j = 1. Indeed, in this case, the impact on η0 of a unitary shock on η0j ,
in the unit impact case, is:

P̃ (1) = P (1)

P11
,
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and, using the identity PP ′ = Σ, we have P (1)P11 = Σ(1), P 2
11 = Σ11, and finally P̃ (1) = Σ(1)/Σ11.

New Information Response Function (NIRF)

Let us assume that we have the new information I0 at t = 0. The differential response of yt, induced
by I0, is:

E(yt | y−p, η−q, I0) − E(yt | y−p, η−q) . (A.9)

The linearity implies that this differential response is:

E(yt | y−p = 0, η−q = 0, ηt = 0 ∀t > 0, η0 = E(η0|I0)) , (A.10)

which is easily obtained recursively putting y−p = 0, η−q = 0, η0 = E(η0|I0), and ηt = 0 ∀t > 0.
The examples of impulse responses presented above, are particular cases of this New Information

Response Function (NIRF) framework. In the case of unit variance and unit impact orthogonalized
errors, I0 is a specific value of η0, and E(η0|I0) is equal to this value. In the Pesaran and Shin
(2006) case, I0 is made of a unit value for a component η0j of η0 and, therefore, E(η0|I0) =
Cov(η0i, η0j)/V ar(η0j), i ∈ {1, . . . , n}.

We could also consider an information I0 given by η0j = 1 and η0k = 0, with k 6= j. In this case
we have E(η0i|I0) = βi, i ∈ {1, . . . , n}, where βi is the coefficient of η0j in the theoretical regression
of η0i on η0j and η0k (in particular, we have βj = 1 and βk = 0).

Response to a shock on a filtered variable
Let us suppose that ỹt = F (L)yt, where F (L) = (F1(L), . . . , Fn(L)) is a row vector of polynomials
in L. The innovation of ỹt at t = 0 is η̃0 = F (0)η0.

An information I0 based on η̃0 and some component of η0 is summarized in E(η0|I0), which can
take different values. For instance:

- if I0 is given by η̃0 = 1 and η0i = 0, for i ∈ {1, . . . , n−1}, we have E(η0|I0) = (0, . . . , 0, 1/Fn(0))′;

- if I0 is η̃0 = 1, we have E(η0|I0) = Cov(η0i, η̃0)/V ar(η̃0), for i ∈ {1, . . . , n}, and, moreover,∑n
i=1 Fi(0)

Cov(η0i ,η̃0)
V ar(η̃0) = 1;

- if I0 is η̃0 = 1 and η0j = 0, we have E(η0|I0) = βi, for i ∈ {1, . . . , n}, where βi is the coefficient
of η̃0 in the theoretical regression of η0i on η̃0 and η0j (in particular, βj = 0).
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Appendix 4: Tables and Graphs.

Unit Root rt test Rt test
test p − 1 value 1 % 5 % 10 % p − 1 value 1 % 5 % 10 %

ADF
t-stat 12 -1.8972 -3.4712 -2.8794 -2.5764 0 -1.8341 -3.4683 -2.8781 -2.5757
F-stat 1.8053 6.70 4.71 3.86 1.5972 6.70 4.71 3.86
PP
Adj. t-stat -2.6572 -3.4683 -2.8781 -2.5757 -1.8332 -3.4683 -2.8781 -2.5757
Ng-Perron
MZGLS

α stat 8 -7.8890 -13.800 -8.1000 -5.7000 5 -2.2698 -13.800 -8.1000 -5.7000
MZGLS

t stat 8 -1.9861 -2.5800 -1.9800 -1.6200 5 -1.0649 -2.5800 -1.9800 -1.6200
MSBGLS stat 8 0.2518 0.1740 0.2330 0.2750 5 0.4692 0.1740 0.2330 0.2750
MPGLS

T
stat 8 3.1056 1.7800 3.1700 4.4500 5 10.7914 1.7800 3.1700 4.4500

D-F GLS
t-stat 8 -1.7829 -2.5791 -1.9428 -1.6154 5 -1.0227 -2.5788 -1.9427 -1.6154
Point-Opt
PT -stat 8 3.1911 1.9204 3.1544 4.2884 5 12.2549 1.9204 3.1544 4.2884

Table A. 1: Unit root tests for the (one-quarter) short rate rt (left panel) and for the (40-quarters)
long rate Rt (right panel) (a constant is included in test regressions). In the ADF unit root test,
based on the OLS regression ∆xt = c+ ξ0xt−1 +

∑p−1
j=1 ξj∆xt−j + εt [with εt ∼ i.i.d.(0, σ2) and with

p denoting the AR order], we consider both the t-statistic, to test the null hypothesis ξ0 = 0, and
the F -statistic to test the joint hypothesis (c, ξ0)

′ = (0, 0)′.
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Unit Root Gt test Gt test
test p − 1 value 1 % 5 % 10 % p − 1 value 1 % 5 % 10 %

ADF
t-stat 2 -0.9076 -3.4687 -2.8783 -2.5758 2 -4.3909 -4.0126 -3.4363 -3.1423
F-stat 13.2907 6.70 4.71 3.86 9.8924 8.73 6.49 5.47
PP
Adj. t-stat -1.1299 -3.4683 -2.8781 -2.5757 -3.7962 -4.0120 -3.4360 -3.1421
Ng-Perron
MZGLS

α stat 11 1.4637 -13.800 -8.1000 -5.7000 1 -9.8256 -23.800 -17.300 -14.200
MZGLS

t stat 11 2.4864 -2.5800 -1.9800 -1.6200 1 -2.1582 -3.4200 -2.9100 -2.6200
MSBGLS stat 11 1.6987 0.1740 0.2330 0.2750 1 0.2196 0.1430 0.1680 0.1850
MPGLS

T
stat 11 207.147 1.7800 3.1700 4.4500 1 9.5412 4.0300 5.4800 6.6700

D-F GLS
t-stat 11 1.5767 -2.5793 -1.9428 -1.6154 1 -2.1560 -3.4936 -2.9580 -2.6680
Point-Optimal
PT -stat 11 251.67 1.9204 3.1544 4.2884 1 11.3128 4.1046 5.6548 6.8418

Table A. 2: Left Panel: unit root tests for the log-GDP Gt (a constant is included in test regressions).
In the ADF unit root test, based on the OLS regression ∆Gt = c+ξ0Gt−1+

∑p−1
j=1 ξj∆Gt−j +εt [with

εt ∼ i.i.d.(0, σ2) and with p denoting the AR order], we consider both the t-statistic, to test the null
hypothesis ξ0 = 0, and the F -statistic to test the joint hypothesis (c, ξ0)

′ = (0, 0)′. Right Panel: Unit
root tests for the log-GDP Gt (a constant and a linear time trend are included in test regressions).
In the ADF unit root test, based on the OLS regression ∆Gt = c+bt+ξ0Gt−1 +

∑p−1
j=1 ξj∆Gt−j +εt

[with εt ∼ i.i.d.(0, σ2) and with p denoting the AR order], we consider both the t-statistic, to test
the null hypothesis ξ0 = 0, and the F -statistic to test the joint hypothesis (b, ξ0)

′ = (0, 0)′.

Lag p LR FPE AIC SIC HQ

0 N.A. 6.15e-11 -14.99847 -14.94313 -14.97601
1 1885.283 7.99e-16 -26.24971 -26.02836∗ -26.15989
2 39.83684 6.96e-16 -26.38823 -26.00087 -26.23104∗

3 22.42721∗ 6.72e-16∗ -26.42252∗ -25.86914 -26.19796
4 10.89691 6.98e-16 -26.38604 -25.66665 -26.09412

Table A. 3: Criteria for VAR order selection. Given a sample period of size T , and a n-
dimensional Gaussian VAR(p) process with empirical white noise covariance matrix Ω̂(p), LR =
(T − m)[log|Ω̂(p − 1)| − log|Ω̂(p)|] denotes, for each lag p, the sequential modified [Sims (1980)]
likelihood ratio (LR) test statistic, where m is the number of parameters per equation under
the alternative. The modified LR statistics are compared to the 5% critical values. FPE =
[(T + np + 1)/(T − np − 1)]n det(Ω̂(p)) denotes, for each lag p, the final prediction error crite-
rion. If we denote by log-L = −(Tn/2) log(2π) + (T/2) log(|Ω̂(p)−1|) − (Tn/2) the maximum
value of the log-likelihood function associated to the VAR(p) model, AIC = −2log-L/T + 2pn2/T ,
SIC = −2log-L/T + (log(T )/T )pn2 and HQ = −2log-L/T + (2 log(log(T ))/T )pn2 denote, respec-
tively and for each lag p, the Akaike, Schwarz and Hannan-Quinn information criteria. For each
criterion, and starting from a maximum lag of p = 4, (∗) denotes the optimal number of lags.
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ν Φ1 Φ2 Φ3

rt 0.001331 0.606831 0.143068 0.035002 0.102311 -0.189622 0.049223 0.323890 -0.057000 -0.084323
[0.22889] [6.42110] [0.76623] [1.12708] [0.93464] [-0.80287] [1.08776] [3.16383] [-0.32044] [-2.96027]

Rt 0.001642 0.019803 0.810821 0.012036 0.011148 0.085518 -0.003013 0.079661 -0.046213 -0.009111
[0.52354] [0.38857] [8.05297] [0.71875] [0.18886] [0.67147] [-0.12347] [1.44302] [-0.48177] [-0.59314]

Gt 0.044041 0.228884 -0.311457 1.142524 -1.074207 0.442041 0.012913 0.232781 0.317451 -0.159731
[2.85216] [0.91207] [-0.62819] [13.8549] [-3.69555] [0.70484] [0.10747] [0.85632] [0.67207] [-2.11175]

Ω × 103 Correlations log-L |λ |
0.00786 0.00257 0.00482 ρ12 0.6060 2289.428 0.996757
[8.97218] [6.57583] [2.85580] AIC 0.931549

. 0.00229 0.00361 ρ13 0.2310 -26.42606 0.864719
[8.97218] [3.87193] SIC 0.616957

. . 0.05548 ρ23 0.3205 -25.87489 0.559512(c)
[8.97218] FPE 0.289147

6.70e-16 0.083990(c)

Table A. 4: Parameter estimates of the state dynamics Yt = ν +
∑3

j=1 ΦjYt−j +εt, with Yt = (rt, Rt, Gt)
′ [Gurkaynak-Sack-Wright

(2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets. ρij denotes the (empirical) correlation between
(εit) and (εjt). log-L denotes the maximum value of the log-Likelihood function. |λ | indicates the modulus of the roots of
equation |Φ̃(λ)| = 0, with Φ̃(λ) = (I3×3λ

3 − Φ1λ
2 − Φ2λ − Φ3) denoting the characteristic polynomial; (c) indicates a pair of

complex conjugate roots.
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Trace 5 % Max-Eigen 5 %
r Eigenvalue Statistic Critical Value p-value Statistic Critical Value p-value

0 0.141284 34.42603 29.79707 0.0136 26.04625 21.13162 0.0094
1 0.039789 8.379788 15.49471 0.4257 6.942923 14.26460 0.4959
2 0.008368 1.436865 3.841466 0.2306 1.436865 3.841466 0.2306

α 0.041894 0.117752 -0.577805 β 1.000000 -1.002883 0.003063
[0.55511] [2.88295] [-2.87536] 〈0.00004〉 〈0.08771〉

Table A. 5: Johansen cointegration tests for the variables (rt, Rt, Gt) observed quarterly from
1964:Q1 to 2007:Q2 [Gurkaynak-Sack-Wright (2007) data base]. The null hypothesis is for both
tests H0 : rank(Π) = r. In the Trace test, the alternative hypothesis is HA : rank(Π) = 3, and
the associated statistic is given by 2(log-LA - log-L0) = −T

∑3
i=r+1 log(1 − λi), where log-LA and

log-L0 denote, respectively, the maximum value of the log-Likelihood function (of model (4)) under
the case of 3 and r < 3 cointegrating relations. In the Maximum Eigenvalue test, HA : rank(Π) =
r + 1, and 2(log-LA - log-L0) = −T log(1−λr+1). Both test statistics accept at 5 % the hypothesis
rank(Π) = 1 [we use MacKinnon, Haug, and Michelis (1999) p-values]. Under the restriction r = 1,
the second half of the table provides the estimates of the adjustement parameters α = (α1, α2, α3)

′

(t-values are in brackets) and the cointegrating vector β = (1, β2, β3)
′. For parameters β2 and β3 we

report in angled brackets, respectively, the p-value of the χ2(1)-distributed likelihood ratio statistic
associated to the test H0 : β = (1, 0, β3)

′ and H0 : β = (1, β2, 0)
′. The alternative hypothesis is HA

: β = (1, β2, β3)
′ in both cases, and the 5% and 1% critical values for a χ2(1) are, respectively, 3.84

and 6.63.
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γ Γ1 Γ2 α µ
∆rt -0.000979 -0.415423 0.194112 0.039291 -0.315243 0.011025 0.089297 -0.034924 -0.002868

[-2.70748] [-3.97793] [1.10849] [1.29848] [-3.15953] [0.06260] [3.15866] [-0.50737]
∆Rt -0.000193 -0.086245 -0.067537 0.014772 -0.076095 0.021575 0.012037 -0.113247

[-0.99102] [-1.53059] [-0.71479] [0.90479] [-1.41348] [0.22705] [0.78913] [-3.04918]
∆Gt 0.004761 0.685382 -0.755436 0.196407 -0.370046 -0.303811 0.191169 0.408580

[4.89545] [2.44064] [-1.60429] [2.41381] [-1.37923] [-0.64152] [2.51471] [2.20741]

Ω × 103 log-L |λ |
0.00793 0.00263 0.00509 2283.600 1.00000∗∗

[9.02773] [6.68263] [2.96130] AIC 0.847825
. 0.00231 0.00376 -26.39299 0.627061

[9.02773] [3.96284] SIC 0.548880(c)
. . 0.05735 -25.89693 0.246769

[9.02773] FPE 0.104975(c)
7.18e-16

Table A. 6: Parameter estimates of the model ∆Yt = α(β′Yt−1 +µ)+
∑2

j=1 Γj∆Yt−j +γ + εt, with ∆Yt = (∆rt,∆Rt,∆Gt)
′, when

rank(αβ′) = 1 and β = (−1, 1, 0)′ [Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are
in brackets. log-L denotes the maximum value of the log-Likelihood function. |λ | indicates the modulus of the roots of equation
|Φ̃(λ)| = 0, with Φ̃(λ) = (I3×3λ

3 − Φ1λ
2 − Φ2λ − Φ3) denoting the characteristic polynomial; (c) indicates a pair of complex

conjugate roots, while (∗∗) denote a root with multiplicity two.
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ν̃ Φ̃1 Φ̃2 Φ̃3

rt -0.000879 0.778688 0.159188 0.039291 -0.082906 -0.183087 0.089297 0.304218 -0.011025 0.000000
St 0.001010 0.067530 0.660029 -0.024519 0.182168 0.272199 -0.077260 -0.249698 -0.010550 0.000000
gt 0.003588 -0.070055 -0.346856 0.196407 -0.603802 0.451625 0.191169 0.673856 0.303811 0.000000

Ω̃ × 103 Correlations
0.00793 -0.00530 0.00509 ρ12 -0.8435

. 0.00498 -0.00133 ρ13 0.2385

. . 0.05735 ρ23 -0.0786

Table A. 7: Parameter estimates of the CVAR(3) state dynamics Xt = ν̃ +
∑3

j=1 Φ̃jXt−j + εt, with Xt = (rt, St, gt)
′ [Gurkaynak-

Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. ρij denotes the (empirical) correlation between (εit) and
(εjt).
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ν Φ Ω × 103

rt 0.000866 0.930676 0.069426 0.002164 0.00884 -0.00610 0.00490
[1.06788] [23.8278] [0.95226] [0.07846] [9.13783] [-8.44682] [2.63677]

St 0.000083 0.029614 0.822297 -0.004342 . 0.00564 -0.00142
[0.12750] [0.94903] [14.1173] [-0.19706] [9.13783] [-0.97331]

gt 0.007867 -0.162556 0.189790 0.241397 . . 0.06259
[3.64410] [-1.56400] [0.97825] [3.28905] [9.13783]

Correlations log-L |λ |
ρ12 -0.8637 2258.762 0.947180

AIC 0.803692
ρ13 0.2084 -26.27792 0.243498

SIC
ρ23 -0.0755 -26.05745

FPE
7.77e-16

Table A. 8: Parameter estimates of the model Xt = ν + ΦXt−1 + εt, with Xt = (rt, St, gt)
′

[Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are in
brackets. ρij denotes the (empirical) correlation between (εit) and (εjt). log-L denotes the max-
imum value of the log-Likelihood function. |λ | indicates the modulus of the roots of equation
|Φ̃(λ)| = 0, with Φ̃(λ) = (I3×3λ − Φ) denoting the characteristic polynomial.
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ν Φ1 Φ2 Φ3

rt 0.000168 0.758766 0.177748 0.029460 -0.073947 -0.196031 0.074309 0.248621 -0.078296 0.042825
[0.20432] [4.96926] [0.95300] [0.97364] [-0.37275] [-0.83610] [2.57596] [1.64085] [-0.44379] [1.56340]

St 0.000619 0.073745 0.641578 -0.018244 0.174550 0.279790 -0.067578 -0.219235 0.024977 -0.031195
[0.94150] [0.60429] [4.30389] [-0.75443] [1.10089] [1.49310] [-2.93113] [-1.81038] [0.17713] [-1.42490]

gt 0.006153 -0.131586 -0.421217 0.199406 -0.626298 0.448599 0.196940 0.638584 0.247280 -0.053245
[2.74610] [-0.31655] [-0.82954] [2.42072] [-1.15963] [0.70280] [2.50771] [1.54808] [0.51484] [-0.71399]

Ω × 103 Correlations log-L |λ |
0.00775 -0.00521 0.00502 ρ12 -0.8412 2287.931 0.929918
[8.97218] [-8.16798] [2.93811] AIC 0.888804

. 0.00495 -0.00133 ρ13 0.2380 -26.40855 0.601542(c)
[8.97218] [-0.99649] SIC 0.491884

. . 0.05743 ρ23 -0.0788 -25.85738 0.428283(c)
[8.97218] FPE 0.244932

6.82e-16 0.159802

Table A. 9: Parameter estimates of the unconstrained VAR(3) state dynamics Xt = ν +
∑3

j=1 ΦjXt−j + εt, with Xt = (rt, St, gt)
′

[Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets. ρij denotes the
(empirical) correlation between (εit) and (εjt). log-L denotes the maximum value of the log-Likelihood function. |λ | indicates
the modulus of the roots of equation |Φ̃(λ)| = 0, with Φ̃(λ) = (I3×3λ

3 −Φ1λ
2 −Φ2λ−Φ3) denoting the characteristic polynomial;

(c) indicates a pair of complex conjugate roots.
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γo γ1 γ2 γ3

rt -0.136652 100.691518 102.269258 -14.896053 19.314151 8.437605 -20.437526 -100.212879 -15.560201 0
[-2.844382] [6.450301] [5.323759] [-4.821233] [0.799806] [0.304243] [-7.621634] [-7.337268] [-0.978338]

St 0.092360 47.175696 93.102439 -0.955629 -97.518067 -79.733476 5.603760 32.175722 30.834653 0
[1.450239] [1.743514] [2.742617] [-0.165901] [-2.225377] [-1.573247] [1.232679] [1.467221] [1.187849]

gt 1.540296 47.994907 99.149410 -41.930044 -232.010236 77.676090 62.374147 91.745662 -349.377840 0
[1.648148] [0.126182] [0.203772] [-0.587535] [-0.390555] [0.110982] [1.057419] [0.304262] [-0.968137]

γo γ1 γ2 γ3

rt -0.524919 108.228826 98.625876 -11.656333 19.073429 15.906897 -18.089892 -83.382967 4.560793 -11.029529
[-10.559728] [7.003605] [5.143045] [-3.828487] [0.792034] [0.576711] [-6.042908] [-6.106854] [0.285957] [-4.487555]

St -0.161976 54.490247 97.185702 -0.680821 -97.839133 -80.544700 7.868587 38.467362 41.642690 -1.423593
[-2.252678] [2.001090] [2.830724] [-0.111710] [-2.210141] [-1.584640] [1.401269] [1.746867] [1.565135] [-0.325354]

gt 1.714034 43.853199 140.022996 -61.068570 -250.281939 108.641615 4.151276 109.366549 -416.391956 61.739192
[1.374114] [0.094733] [0.242222] [-0.645551] [-0.340414] [0.129669] [0.045088] [0.300037] [-0.955248] [0.912193]

Table A. 10: Risk sensitivity parameter estimates for the Cointegrated VAR(3) (top panel) and the unconstrained VAR(3) (bottom
panel) factor-based term structure models [Gurkaynak-Sack-Wright (2007) data base; sample period : 1964:Q1 - 2007:Q2]. t-values
are in brackets.
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γo γ1 γ2 γ3

rt -0.175976 105.591876 105.983133 -17.554761 30.179033 24.126697 -23.555232 -111.759561 -10.126020 -0.941943
[-3.499081] [7.290341] [5.772738] [-5.775648] [1.302222] [0.892926] [-7.760015] [-8.712175] [-1.308643] [-0.385633]

St -0.012362 45.465498 88.585328 2.057232 -106.482043 -91.174578 9.348216 47.025998 40.573734 -1.870025
[-0.131771] [1.645902] [2.524100] [0.358244] [-2.422960] [-1.770751] [1.663735] [2.090681] [1.521398] [-0.426417]

gt 2.613361 -112.999796 49.931272 -39.328490 -120.312695 -29.173913 -38.816691 104.875009 -267.898853 64.850553
[1.024150] [-0.151638] [0.053316] [-0.327007] [-0.107655] [-0.022382] [-0.328538] [0.174723] [-0.375226] [0.637249]

γo γ1

rt -0.478376 34.789443 56.968201 -4.557311
[-6.629479] [11.523107] [9.066444] [-1.776612]

St -0.301354 2.383774 66.540381 5.373331
[-4.304486] [1.114791] [13.898731] [1.771460]

gt 1.587789 0.648518 4.255942 -5.401042
[0.539493] [0.006127] [0.018443] [-0.056872]

Table A. 11: Risk sensitivity parameter estimates for the NCVAR(3) factor-based term structure model with λ = 0.2624 (top
panel), and the (unconstrained) VAR(1) (bottom panel) factor-based term structure model [Gurkaynak-Sack-Wright (2007) data
base; sample period : 1964:Q1 - 2007:Q2]. t-values are in brackets.
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Figure A. 1:
Causality Measures from Spread to GDP

Growth (Dashed: Chi Square Lines)
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Figure A. 2:
Impulse Responses Functions to a Shock on the

Spread
Solide line: GDP growth

Dashed line: Spread
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Figure A. 3:
Impulse Response Functions to a Shock on the

Spread
Solide line: cumulated GDP growth
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Figure A. 4:
Causality Measures from Short Rate to GDP

growth (Dashed: Chi Square Lines)
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Figure A. 5:
Impulse Response Functions to a (negative)

Shock on the Short Rate
Solid Line: GDP growth
Dashed line: Short rate
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Figure A. 6:
Impulse Responses Functions to a (negative)

Shock on the Short Rate
Solid Line: Cumulated GDP growth
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Figure A. 7:
1-Year interest rate, fitted (dashed) and observed (solid)
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Figure A. 8:
5-Year interest rate, fitted (dashed) and observed (solid)
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Figure A. 9: Term premia
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Figure A. 10:
NCVAR(3), Kim Wright and Ang, Wei, Piazzesi (VAR(1))

10-year Term premia
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Figure A. 11: NCVAR(3) term premium
Bold line: 10-year interest rate

Thin line: short term interest rate
Shaded areas: recession dates (NBER)
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